Determination of Strain and Stress Fields by Diffraction Methods

Part of the Materials Research and Engineering book series (MATERIALS)


Up to this point the mechanical and micromechanical behavior of solids and basic concepts of x-ray and neutron scattering from crystalline solids have been presented. In this chapter these concepts are combined in the derivation of the basic equations of residual stress determination with diffraction. The fundamental assumptions inherent in these derivations and the limits they impose on the applicability of the stress measurement will also be discussed. Various problems in an actual stress measurement, such as the effect of stress gradients, the separation of micro and macrostresses, determination of stresses in thin films and single crystals, etc., are also considered, with special emphasis on the interpretation of the data within the limitations of the theory.


Residual Stress Elastic Constant Average Strain Diffraction Method Plane Spacing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Dölle, J. Appl. Cryst, 12, 489 (1979)CrossRefGoogle Scholar
  2. 2.
    H. Dölle and V. Hauk, Z.f. Metalkde, 68, 728 (1977)Google Scholar
  3. 3.
    H.H. Lester and R.M. Aborn, Army Ordnance 6, 120, 200, 283, 364 (1925–1926)Google Scholar
  4. 4.
    Soc. Automotive Eng., Residual Stress Measurement by X-ray Diffraction, SAE J784a, 2nd ed. (1971)Google Scholar
  5. 5.
    H. Dölle and J.B. Cohen, Met. Trans. A, 11-A, 831 (1980)CrossRefGoogle Scholar
  6. 6.
    V. Hauk, P.J.T. Stuitje, and G. Vaessen, Härterei-Tech. Mitt., Beiheft, 129 (1982)Google Scholar
  7. 7.
    I.C. Noyan, Met. Trans. A, 14A, 1907 (1983)CrossRefGoogle Scholar
  8. 8.
    C.N.J. Wagner, Acta. Met, 5 427 (1957)CrossRefGoogle Scholar
  9. 9.
    H.M. Otte, J. Appl. Phys., 33, 1436 (1962)CrossRefGoogle Scholar
  10. 10.
    R.L. Rothman and J.B. Cohen, J. Appl. Phys., 42, 971 (1971)CrossRefGoogle Scholar
  11. 11.
    V.M. Hauk, R.W.M. Oudelhoven, and G.H.J. Vaessen, Met. Trans. A, 13A, 1239 (1982)CrossRefGoogle Scholar
  12. 12.
    I.C. Noyan, Adv. X-ray Anal, (in print)Google Scholar
  13. 13.
    T. Imura, S. Weissman, and J.J. Slade, Jr., Acta Cryst., 786 (1962)Google Scholar
  14. 14.
    S. Weissman and W.E. Mayo, ASM Metals/Matls. Tech. Series, 8311–006, 185 (1984)Google Scholar
  15. 15.
    W.E. Mayo, J. Chaudhuri, and S. Weissman, ASM Metals/Matls. Tech. Series, 8311–005, 129 (1984)Google Scholar
  16. 16.
    A. Segmüller and M. Murakami, in “Analytical Techniques for Thin Films”, K.N. Tu and R. Rosenberg Eds., Tratises on Mat. Sci. and Technology, Academic Press, New York (in print)Google Scholar
  17. 17.
    M. Murakami, CRC Critical Reviews in Mat. Sci., 11, 317 (1983)CrossRefGoogle Scholar
  18. 18.
    V.S. Speriosu and T. Vreeland Jr., J. Appl. Phys., 56, 1591 (1984)CrossRefGoogle Scholar
  19. 19.
    V.S. Speriosu, J. Appl. Phys., 52 6094 (1981)CrossRefGoogle Scholar
  20. 20.
    A. Segmüller, P. Krishna, and L. Esaki, J. Appl. Cryst, 10, 1 (1977)CrossRefGoogle Scholar
  21. 21.
    A. Segmüller, J. Angiello, and S.J. La Placa, J. Appl. Phys., 51, 6224 (1980)CrossRefGoogle Scholar
  22. 22.
    U. Wolfstieg, Harterei-Tech. Mitt, 31 83 (1976)Google Scholar
  23. 23.
    I.C. Noyan, Mat. Sci and Eng. (in print)Google Scholar
  24. 24.
    C.M. van Baal, Laboratory for Metallurgy Report, Delft Uni. of Tech., Rotterdamsurg, Netherlands (1982)Google Scholar
  25. 25.
    C.M. Brakman, J. Appl. Cryst, 16, 325 (1983)CrossRefGoogle Scholar
  26. 26.
    V.M. Hauk, Adv. in X-ray Anal, 27, 101 (1983)Google Scholar
  27. 27.
    I.C. Noyan, Ph. D. Thesis, Northwestern University, Tech. Institute, Evanston II. 60201 (1984)Google Scholar
  28. 28.
    I.C. Noyan and J.B. Cohen, Adv. in X-ray Anal., 27, 129 (1983)Google Scholar
  29. 29.
    N.R. Draper and H. Smith, “Applied Regression Analysis”, Wiley-Interscience, New York, NNY (1966)Google Scholar
  30. 30.
    R. Marion, Ph. D. Thesis, Northwestern University, Tech. Institute, Evanston. II. 60201 (1972)Google Scholar
  31. 31.
    C.M. Sayers, Publication MPD/NBS/233, Materials Physics Division, Harwell Oxfordshire, England (1983)Google Scholar
  32. 32.
    L. Pintschovius, V. Jung, E. Macherauch, and O. Vöhringer, Mat. Sci. and Eng., 61, 43 (1983)CrossRefGoogle Scholar
  33. 33.
    A. Krawitz, J.E. Brune, and M.J. Schmank in “Residual Stress and Stress Relaxation”, E. Kula, V. Weiss Eds., Plenum Press, New York, NY, 139 (1981)Google Scholar
  34. 34.
    C.W. Tompson, D.F.R. Mildner, M. Mehregany, R. Berliner, and W.B. Yelon, J. Appl. Cryst 17, 385 (1984)CrossRefGoogle Scholar
  35. 35.
    A.D. Krawitz, R. Roberts, and J. Faber, Adv. in X-ray Anal, 27, 239 (1983)Google Scholar
  36. 36.
    W.B. Pearson, “A Handbook of Lattice Spacings and Structures of Metals and Alloys”, Pergamon Press, New York, 19–54 (1958)CrossRefGoogle Scholar
  37. 37.
    C.S. Barrett and T.B. Massalski, “Structure of Metals”, 3rd ed., McGraw-Hill, New York, 357–379 (1966)Google Scholar
  38. 38.
    C.S. Roberts, Trans. AIME, 191, 203 (1953)Google Scholar
  39. 39.
    S. Kodama, Proc. Int. Cong. Mech. Behav. of Materials, Soc. Mat. Sci. Japan, Kyoto, 111 (1972)Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  1. 1.Thomas J. Watson Research CenterIBMYorktown HeightsUSA
  2. 2.Dept. of Materials Science and Engineering, The Technological InstituteNorthwestern UniversityEvanstonUSA

Personalised recommendations