Skip to main content

Some Applications of Vertex Operators to Kac-Moody Algebras

  • Conference paper
Vertex Operators in Mathematics and Physics

Part of the book series: Mathematical Sciences Research Institute Publications ((MSRI,volume 3))

Abstract

This is an account of some of my recent work [2,3] which has involved applications of vertex operators to Kac-Moody Lie theory. For V the basic A1 (1)-module in the principal realization given by Lepowsky and Wilson [13], one may use vertex operators to describe the decomposition \( V \otimes \;V = S(V)\; \oplus \;A(V) \) of V ⊗ V into symmetric tensors S(V) and antisymmetric tensors A(V). This turns out to be precisely the decomposition of V ⊗ V into two “strings” of level two standard A1 (1)-modules which I found in [1].This result has a remarkable application to the construction of the hyperbolic algebra F with Dynkin diagram

.

Partially supported by the National Science Foundation through the Mathematical Sciences Research Institute

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.J. Feingold, Tensor products of certain modules for the generalized Cartan matrix Lie algebra A1 (1), Communications in Algebra, Vol. 9, No. 12 (1981), 1323–1341.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. J. Feingold, I. Frenkel, A hyperbolic Kac-Moody algebra and the theory of Siegel modular forms of genus 2, Math. Ann. 263 (1983), 87–144.

    Article  MATH  MathSciNet  Google Scholar 

  3. A.J. Feingold, I. Frenkel, Classical affine algebras, Advances in Math, to appear.

    Google Scholar 

  4. I. Frenkel, Spinor representations of affine Lie algebras, Proc. Natl. Acad. Sci. USA, Vol. 77, No. 11, (1980), 6303–6306.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. I. Frenkel, Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory, J. of Funct. Anal., Vol. 44, No. 3 (1981), 259–327.

    Article  MATH  MathSciNet  Google Scholar 

  6. I. Frenkel, Representations of Kac-Moody algebras and dual resonance models, Proceedings of the AMS-SIAM 1982 Summer Seminar on Applications of Group Theory in Physics and Mathematical Physics, July, 1982.

    Google Scholar 

  7. I. Frenkel, V.G. Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math. 62 (1980), 23–66.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. V. G. Kac, D. A. Kazhdan, J. Lepowsky, R. L. Wilson, Realization of the basic representations of the Euclidean Lie algebras, Advances in Math. 42, (1981), 83–112.

    Article  MATH  MathSciNet  Google Scholar 

  9. V. G. Kac, D. H. Peterson, Spin and wedge representations of infinite-dimensional Lie algebras and groups, Proc. Natl. Acad. Sci. USA, Vol. 78, No. 6 (1981), 3308–3312.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. J. Lepowsky, Affine Lie algebras and combinatorial identities, Proc. 1981 Rutgers Conference on Lie algebras and Related Topics, Springer-Verlag Lecture Notes in Math. 933 (1982), 130–156.

    Google Scholar 

  11. J. Lepowsky, Some constructions of the affine Lie algebra A1 (1), Proceedings of the AMS-SIAM 1982 Summer Seminar on Applications of Group Theory in Physics and Mathematical Physics, July, 1982.

    Google Scholar 

  12. J. Lepowsky, M. Primc, Standard modules for type one affine Lie algebras, Number Theory, New York, 1982, Springer-Verlag Lecture Notes in Mathematics 1052 (1984) 194–251.

    Google Scholar 

  13. J. Lepowsky, R.L. Wilson, Construction of the affine Lie algebra A1 (1), Comm. in Math. Phys. 62 (1978), 43–53.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. J. Lepowsky, R.L. Wilson, A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities, Advances in Math. 45 (1982), 21–72.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Lepowsky, R.L. Wilson, A new family of algebras underlying the Rogers-Ramanujan identities and generalizations, Proc. Natl. Acad. Sci. USA, Vol. 78 (1981), 7254–7258.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. J. Lepowsky, R.L. Wilson, The structure of standard modules, I: Universal algebras and the Rogers-Ramanujan identities, preprint, 1982, Invent. Math., (1984).

    Google Scholar 

  17. R.V. Moody, S. Berman, Lie algebra multiplicities, Proceedings of the American Mathematical Society 76 (1979), 223–228.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag New York Inc.

About this paper

Cite this paper

Feingold, A.J. (1985). Some Applications of Vertex Operators to Kac-Moody Algebras. In: Lepowsky, J., Mandelstam, S., Singer, I.M. (eds) Vertex Operators in Mathematics and Physics. Mathematical Sciences Research Institute Publications, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9550-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9550-8_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9552-2

  • Online ISBN: 978-1-4613-9550-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics