Skip to main content

A finiteness theorem for holomorphic families of Riemann surfaces

  • Conference paper
Book cover Holomorphic Functions and Moduli II

Part of the book series: Mathematical Sciences Research Institute Publications ((MSRI,volume 11))

Abstract

In this paper we will give an analytic proof of the following finiteness theorem for holomorphic families of Riemann surfaces: FIniteness Theorem OF Families. Let B be a Riemann surface of finite type. Then, there are only finitely many non-isomorphic and locally non-trivial holomorphic families of Riemann surfaces of fixed finite type (g, n) with 2g — 2 + n > 0 over B.

Dedicated to Professor Tadashi Kuroda on his sixtieth birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abikoff, W., Two theorems on totally degenerate Kleinian groups ,Amer. J. Math. 98 (1976), 109–118.

    Article  MathSciNet  MATH  Google Scholar 

  2. Abikoff, W., “The Real Analytic Theory of Teichmüller Space,” Lecture Notes in Math. 820, Springer-Verlag, 1980.

    Google Scholar 

  3. Arakelov, S. Ju, Families of curves with fixed degenerancies ,Math. USSR Izvestija 5 (1971), 1277–1302.

    Article  Google Scholar 

  4. Bers, L., An extremal problem for quasiconformal mappings and a theorem by Thurston ,Acta Math. 141 (1978), 73–98.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bers, L., Finite dimensional Teichmüller spaces and generalizations ,Bull. Amer. Math. Soc. 5 (1981), 131–172.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bers, L., On iterations of hyperbolic transformations of Teichmüller spaces ,Amer. J. of Math. 105 (1983), 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  7. Faltings, G., Arakelov’s theorem for Abelian varieties ,Invent. Math. 73 (1983), 337–347.

    Article  MathSciNet  MATH  Google Scholar 

  8. Faltings, G., Endlichkeitssäte für abelshe Varietäten über Zahlkörpern ,Invent. Math. 73 (1983), 349–366.

    Article  MathSciNet  MATH  Google Scholar 

  9. Grauert, H., Mordells Vermutung über Punkte auf algebraischen Kurven und Funktionenkörper ,Publ. Math. I.H.E.S. 25 (1965), 131–149.

    MathSciNet  Google Scholar 

  10. Kobayashi, S., “Hyperbolic Manifolds and Holomorphic Mappings,” Marcel Dekker, Inc., New York, 1970.

    MATH  Google Scholar 

  11. Mazur, B., Arithmetic on curves ,Bull. (new series) of Amer. Math. Soc. 14 (1986), 207–259.

    Article  MathSciNet  MATH  Google Scholar 

  12. Miwa, M., On Mordell’s conjecture for algebraic curves over function fields ,J. Math. Soc. Japan 18 (1966), 182–188.

    Article  MathSciNet  MATH  Google Scholar 

  13. Mumford, D., “Curves and Their Jacobians,” The University of Michigan Press, Ann Arbor, 1975.

    MATH  Google Scholar 

  14. Noguchi, J., A higher dimensional analogue of Mordell’s conjecture over function fields ,Math. Ann. 258 (1981), 207–212.

    Article  MathSciNet  MATH  Google Scholar 

  15. Noguchi, J., Hyperbolic fibre spaces and Mordell’s conjecture over function fields ,Publ. RIMS, Kyoto Univ. 21 (1985), 27–46.

    Article  MathSciNet  MATH  Google Scholar 

  16. Parshin, A.N., Algebraic curves over function fields I ,Math. USSR Izvestija 2 (1968), 1145–1170.

    Article  MATH  Google Scholar 

  17. Samuel, S., La conjecture de Mordell pour les corp fe fonctions ,Séminaire Bourbaki 17e année, 1964/65, n 287.

    Google Scholar 

  18. Shafarevich, I.R., Algebraic number fields ,Amer. Math. Soc. Transl (2) 31 (1963), 25–39.

    MATH  Google Scholar 

  19. Shiga, H., On analytic and geometric properties of Teichmüller spaces ,J. Math. Kyoto Univ. 24 (1984), 441–452.

    MathSciNet  MATH  Google Scholar 

  20. Szpiro, L., Sur le théorème de rigidité de Parsin et Arakelov ,Astérisque 64 (1979), 169–202.

    MathSciNet  MATH  Google Scholar 

  21. Tsuji, M., “Potential Theory in Modern Function Theory,” Chelsea Publishing Company, New York, 1975.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this paper

Cite this paper

Imayoshi, Y., Shiga, H. (1988). A finiteness theorem for holomorphic families of Riemann surfaces. In: Drasin, D., Earle, C.J., Gehring, F.W., Kra, I., Marden, A. (eds) Holomorphic Functions and Moduli II. Mathematical Sciences Research Institute Publications, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9611-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9611-6_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9613-0

  • Online ISBN: 978-1-4613-9611-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics