Skip to main content

Relationships of Pesticide Octanol/Water Partition Coefficients to Their Physicochemical Properties

  • Conference paper
Reviews of Environmental Contamination and Toxicology

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 133))

Abstract

Chemodynamic theories estimate the fate, distribution, bioaccumulation potential, and approximate residence time of pollutants in the environment, all on the grounds of physicochemical properties. Mathematical models have been developed to use chemodynamic theories for prediction purposes (Mackay and Pater son 1981). Most of these models require input data on the physical and chemical properties of the compounds investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrochemicals handbook (1987) Royal Society of Chemistry, Nottingham, England.

    Google Scholar 

  • Berendsen GE, de Galan L (1980) Role of the chain length of chemically bonded phases and the retention mechanism in rever sed-phase liquid chromatography. J Chromatogr 196: 21–37.

    Article  CAS  Google Scholar 

  • Bowman BT, Sans WW (1983) Determination of octanol-water partitioning coefficient (Kow) of 61 organophosphorous and carbamate insecticides and their relationship to respective water solubility (S) values. J Environ Sci Hlth B18: (6): 667–683.

    Article  Google Scholar 

  • Briggs GG (1969) Molecular structure of herbicides and their sorption by soil. Nature (London) 223: 1288.

    Article  CAS  Google Scholar 

  • Briggs GG (1981) Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficient, water solubilities, bioconcentration factors, and the Parachor. J Agrie Food Chem 29: 1050–1059.

    Article  CAS  Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA (1982) Relationship between lipophilicity and root uptake and translocation of non-ionized chemical by barley. Pestic Sci 13: 495–504.

    Article  CAS  Google Scholar 

  • Brooke DN, Dobbs AJ, Williams N (1986) Octanol:water partition coefficient (P): Measurement, estimation, and interpretation, particularly for chemicals with P 105. Ecotoxicol Environ Saf 11: 251–260.

    Article  PubMed  CAS  Google Scholar 

  • Bruggeman WA, van der Steen J, Hutzinger O (1982) Reversed-phase thin-layer chromatography of polynuclear aromatic hydrocarbons and chlorinated biphenyls. Relationship with hydrophobicity as measured by aqueous solubility and octanol-water partition coefficient. J Chromatogr 238: 335–346.

    Google Scholar 

  • Chessels M, Hawker DW, Connel DW (1991) Critical evaluation of the measurement of the 1-octanol/water partition coefficient of hydrophobic compounds. Chemosphere 22: 1175–1190.

    Article  Google Scholar 

  • Chiou CT, Freed VH, Schmedding DW, Kohnert RL (1977) Partition coefficient and bioaccumulation of selected organic chemicals. Environ Sci Technol 11: 475–478

    Article  CAS  Google Scholar 

  • Coy DW, Kew GA, Mullins ME, Piserchia PW (1986) Determining uncertainty in physical parameter measurements by Monte Carlo simulation. In: Garner WY, Honeycutt RC, Nigg HN (eds) Evaluation of pesticides in ground water. ACS, Washington, DC, pp 42–60.

    Google Scholar 

  • Cramer DR (1980) BC(DEF) parameters. 1. The intrinsic dimensionality of intermolecular interactions in the liquid state. J Am Chem Soc 102: 1837–1849.

    Article  CAS  Google Scholar 

  • de Bruijn J, Bussers F, Seinen W, Hermens JLM (1989) Determination of octanol/ water partition coefficients for hydrophobic organic chemicals with the “slow- stirring” method. J Environ Toxic Chem 8: 499–512.

    Article  Google Scholar 

  • de Bruijn J, Hermens JLM (1991) Uptake and elimination kinetics of organophophorous pesticides in the guppy ( Poecilia reticulata ): Correlations with the octanol/water partition coefficient. J Environ Toxic Chem 10: 791–804.

    Google Scholar 

  • de Kock AC, Lord DA (1987) A simple procedure for determining octanol-water partition coefficents using reverse phase high performance liquid chromatography ( RP-HPLC ). Chemosphere 16: 133–142.

    Google Scholar 

  • de Wolf W, de Bruijn JHM, Seinen W, Hermens JLM (1992) Influence of biotransformation on the relationship between bioconcentration factors, and octanol- water partition coefficents. Environ Sei Technol 26: 1197–1201.

    Google Scholar 

  • Doucette JW, Andren AW (1987) Correlation of octanol/water partition coeffi-cients and total molecular surface area for highly hydrophobic aromatic compounds. Environ Sei Technol 21: 821–824.

    Article  CAS  Google Scholar 

  • Dubelman S, Bremer MJ (1983) Determination of the octanol/water partition coefficient of MAPC products. Rept No MSL-3219, Monsanto Co, Agricultural Res Div, St. Louis, MO.

    Google Scholar 

  • Ellgehausen H, D’Hondt C, Fuerer R (1981) Reversed-phase chromatography as a general method for determining octan-l-ol/water partition coefficients. Pestic Sei 12: 219–227.

    Article  CAS  Google Scholar 

  • Ellgehausen H, Guth JA, Esser HO (1978) International congress on pesticide chemistry, 4th ed, v32, IUP AC, Zurich.

    Google Scholar 

  • Felsot A, Dham PA (1979) Sorption of organophosphorous and carbamate insecticides by soil. J Agrie Food Chem 27: 557–563.

    Article  CAS  Google Scholar 

  • Fujita T, Iwasa J, Hansch C (1964) A new substituent constant, TT, derived from partition coefficients. J Am Chem Soc 86: 5175–5180.

    Google Scholar 

  • Fürer R, Geiger M (1977) A simple method of determining the aqueous solubility of organic substances. Pestic Sei 8: 337–344.

    Article  Google Scholar 

  • Glass ADM (1975) Inhibition of phosphate uptake in barley roots by hydroxy- benzoic acids. Phytochemistry 14: 2127–2130.

    Article  CAS  Google Scholar 

  • Green G, Karichoff SW (1990) Pesticide in the soil environment: Processes impacts and modelling. In: Cheng H (ed), SSSA book series, vol 2. Madison, WI, pp 431–432.

    Google Scholar 

  • Hansch C, Leo A (1979) Subsituent constants for correlation analysis in chemistry and biology. Wiley-Inter science, New York.

    Google Scholar 

  • Harnisch M, Mockel H J, Schulze G (1983) Relationship between log Pow shake-flask values and capacity factors derived from reversed-phase high-performance liquid chromatography for n-alkylbenzenes and some OECD substances. J Chromatogr 282: 315–332.

    Article  CAS  Google Scholar 

  • Isnard P, Lambert S (1988) Estimating bioconcentration factors from octanol-water partition coefficient and aqueous solubility. Chemosphere 17: 21–34.

    Article  CAS  Google Scholar 

  • Kanazawa J (1981) Measurement of the bioconcentration factors of pesticides by freshwater fish and their correlation with physicochemical properties or acute toxicities. Pestic Sei 12: 417–424.

    Article  CAS  Google Scholar 

  • Kenaga EE, Goring CAI (1980) Relationship between water solubility, soil sorption, octanol-water partitioning, and concentration of chemicals in Biota. In: Eaton JG, Parrish PR, Hendricks AC (eds) Aquatic toxicology. ASTM, STP 707, Philadelphia, PA, pp 78–115.

    Google Scholar 

  • Kier LB, Hall LH (1986) Molecular connectivity in structure-activity analysis. Research Studies Press Ltd, Letchworth, Hertfordshire, England.

    Google Scholar 

  • Klein W, Kordel W, Weiß M, Poremski HJ (1988) Updating of the OECD test guideline 107 “partition coefficient n-octanol/water”: OECD laboratory inter- comparison test on the HPLC method. Chemosphere 17: 361–386.

    Google Scholar 

  • Konemann H, Zelle HR, Busser F, Hammers HE (1979) Determination of log Poct values of chloro-substituted benzenes, toluenes and anilines by high performance liquid chromatography on ODS-silica. J Chromatogr 178: 559–565.

    Article  CAS  Google Scholar 

  • Leo A, Hansch C, Elkins D (1971) Partition coefficient and their uses. Chem Rev 71: 525–616.

    Article  CAS  Google Scholar 

  • Mackay D, Paterson S (1981) Calculating fugacity. Environ Sci Technol 15: 1006–1014.

    Article  CAS  Google Scholar 

  • Mallhot H, Peters RH (1988) Empirical relationships between the 1-octanol/water partition coefficient and nine physicochemical properties. Environ Sci Technol 22: 1479–1488.

    Article  Google Scholar 

  • Mardia KV, Kent JT, Bibby JM (1989) Multivariate analysis, 7th ed. Harcourt Brace Jovanovich, Academic Press Ltd, London, pp 282–299.

    Google Scholar 

  • Miller MM, Ghodbane S, Wasik SP, Tewari YD, Martire DE (1984) Aqueous solubilities, octanol-water partition coefficients and entropies of melting of chlo-rinated benzenes and biphenyls. J Chem Eng Data 29: 184–190.

    Article  CAS  Google Scholar 

  • OECD Guidelines for testing of chemicals (1981) No 107, partition coefficient (n-octanol/water). Flask-shaking Method. Paris.

    Google Scholar 

  • OECD Guidelines for testing of chemicals (1989) No 117, partition coefficient (n-octanol/water). High performance liquid chromatography ( HPLC) method. Paris.

    Google Scholar 

  • Patil GS (1991) Correlation of aqueous solubility and octanol-water partition coeffi- cent based on molecular structure. Chemosphere 22: 723–738.

    Article  CAS  Google Scholar 

  • Poling SM, Hsu WJ, Yohoyama H (1975) Structure-activity relationships of chemical inducers of carotenoid biosynthesis. Phytochemistry 14: 1933–1938.

    Article  CAS  Google Scholar 

  • Pussemier L, Szabo G, Bulman RA (1990) Prediction of the soil adsorption coeffi-cient Koc for aromatic pollutants. Chemosphere 21: 1199–1212.

    Article  CAS  Google Scholar 

  • Rekker RF (1977) The hydrophobic fragmental constant. Its derivation and application, a means of characterizing membrane systems. Elsevier, Oxford.

    Google Scholar 

  • Sanborn JR, Metcalf RL, Bruce WN, Lu PY (1976) The fate of chlordane and toxaphene in a terrestrial-aquatic model ecosystem. Environ Entomol 5 (3): 533–538.

    CAS  Google Scholar 

  • SAS Institute Inc. (1985) SAS® user’s guide: Statistics, version 5 edition. Cary, NC.

    Google Scholar 

  • SAS Institute Inc. (1989) SAS/STAT® user’s guide, version 6, 4th ed, vol 1. Cary, NC.

    Google Scholar 

  • SAS Institute Inc. (1989) SAS/STAT® user’s guide, version 6, 4th ed, vol 2. Cary, NC.

    Google Scholar 

  • Shiu WY, Doucette W, Gobas FA, Andren A, Mackay D (1988) Physical-chemical properties of chlorinated dibenzo-B-dioxins. Environ Sci Technol 22: 651–658.

    Article  CAS  Google Scholar 

  • Shiu WY, Ma KC, Mackay D, Seiber JN, Wauchope RD (1990) Solubilities of pesticide chemicals in water. Part II: Data compilation. Rev Environ Contam Toxicol 116: 14–187.

    Google Scholar 

  • Snedecor GW, Cochran WG (1973) Statistical methods, 6th ed. Iowa State Univ Press, Ames, IA, pp 432–436.

    Google Scholar 

  • Suntio LR, Shiu WY, Mackay D, Seiber JN, Glotfelty D (1988) Critical review of Henry’s law constants for pesticides. Rev Environ Contam Toxicol 103: 1–59.

    Article  CAS  Google Scholar 

  • Thus JLG, Kraak JC (1985) Comparison of phenyl- and octadecyl-modified silica gel as stationary phase for the prediction of n-octanol-water partition coefficients by high-performance liquid chromatography. J Chromatogr 320: 271–279.

    Article  CAS  Google Scholar 

  • Verschueren K (1983) Handbook of environmental data on organic chemicals, 2nd ed. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Wasik SP, Miller MM, Tewari YB, May WE, Sonnefeld WE, de Voe H, Zoller WH (1983) Determination of the vapor pressure, aqueous solubility, and octanol/water partition coefficient of hydrophobic substances by coupled generator column/liquid chromatographic methods. Residue Reviews 85: 29–42.

    CAS  Google Scholar 

  • Wauchope RD, Buttler TM, Hornsby AG, Augustjn Beckers PWM, Burt JP (1992) The SCS/ARS/CES pesticide properties database for environmental decisionmaking. Rev Environ Contam Toxicol 123: 1–155.

    Article  PubMed  CAS  Google Scholar 

  • Woodburn KB, Doucette WJ, Andren AW (1984) Generator column determination of octanol/water partition coefficients for selected polychlorinated by phenils congeners. Environ Sei Technol 18: 457–459.

    Article  CAS  Google Scholar 

  • Worthing CR, ed (1987) The pesticide manual (a world compendium), 8th ed. British Crop Protection Council, Croydon, England.

    Google Scholar 

  • Worthing CR, Hance RJ, eds (1991) The pesticide manual (a world compendium), 9th ed. British Crop Protection Council, Croydon, England.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Sicbaldi, F., Del Re, A.A.M. (1993). Relationships of Pesticide Octanol/Water Partition Coefficients to Their Physicochemical Properties. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 133. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9529-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9529-4_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9531-7

  • Online ISBN: 978-1-4613-9529-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics