Advertisement

Turbulent Multiphase Flows

  • G. M. Faeth
Part of the Lecture Notes in Engineering book series (LNENG, volume 40)

Abstract

Recent measurements and predictions concerning turbulent multiphase flows are considered, emphasizing findings of the author and his associates. The properties of both dense sprays (comparable phase volume fractions) and dilute dispersed multiphase flows (dispersed-phase volume fractions less than 1–10 percent) are considered.

Results for dense sprays are limited to the near-injector region of noncombusting, combusting monopropellant, and combusting bipropellant sprays from pressure-atomizing injectors. The results suggest that these flows approximate locally-homogeneous flow properties in the atomization regime, but exhibit much slower mixing rates as the first wind-induced breakup regime is approached, in a manner which is not anticipated by predictions. Flow properties for the atomization regime are strongly influenced by the degree of flow development and turbulence levels at the injector exit. However, existing measurements of the structure of dense sprays are very limited: more work is required to assess the appropriate flow regimes and the effectiveness of locally homogeneous flow analysis for these flows.

Contemporary stochastic analysis of dilute multiphase flows has provided encouraging predictions of the mean structure and mixing properties (turbulent dispersion) of a variety of dilute dispersed flows. However, effects of turbulence modulation (the modification of turbulence properties by the dispersed phase) have been observed, which existing theoretical methods cannot treat effectively, due to inadequate consideration of the response of the dispersed phase to various wave numbers of the turbulence spectrum. Interphase transport phenomena associated with high relative turbulence intensities, virtual mass forces, Basset history forces, and the existence of envelope flames around drops, are also not sufficiently understood to provide reliable predictions of the properties of the dilute portions of combusting sprays.

Keywords

Mixture Fraction Slug Flow Turbulence Modulation Turbulent Dispersion Liquid Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. V. Bracco, in Recent Advances in Gas Dynamics (Plenum Publishing, New York, 1983.).Google Scholar
  2. 2.
    F. V. Bracco, SAE Paper No. 850394 (1985).Google Scholar
  3. 3.
    R. Clift, J. R. Grace and M. E. Weber, Bubbles, Drops and Particles (Academic Press, New York, 1978), p. 185.Google Scholar
  4. 4.
    C. T. Crowe, J. Fluids Engr. 104, 197 (1982).Google Scholar
  5. 5.
    D. A. Drew, Ann. Rev. Fluid Mech. 15, 261 (1983).ADSCrossRefGoogle Scholar
  6. 6.
    C. K. Law, Prog. Energy Combust. Sci. 8, 171 (1982).CrossRefGoogle Scholar
  7. 7.
    W. A. Sirignano, Prog. Energy Combust. Sci. 9, 291 (1983).ADSCrossRefGoogle Scholar
  8. 8.
    G. M. Faeth, Prog. Energy Combust. Sci. 3, 191 (1977).CrossRefGoogle Scholar
  9. 9.
    G. M. Faeth, Prog. Energy Combust. Sci. 9, 1 (1983).ADSCrossRefGoogle Scholar
  10. 10.
    G. M. Faeth, Prog. Energy Combust. Sci., in press (1988).Google Scholar
  11. 11.
    A. M. Al Taweel and J. Landau, Int. J. Multiphase Flow 3, 341 (1977).CrossRefGoogle Scholar
  12. 12.
    Ranz, W. E., Can. J. Chem. Engr. 36, 175 (1958).CrossRefGoogle Scholar
  13. 13.
    R. D. Reitz and F. V. Bracco, Phys. Fluids 25, 1730 (1982).ADSMATHCrossRefGoogle Scholar
  14. 14.
    R. E. Phinney, J. Fluid Mech. 60, 689 (1973).ADSCrossRefGoogle Scholar
  15. 15.
    B. Chehroudi, Y. Onuma, S.-H. Chen and F. V. Bracco, SAE Paper 850126 (1985).Google Scholar
  16. 16.
    H. Hiroyasu, M. Shimizu and M. Arai, Proceedings of the 2nd International Conference on Liquid Atomization and Spray Systems (Madison, Wisconsin, 1982).Google Scholar
  17. 17.
    S. L. Soo, Fluid Dynamics of Multiphase Systems (Blaisdell, Waltham, MA, 1967).MATHGoogle Scholar
  18. 18.
    M. W. Thring and M. P. Newby, Fourth Symposium (International) on Combustion (Williams and Wilkins, Baltimore, MD, 1953), p. 789.Google Scholar
  19. 19.
    K. J. Wu, C.-C. Su, R. L. Steinberger, D. A. Santavicca and F. V. Bracco, J. Fluids Engr. 105, 406 (1983).CrossRefGoogle Scholar
  20. 20.
    K. J. Wu, A. Coghe, D. A. Santavicca and F. V. Bracco, AIAA J. 22, 1263 (1984).ADSCrossRefGoogle Scholar
  21. 21.
    A. J. Shearer, H. Tamura and G. M. Faeth, J. Energy 3, 271 (1979).CrossRefGoogle Scholar
  22. 22.
    C.-P. Mao, G. A. Szekely, Jr. and G. M. Faeth, J. Energy 4, 78 (1980).CrossRefGoogle Scholar
  23. 23.
    C.-P. Mao, Y. Wakamatsu and G. M. Faeth, Eighteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1981), p. 337.Google Scholar
  24. 24.
    G. A. Ruff, A. D. Sagar and G. M. Faeth, First Annual Conference, ILASS-Americas, Madison, WI (1987).Google Scholar
  25. 25.
    G. A. Ruff, A. D. Sagar and G. M. Faeth, AIAA Paper No. 88-0237 (1988).Google Scholar
  26. 26.
    T. W. Lee, J. P. Gore, G. M. Faeth and A. Birk, Comb. Sci. Tech. 57, 95 (1988).CrossRefGoogle Scholar
  27. 27.
    S.-M. Jeng and G. M. Faeth, J. Heat Trans. 106, 721 (1984).CrossRefGoogle Scholar
  28. 28.
    F. C. Lockwood and A. S. Naguib, Comb. Flame 24, 109 (1975).CrossRefGoogle Scholar
  29. 29.
    A. Birk and P. Reeves, Ballistic Research Laboratory Report No. BRL-TR-2780,1987.Google Scholar
  30. 30.
    W. F. McBratney, Ballistic Research Laboratory Report No. ARBRL-MR-03018, 1980.Google Scholar
  31. 31.
    W. F. McBratney, Ballistic Research Laboratory Report No. ARBRL-MR-03128, 1981.Google Scholar
  32. 32.
    K.N.C. Bray, Seventeenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1979), p. 223.Google Scholar
  33. 33.
    K.N.C. Bray, in Turbulent Reacting Flows (Springer, Berlin, 1980), p. 115.Google Scholar
  34. 34.
    S. Gordon and B. J. McBride, NASA Report No. SP-273, 1971.Google Scholar
  35. 35.
    R. W. Bilger, Comb. Flame 30, 277 (1977).CrossRefGoogle Scholar
  36. 36.
    S. K. Liew, K.N.C. Bray and J. B. Moss, Comb. Sci. Tech. 27, 69 (1981).CrossRefGoogle Scholar
  37. 37.
    J.-S. Shuen, L.-D. Chen and G. M. Faeth, AlChE. J. 29, 167 (1983).ADSCrossRefGoogle Scholar
  38. 38.
    J.-S. Shuen, L.-D. Chen and G. M. Faeth, AlAA. J. 21, 1483 (1983).ADSGoogle Scholar
  39. 39.
    J.-S. Shuen, A.S.P. Solomon, Q.-F. Zhang and G. M. Faeth, AIAA J. 23, 396 (1985).ADSCrossRefGoogle Scholar
  40. 40.
    D. L. Bulzan, J.-S. Shuen and G. M. Faeth, AIAA Paper No. 87-0303 (1987).Google Scholar
  41. 41.
    R. N. Parthasarathy and G. M. Faeth, Int. J. Multiphase Flow, in press (1988).Google Scholar
  42. 42.
    T.-Y. Sun and G. M. Faeth, Int. J. Multiphase Flow 12, 99 (1986).CrossRefGoogle Scholar
  43. 43.
    T.-Y. Sun, R. N. Parthasarathy and G. M. Faeth, J. Heat Trans. 108, 951 (1986).CrossRefGoogle Scholar
  44. 44.
    A.S.P. Solomon, J.-S. Shuen, Q.-F. Zhang and G. M. Faeth, J. Heat Trans. 107, 679 (1985).CrossRefGoogle Scholar
  45. 45.
    A.S.P. Solomon, J.-S. Shuen, Q.-F. Zhang and G. M. Faeth, AIAA J. 23, 1548, 1724 (1985).ADSCrossRefGoogle Scholar
  46. 46.
    J.-S. Shuen, A.S.P. Solomon and G. M. Faeth, AIAA J. 24, 101 (1986).ADSCrossRefGoogle Scholar
  47. 47.
    D. Modarress, H. Tan and S. Elghobashi, AIAA J. 22, 624 (1984).ADSCrossRefGoogle Scholar
  48. 48.
    A. D. Gosman and E. Ioannides, AIAA Paper No. 81-0323 (1981).Google Scholar
  49. 49.
    F. Odar and W. S. Hamilton, J. Fluid Mech. 18, 302 (1964).ADSMATHCrossRefGoogle Scholar
  50. 50.
    J. C. Lopes and A. E. Dukler, AIChE J., in press (1987).Google Scholar
  51. 51.
    R. D. Reitz and R. Diwakar, SAE Paper 870598 (1987).Google Scholar
  52. 52.
    S. E. Elghobashi and T.-W. Abou-Arab, Phys. Fluids 26, 931 (1983).ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • G. M. Faeth
    • 1
  1. 1.Department of Aerospace EngineeringThe University of MichiganAnn ArborUSA

Personalised recommendations