Skip to main content

Monodromy, Solitons and Infinite Dimensional Lie Algebras

  • Conference paper
  • 653 Accesses

Part of the book series: Mathematical Sciences Research Institute Publications ((MSRI,volume 3))

Abstract

The present contribution is a brief survey of works done in Kyoto for the past 7 years. As such, it contains no new results. Rather, it is intended to cover an outline of the development that might be of some interest to the people working in vertex operators and related areas. Some more details can be found in several review articles [1], [2] as well as in the original papers [3], [4].

Partially supported by the National Science Foundation through the Mathematical Sciences Research Institute.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Comments and Bibliography

  1. M. Jimbo, T. Miwa, M. Sato and Y. Môri, Springer Lecture Notes in Physics 116 (1980) 119.

    Article  ADS  Google Scholar 

  2. M. Sato, T. Miwa and M. Jimbo, ibid. 126 (1980), 429.

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Jimbo and T. Miwa, Publ. RIMS. Kyoto Univ. 19 (1983) 943.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Sato, T. Miwa and M. Jimbo, Publ. RIMS, Kyoto Univ.14 (1978) 223,

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Sato, T. Miwa and M. Jimbo, Publ. RIMS, Kyoto Univ.15 (1979) 201, 577, 871,

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Sato, T. Miwa and M. Jimbo, Publ. RIMS, Kyoto Univ.16 ( 1980) 531.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Jimbo, T. Miwa, Y. Môri and M. Sato, Physica 1 D (1980) 80.

    MATH  MathSciNet  Google Scholar 

  8. M. Kashiwara and T. Miwa, Proc. Japan Acad. 57 A (1981) 342.

    MATH  MathSciNet  Google Scholar 

  9. E. Date, M. Kashiwara and T. Miwa, ibid. 57A (1981) 387.

    MATH  MathSciNet  Google Scholar 

  10. E. Date, M. Jimbo, M. Kashiwara and T. Miwa, J. Phys. Soc. Jap. 50 (1981) 3806, 3813;

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. E. Date, M. Jimbo, M. Kashiwara and T. Miwa Physica 4 D (1982) 343

    MATH  MathSciNet  Google Scholar 

  12. E. Date, M. Jimbo, M. Kashiwara and T. Miwa Publ. RIMS, Kyoto Univ. 18 (1982) 1077, 1111.

    Article  MATH  MathSciNet  Google Scholar 

  13. To be more precise, one lets also T tend to the “critical temperature” Tc. In the sequel, this limit is taken from above Tc. For simplicity of presentation, we assume also E1=E2.

    Google Scholar 

  14. T.T. Wu, B.M. McCoy, C.A. Tracy and E. Barouch, Phys. Rev. B 13 (1976) 316.

    Article  ADS  Google Scholar 

  15. A description of Painléve’s work can be found in the book: E.L. Ince, Ordinary differential equations, Dover, New York, 1956.

    Google Scholar 

  16. L. Schlesinger, J. für Math. 141 (1972) 96.

    Google Scholar 

  17. M. Jimbo, T. Miwa and K. Ueno, Physica 2D (1981) 306.

    ADS  MathSciNet  Google Scholar 

  18. L. Onsager, Phys. Rev. 65 (1944) 117.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. \( {\psi_{\pm }}(x) \) are obtained as the limit of \( {p_{{ij}}} = {V^i}{p_j}{V^{{ - i}}} \), \( {q_{{ij}}} = {V^i}{q_j}{V^{{ - i}}} \). They satisfy the 2-dimensional Dirac equation \( ( \pm \frac{\partial }{{\partial {x^0}}} + \frac{\partial }{{\partial {x^1}}}){\psi_\pm }(x) = m{\psi_\pm }(x) \). where m > 0 is the mass parameter.

    Google Scholar 

  20. Note that w±(x) solve the Dirac equation, which is elliptic in the Euclidean region. We are0 thus dealing with an analogue of Riemann’s monodromy problem for solutions of the Euclidean Dirac equation instead of the Cauchy-Riemann equation. In the limit m → 0, the former reduces to the latter.

    Google Scholar 

  21. T. Miwa, Publ. RIMS. Kyoto Univ. 17 (1981) 665.

    Article  MATH  MathSciNet  Google Scholar 

  22. It was M. and Y. Sato who first established this picture. A short account of their theory is found in: M. Sato, RIMS Kokyuroku 439 (1981) 30.

    Google Scholar 

  23. K. Okamoto, Transformation groups for Painlevé equations, in preparation (Univ. of Tokyo).

    Google Scholar 

  24. For the self-dual Yang-Mills equation, the transformation group of solutions is clarified by: K. Ueno and Y. Nakamura, Phys. Lett. 109 B (1982) 273.

    Article  MathSciNet  Google Scholar 

  25. For the self-dual Yang-Mills equation, the transformation group of solutions is clarified by: K. Ueno and Y. Nakamura, Phys. Lett. 117 B (1982) 208.

    Article  MathSciNet  Google Scholar 

  26. K. Takasaki, RIMS preprint 459 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag New York Inc.

About this paper

Cite this paper

Jimbo, M., Miwa, T. (1985). Monodromy, Solitons and Infinite Dimensional Lie Algebras. In: Lepowsky, J., Mandelstam, S., Singer, I.M. (eds) Vertex Operators in Mathematics and Physics. Mathematical Sciences Research Institute Publications, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9550-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9550-8_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9552-2

  • Online ISBN: 978-1-4613-9550-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics