Advertisement

An Overview of the Chronobiology of Cellular Morphology

  • Heinz von Mayersbach
Part of the Topics in Environmental Physiology and Medicine book series (TEPHY)

Abstract

Temporal organization at the cellular level is evident for the eukaryote (Edmunds 1978; Ehret 1974; Goodwin 1963; Hastings and Keyman 1965; Hastings and Schweiger 1976; Schweiger et al. 1964; Vanden Driessche 1971, 1975), plant (Sweeney 1969), bird (Young 1978a,b), and human being (Ashkenazi et al. 1973, 1975). In this chapter, temporal patterns in cellular morphology are illustrated using the hepatic cell of the rodent. This example has been selected since the general properties and concepts of the temporal morphology of rodent cells are also common to other ones. Although cellular morphology rhythms are of interest in their own right, the materials of this chapter are especially relevant for understanding the other topics of this volume, i.e., chronopharmacology, chronochemotherapy, and chrononutrition.

Keywords

Circadian Rhythm Golgi Apparatus Glycogen Content Marker Enzyme Cellular Morphology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abicht, J, and Philippens, KMH (1973) Circadian rhythmicity of liver DNA in rats. Int J Chronobiol 1: 317.Google Scholar
  2. Abicht, J (1976) Die Circadianrhythmik des DNS-Gehaltes in der Rattenleber. Neue Untersuchungen unter Berücksichtigung der methodischen Fehlerquellen und der Circadianrhythmen anderer Leberwerte, Dissertation (M.D.-Thesis). Hannover: Medizinische Hochschule (West Germany).Google Scholar
  3. Aithal, HN, and Ramasarma, T (1971) Changes in the liver mitochondrial oxidation of succinate during cold-exposure. Biochem J 123: 677–682.PubMedGoogle Scholar
  4. Albegger, KW, and Müller, O (1973a) Der tagesrhythmische Sekretionszyklus der Glandula submandibularis der Ratte. Arch klin exp Ohren-Nasen-u. Kehlkopfheilkd 204: 27–56.Google Scholar
  5. Albegger, KW, and Müller, O (1973b) Zur Circadianstruktur der Glandula submandibularis. Arch klin exp Ohren-Nasen-u Kehlkopfheilkd 205: 122–125.CrossRefGoogle Scholar
  6. Albegger, KW, Müller, O, and Albegger, C (1973) Quantitative microscopy of the circadian secretory cycle of the rat parotid gland. Int J Chronobiol 1: 317–318.Google Scholar
  7. Ashkenazi, YE, Ramot, B, Brok-Simoni, F, and Holtzman, F (1973) Blood leucocyte enzyme activities. I. Diurnal rhythm in normal individuals. J Interdiscipl Cycle Res 4: 193–205.Google Scholar
  8. Ashkenazi, YE, Goldman, B, and Dotan, A (1975) Rhythmic variation of sex chromatin and glucose-6-phosphate dehydrogenase activity in human oral mucosa during the menstrual cycle. Acta Cytologica 19: 62–66.PubMedGoogle Scholar
  9. Barbiroli B, Moruzzi, MS, Monti, MG, and Tadolini, B (1973) Diurnal rhythmicity of mammalian DNA-dependent RNA polymerase activities I and II: Dependence on food intake. Biochem Biophys Res Comm 54: 62–68.Google Scholar
  10. Barnum, CP, Jardetzky, CD, and Halberg, F (1958) Time relations among metabolic and morphologic 24 hours changes in mouse liver. Amer J Physiol 195: 301–310.PubMedGoogle Scholar
  11. Bhattacharya, R (1977) Circadian differences of lysosomes and their enzymes. Leopoldina Symposion Die Zeit und das Leben, Halle/ Saale, März, 1975. Nova Acta Leopoldina 225: 171–179.Google Scholar
  12. Bhattacharya, R, and von Mayersbach, H (1976) Histochemistry of circadian changes of some lysosomal enzymes in rat liver. XVII Symposion Ges Histochemie, Bozen, 1974. Acta histochem Supp116:109–116.Google Scholar
  13. Bollweg, L, and Maskos, S (1979) Zirkadianrhythmik der DNS-Konzentration in Milz und Thymus von Ratten, Dissertation. Hannover: Medizinische Hochschule.Google Scholar
  14. Burns, ER, and Scheving, LE (1975) Circadian influence on the wave form of the frequency of labeled mitoses in mouse corneal epithelium. Cell Tissue Kinet 8: 61–66.PubMedGoogle Scholar
  15. Caspersson, T, and Holmgren, H (1934) Variationen der Kerngrösse während der verschiedenen Phasen der Leberarbeit. Anat Anz 79: 53–59.Google Scholar
  16. Chiakulas, JJ, and Scheving, LE (1965) Periodicity in liver glycogen of urodele larvae. Comp Biochem Physiol 17: 87–91.Google Scholar
  17. Dallman, PR, Spirito, RA, and Siimes, MA (1974) Diurnal patterns of DNA synthesis in the rat: Modification by diet and feeding schedule. J Nutr 104: 1234–1241.Google Scholar
  18. Daoust, R (1958) The cell population of liver tissue and the cytological reference bases. Am Inst Biol Sci Pub 4: 3–10.Google Scholar
  19. De Duve, C (1969) The lysosome in retrospect. In: Dingle, JT, and Fell, HB, eds, Lysosomes in Biology and Pathology, Vol. I. Amsterdam. North Holland, pp. 3–40.Google Scholar
  20. Döring, R, and Rensing, L (1973) Circadian rhythm of different RNA-fractions in rat liver and the effect of cyclohexamide. Comp Biochem Physiol B45: 285–290.CrossRefGoogle Scholar
  21. Earp, HS III (1974) Glucocorticoid regulation of transcriptions. The role of physiologic concentrations of adrenal glucocorticoids in the diurnal variation of rat liver chromatin template availability. Biochim Biophys Acta 340: 95–107.Google Scholar
  22. Echave Llanos, JM, De Vaccaro, MEE, and Surur, JM (1970) 24-hour variations in DNA of the liver in young adult male mice. J Interdiscipl Cycle Res 1:161–171.Google Scholar
  23. Echave Llanos, JM, Aloisso, MD, Souto, M, Balduzzi, R, and Surur, JM (1971) Circadian variations of DNA synthesis, mitotic activity and cell size of hepatocyte population in young immature male mouse growing liver. Virch Archiv (Cell Path.) 8: 309–317.Google Scholar
  24. Edmunds, LN (1978) Clocked cell cycle clocks. Implications toward chronopharmacology and aging. In: Samis, HV, and Capobianco, S,eds, Aging and Biological Rhythms. New York-London: Plenum Press, pp. 125–184.Google Scholar
  25. Ehret CF (1974) The sense of time: evidence for its molecular basis in the eukaryotic gene-action system. Ad Biol Med Phy 15: 47–77.Google Scholar
  26. Eling, W (1967) The circadian rhythm of nucleic acids. In: von Mayersbach, H, ed, The Cellular Aspects of Biorhythms. Berlin-HeidelbergNew York: Springer-Verlag, pp. 105–114.Google Scholar
  27. Forsgren, E (1928) Mikroskopische Untersuchungen über die Gallenbildung in den Leberzellen. Z Zellforsch 6: 647–688.CrossRefGoogle Scholar
  28. Gagliardino, JJ, and Pessacq, MT (1974) Diurnal variations in the action of insulin on muscle glycogen synthesis. J Endocrinol 61: 171–177.PubMedCrossRefGoogle Scholar
  29. Gagliardino, JJ, and Rebolledo, OR (1972) Hormonal control of protein synthesis in muscle: an approach through the study of its circadian rhythm. Horm Metab Res 4: 278–279.PubMedCrossRefGoogle Scholar
  30. Glick, D (1961a) Quantitative Chemical Techniques in Histo-and Cytochemistry, Vol. I.New York-London: Wiley, p. 58.Google Scholar
  31. Glick, D, Ferguson, RB, Greenberg, LJ, and Halberg, F (1961b) Circadian studies on succinic dehydrogenase pantothenate and biotin of rodent adrenal. Amer J Physiol 200: 811–814.PubMedGoogle Scholar
  32. Goodwin, BC (1963) Temporal Organization in Cells. A Dynamic Theory of Cellular Processes. London: Academic Press.Google Scholar
  33. Groh, V, and von Mayersbach, H (1981a) Histochemical tracing of lysosomal enzymes. Improved preparation technique for acid phosphatase, ß-glucuronidase, acid-ß-galactosidase and arylesterase in rat liver. Acta Histochem 69: 1–11.Google Scholar
  34. Groh, V, and von Mayersbach, H (1981b) Enzymatic and functional heterogeneity of lysosomes. Cell Tissue Res 214: 613–621.Google Scholar
  35. Halberg, F (1957) Young NH-mice for the study of mitosis in intact liver. Experientia 13: 502–503.PubMedCrossRefGoogle Scholar
  36. Hardeland, R (1973) Diurnal variations in inducibility of hepatic tyrosine aminotransferase. Int J Biochem 4: 357–364.CrossRefGoogle Scholar
  37. Hardeland, R, and Stephan, E (1974) Diurnal rhythms and post-transcriptional regulation of hepatic tyrosine aminotransferase and tryptophan oxygenase. J Interdiscipl Cycle Res 5: 247–255.CrossRefGoogle Scholar
  38. Hastings, JW, and Keyman, A (1965) Molecular aspects of circadian systems. In: Aschoff, J, ed, Circadian Clocks. Amsterdam: North Holland Publ. Co., pp. 167–182.Google Scholar
  39. Hastings, W, and Schweiger, HG (Eds) (1976) The Molecular Basis of Circadian Rhythms (Dahlem Konferenzen). D-1 Berlin (W. Germany): Abakon Verlag.Google Scholar
  40. Haus, E, and Halberg, F (1966) Persisting circadian rhythm in hepatic glycogen of mice during inanition and dehydration. Experientia 22: 113–114.PubMedCrossRefGoogle Scholar
  41. Holmgren, H (1936) Studien über 24-stundenrhythmische Variationen des Darm-, Lungen-und Leberfettes, Dissertation. Helsingfors.Google Scholar
  42. Holmgren, H (1938) 24-Stundenvariationen des Gewichtes der Leber, Lunge und Milz der grossen weissen Ratte (Mus norvegicus albinus). Gegenbaurs Morphol Jahrb 81:653–668.Google Scholar
  43. Horvath, G (1963a) Biorhythmische Veränderungen der Phosphorproteine und Nucleinsäuren. 8th Int. Congr. Biological Rhythms, Hamburg.Google Scholar
  44. Horvath, G (1963b) Naturally occurring variations in rat liver DNA content. Nature 200: 261.PubMedCrossRefGoogle Scholar
  45. Horvath, G (1964) Quantitativer und qualitativer Nucleinsäurebestand normaler Rattenorgane. II Int Kongr Histo-Cytochem, Frankfurt/ Main, 1964. Berlin-Göttingen-Heidelberg: Springer-Verlag, p. 137.Google Scholar
  46. Iemhoff, WGJ, and Hülsmann, WC (1971) Development of mitochondrial enzyme activities in rat small-intestinal epithelium. Eur J Biochem 23: 429–434.PubMedCrossRefGoogle Scholar
  47. Jackson, B (1959) Time-associated variations of mitotic activity in livers of young rats. Anat Rec 134: 365–377.PubMedCrossRefGoogle Scholar
  48. Jerusalem, Ch, Eling, W, and Yap, P (1970) Histochemische und elektronenmikroskopisché Veränderungen der Leberzelle im Tagesrhythmus und unter experimentellen Bedingungen. Acta Histochem 36: 168.PubMedGoogle Scholar
  49. Klaushofer, K, and von Mayersbach, H (1979) Freeze substituted tissue in 5’-nucleotidase histochemistry. Comparative histochemical and biochemical investigations. J Histochem Cytochem 27: 1582–1587.Google Scholar
  50. Klaushofer, K, Mayer, D, Hummel, W, and von Mayersbach, H (1979) A double-labelling radioassay for the determination of 5’-nucleotidase activity. Enzyme 24: 77–84.Google Scholar
  51. Klima, J, Pfaller, W, Tiefenbrunner, F, and Plattner, H (1971) Respiratory activity and stereological organization of the chondriome of mouse liver: an attempt of correlation during growth. Cytobiól. 3: 351–359.Google Scholar
  52. Laguens, RP, and Gomez–Dumm, CLA (1967) Fine structure of myocardial mitochondria in rats after exercise for one-half to two hours. Cir Res 21: 271–279.Google Scholar
  53. Letnansky, K (1974) Zirkadiane Rhythmen bei der Phosphorylierung von Kernproteinen und ihre Bedeutung für die Zellproliferation. Wien Klin Wschr 86: 250–252.PubMedGoogle Scholar
  54. Lojda, Z, Malis, F, Havrankova, E, and Ruzickova, M (1976) Circadian rhythms of enzyme activities of rat and guinea pig enterocytes. Cs Gastroent Vyz 30: 257.Google Scholar
  55. Malis, F, Lojda, Z, Fric, P, and Slaby, J (1977) Zirkadianrhythmus einiger Verdauungsenzyme des D?nndarms und des Pankreas bei Meerschweinchen. III. Bilaterales Symp. CSSR-DDR. Fortschritte der Gastroenterologie. Karlovy Vary, pp. 182–183.Google Scholar
  56. Mäusle, E, and Fröhlke, M (1971) Geschlechtsabhängige Grössenunterschiede der Mitochondrien in der Zona fasciculata der Nebennierenrinde der Ratte. Experientia 27: 700–701.PubMedCrossRefGoogle Scholar
  57. von Mayersbach, H (1967) Seasonal influences on biological rhythms of standardized laboratory animals. In: von Mayersbach, H, ed,The Cellular Aspects of Biorhythms. Heidelberg: Springer-Verlag, pp. 87–99.Google Scholar
  58. von Mayersbach, H (1978) Die Zeitstruktur des Organismus. Auswirkungen auf zelluläre Leistungsfähigkeit und Medikamentenempfindlichkeit. Arzneim-Forsch 28: 1824–1836.Google Scholar
  59. von Mayersbach, H (1981) Chronobiological aspects in histochemistry. In: Graumann, W, and Neumann, K, eds. Handbuch der Histochemie, Bd. 1, Teil 4. Stuttgart: G Fischer.Google Scholar
  60. von Mayersbach, H, and Bhattacharya, R (1977) Circumannual variations of liver lysosomes of rats living under constant environmental conditions. Chronobiologia 4: 131.Google Scholar
  61. von Mayersbach, H, and Klaushofer, K (1979) Circadian variations of 5’-nucleotidase activity in rat liver. Cell Mol Biol 24: 73–79.Google Scholar
  62. von Mayersbach, H, and Reale, E (1973) Grundriss der Histologie des Menschen, Bd. 1, Allgemeine Histologie. Stuttgart: G Fischer Verlag.Google Scholar
  63. von Mayersbach, H, and Yap, P (1965) Tagesrhythmische Schwankungen der Leberesterase. Histochemie 5: 297–302.Google Scholar
  64. von Mayersbach, H, Philippens, K, and Yap, P (1964) Die Einflüsse biologischer Tagesschwankungen auf fermenthistochemische Untersuchungen. II. Internat Congr Histochem Cytochem, 1964. Berlin-Göttingen-Heidelberg: Springer-Verlag, pp. 139–140.Google Scholar
  65. Milner, AJ (1972) Corticotrophin-induced differentiation of mitochondria in rat adrenal cortical cells grown in primary tissue-culture—effects of ethidium bromide. J. Endocrinol 52: 541–548.PubMedCrossRefGoogle Scholar
  66. Müller, O (1970) Die tageszeitliche Struktur der Leber und ihre Beziehung zur tagesrhythmischen Wirkung von Barbituraten. IX. Int Anatomen Kongref3, Leningrad.Google Scholar
  67. Müller, O (1971a) Circadian rhythmicity in response to barbiturates. Naunyn Schmied Arch Pharmacol 270 (Suppl.): R99.Google Scholar
  68. Müller, O (1971b). Zur elektronenmikroskopischen Histochemie der Glucose-6-Phosphatase. Acta Histochem Suppl. 10: 141–146.Google Scholar
  69. Müller, O (1971c). Die Circadianstruktur der Leber. Hannover: Habilitationsschrift, Medizinische Hochschule.Google Scholar
  70. Müller, O, and Preuss, D (1976) Circadiane Histochemie der Glykogen-Synthetase und -Phosphorylase in der Leber der Maus. XVII. Symp Ges Histochemie, Bozen, 1974. Acta Histochem Suppl. 16: 145–147.PubMedGoogle Scholar
  71. Müller, O, Jerusalem, C, and von Mayersbach, H (1966) Die Ultrastruktur der physiologischen Tagesschwankungen in Leberzellen von Ratten. Z Zellforsch 69: 438–451.Google Scholar
  72. Müller, O, Blatti, HR, and Gerber, B (1977) Morphometrie des circadianen Sekretionscydus der Acinuszellen im Rattenpankreas. Aachen: 72. Vers. Anat. Ges.Google Scholar
  73. Nicolau, GY, Apostol, G, and Milcu, S (1979) Effects of pinealectomy on the RNA, DNA, and protein circadian rhythms in the rat adrenal and testis. Chronobiologia 6: 136.Google Scholar
  74. Novikoff, AB (1959) Cell heterogeneity within the hepatic lobule of the rat. J Histochem Cytochem 7: 240–244.PubMedCrossRefGoogle Scholar
  75. Pébusque, M-J, and Seïte, R (1980) Circadian change of fibrillar centers in nucleolus of sympathetic neurons: an ultrastructural and stereological analysis. Biol Cell 37: 219–222.Google Scholar
  76. Pébusque, M-J, and Seïte, R (1981a) Electron microscopic studies of silver-stained proteins in nucleolar organized regions: location in nucleoli of rat sympathetic neurons during light and dark periods. J Cell Sci 51: 85–94.PubMedGoogle Scholar
  77. Pébusque, M-J, and Seite, R (1981b) Evidence of a circadian rhythm in nucleolar components of rat superior cervical ganglion neurons with particular reference to the fibrillar centers: an ultrastructural and stereological analysis. J Ultrastruct Res 77: 83–92.PubMedCrossRefGoogle Scholar
  78. Pébusque, M-J, Dupuy-Coin, A-M, Cataldo, C, Seïte, R, Bouteile, M, and Moens, P (1981a) Three-dimensional electron microscopy of the nucleolar organizer regions ( NORs) in sympathetic neurons. Biol Cell 41: 59–62.Google Scholar
  79. Pébusque, M-J, Robaglia, A, and Seite, R (1981b) Diurnal rhythm of nucleolar volume in sympathetic neurons of the rat superior cervical ganglion. Eur J Cell Biol 24: 128–130.PubMedGoogle Scholar
  80. Pessacq, MT, and Gagliardino, JJ (1975a) Glycogen metabolism in muscle. The circadian influence on the in vitro model. Chronobiologia 2: 205–209.Google Scholar
  81. Pessacq, MT, and Gagliardino, JJ (1975b) Glycogen metabolism in muscle. Its circadian and seasonal variations. Metabolism 24: 737–743.Google Scholar
  82. Pessacq, MT, Rebolledo, OR, and Gagliardino, JJ (1971). Circadian variations of muscle metabolites. Experentia 27: 1394–1395.CrossRefGoogle Scholar
  83. Pfeifer, U (1977) Tagesrhythmik der cellulären Autophagie. Leopoldina Symposion Die Zeit und das Leben, Halle/Saale, März 1975. Nova Acta Leopoldina 225: 181–187.Google Scholar
  84. Philippens, K (1968) Twenty-four hour periodicity of succinodehydrogenase in rat liver. III. Int Congr Histochem Cytochem New York, pp. 206–207.Google Scholar
  85. Philippens, K (1970) Tagesrhythmische Schwankungen im Succino-dehydrogenasesystem. In: Hettler, LH, ed, Abhdlg Dtsch Akad Wiss Berlin. Berlin: Akademie Verlag, pp. 607–610.Google Scholar
  86. Philippens, K (1971) Vergleichende Untersuchungen über biochemische Aktivitätsbestimmungen an Mitochondrien und histochemischem Reaktionsausfall. Acta Histochem Suppl 10: 323–332.Google Scholar
  87. Philippens, K (1973) Circadian activity patterns of two rat liver mitochondrial enzymes. Succinatedehydrogenase (SDH) and a-glycerophosphate dehydrogenase (mGPDH). Int J Chronobiol 1: 350.Google Scholar
  88. Philippens, K (1975) Manipulation of circadian rhythms. Naunyn Schmied Arch Pharmacol 287 (Suppl.): R111.Google Scholar
  89. Philippens, KMH (1976) The manipulation of circadian rhythms. Arch Toxicol 36: 277–303.PubMedCrossRefGoogle Scholar
  90. Philippens, K (1980) Synchronization of rhythms to meal timing. In: Principles and Applications of Chronobiology to Shifts in Schedules, with Emphasis on Man. Alpen aan den Rijn, The Netherlands: Sijthoff and Noordhoff Int Pub, pp. 403–416.Google Scholar
  91. Philippens, KMH, and Abicht, J (1977) Tagesrhythmik des Nukleinsäure-Stoffwechsels. Leopoldina Symposion Die Zeit und das Leben, Halle/Saale, März 1975. Nova Acta Leopoldina 225: 143–147.Google Scholar
  92. Pilgrim, C (1967) Autoradiographic investigations with 3H-thymidine on the influence of the diurnal rhythm on cell proliferation kinetics. In: von Mayersbach, H, ed, The Cellular Aspects of Biorhythms. Berlin-HeidelbergNew York: Springer-Verlag, pp. 100–104.Google Scholar
  93. Polak, JM, von Mayersbach, H, Van Mourik, M, and Pearse, AGE (1975) Circadian rhythms of the endocrine pancreas: A quantitative biochemical and immunocytochemical study. Acta Hepato-gastroenterol. 22: 118–122.Google Scholar
  94. Potter, VR, Gebert, RA, Pitot, HC, Peraino, C, Lamar, C Jr, Lesher, S, and Morris, HP (1966) Systematic oscillations in metabolic activity in rat liver and in hepatomas. I. Morris Hepatoma No. 7793. Cancer Res 26: 1547–1560.Google Scholar
  95. Preuss, D (1977) Methodologische und biologische Aspekte für den histochemischen Phosphorylase- und Synthetase-Nachweis in der Leber, Dissertation. Hannover: Medizinische Hochschule.Google Scholar
  96. Rafael, J, Hüsch, M, Stratmann, D, and Ho-horst, HJ (1970) Mitochondrien aus braunem und weij3em Fettgewebe: Struktur, Enzymprofil und oxidative Phosphorylierung. HoppeSeylers Z physiol Chem 351: 1513–1523.Google Scholar
  97. Rebolledo, OR, and Gagliardino, JJ (1970) Circadian rhythm in the protein and RNA of mouse diaphragm. Acta Physiol Lat Amer 20: 168–170.PubMedGoogle Scholar
  98. Rebolledo, OR, and Gagliardino, JJ (1971a) Circadian variations of DNA in mouse diaphragm. Amer J Physiol 221: 1481–1483.PubMedGoogle Scholar
  99. Rebolledo, OR, and Gagliardino, JJ (1971b) Circadian variations of the protein metabolism in muscle. J Interdiscipl Cycle Res 2: 101–108.CrossRefGoogle Scholar
  100. Reith, A, and Schüler, B (1971) The ultrastructure of mitochondria in relation to the lobular distribution of hepatocytes of the normal rat. J Ultrastruct Res 36: 550.Google Scholar
  101. Reith, A, and Schüler, B (1972) Heterogeneity of rat liver mitochondria as indicated by differential cytochrome-oxydase activities. J Ultrastruct Res 38: 206.Google Scholar
  102. Riede, UN, and Rohr, HP (1970) Atypische Lebermitochondrien adaptive Sonderformen? I. Ultrastrukturell-morphologische Untersuchung. Virch Arch Abt B Zellpath 8: 350–356.Google Scholar
  103. Rohde, B, and Rensing, L (1973) Circadian rhythm of 3H-leucine incorporation into isolated rat liver nuclei. J Interdiscipl Cycle Res 4: 303–306.CrossRefGoogle Scholar
  104. Röver, S, and Philippens, KMH (1979) Circadian rhythm of binuclear rat liver cells. Response to phase-shifted light-dark cycle. Chronobiologia 6: 149.Google Scholar
  105. Ruby, JR, Scheving, LE, Gray, SB, and White, K (1973) Circadian rhythm of nuclear DNA in adult rat liver. Exp Cell Res 76: 136–142.PubMedCrossRefGoogle Scholar
  106. Sauerbier, I, and von Mayersbach, H (1976) Circadianrhythmisch-histochemische Untersuchungen am Dünndarmepithel von Winterschläfern. XVII. Symposion Ges. Histochemie, Bozen, 1974. Acta Histochem, Suppl. 16: 155–160.Google Scholar
  107. Scheving, LE (1959) Mitotic activity in the human epidermis. Anat Rec 135: 7–20.PubMedCrossRefGoogle Scholar
  108. Scheving, LE, and Pauly, JE (1960) Daily mitotic fluctuations in the epidermis of the rat and their relation to variations in spontaneous activity and rectal temperature. Acta Anat 43: 337–345.PubMedCrossRefGoogle Scholar
  109. Scheving, LE, and Pauly, JE (1967a) Effect of adrenalectomy, adrenal medullectomy, and hypophysectomy on the daily mitotic rhythm in the corneal epithelium of the rat. In: von Mayersbach, H, ed, The Cellular Aspects of Biorhythms. Berlin-Heidelberg-New York: Springer-Verlag, pp. 167–174.Google Scholar
  110. Scheving, LE, and Pauly, JE (1967b) Circadian phase relationships of thymidine-3H uptake, labeled nuclei, grain counts and cell division rate in rat corneal epithelium. J Cell Biol 32: 677–683.PubMedCrossRefGoogle Scholar
  111. Scheving, LE, and Pauly, JE (1973) Cellular mechanisms involving biorhythms with emphasis on those rhythms associated with the S and M stages of the cell cycle. Int J Chrono-biology 1: 269–286.Google Scholar
  112. Scheving, LE, von Mayersbach, H, and Pauly, JE (1974a) An overview of chronopharmacology. Eur J Toxicol 7: 203–227.Google Scholar
  113. Scheving, LE, Dunn, JD, von Mayersbach, H, and Pauly, JE (1974b) The effect of continuous light or darkness on the rhythm of the mitotic index in the corneal epithelium of the rat. Acta Anat 88: 411–423.Google Scholar
  114. Schweiger, E, Wallraff, HG, and Schweiger, HG (1964) Endogenous circadian rhythm in cytoplasm of acetabularia: Influence of the nucleus. Science 146: 658–659.Google Scholar
  115. Selkov, EE (1979) A unifying theory of the cell mechanism. Chronobiologia 6: 155.Google Scholar
  116. Sestan, N (1964) Diurnal variations of 14C-leucine incorporation into proteins of isolated rat liver nuclei. Naturwissenschaften 51: 371.CrossRefGoogle Scholar
  117. Steinhart, WL (1971) Diurnal rhythmicity in template activity of mouse liver chromatin. Biochim Biophys Acta 228: 301–305.PubMedGoogle Scholar
  118. Stenram, U (1969) The ultrastructure of the liver in thyroid-fed rats. Z Zellforsch mikr Anat 100: 402–410.CrossRefGoogle Scholar
  119. Suppan, PP (1966) Le cycle diurne hépatique. Acta Anat 65: 584–593.PubMedCrossRefGoogle Scholar
  120. Sweeney, BM (1969) Rhythmic Phenomena in Plants. New York: Academic Press.Google Scholar
  121. Thorud, E, Clausen, OPF, Aarnaes, E, and Bjerknes, R (1979) Circadian changes in cell cycle phase durations in murine epidermal basal cells. Chronobiologia 6: 163.Google Scholar
  122. Uchiyama, Y, and von Mayersbach, H (1981) Circadian variations of ultra-morphology and glycogen content in hepatocytes of light-manipulated rats. Gegenbaurs morphol Jahrb 127: 452–463.Google Scholar
  123. Uchiyama, Y, von Mayersbach, H, and Groh, V (1982) Circadian changes of thiamine pyrophosphatase activity in rat hepatocytes: A histochemical study at the electron microscopic level. Cell Mol Biol 28: 245–254.Google Scholar
  124. Uchiyama, Y, Groh, V, and von Mayersbach, H (1981) Different circadian variations as an indicator of heterogeneity of liver lysosomes. Histochemistry 73: 321–337.PubMedCrossRefGoogle Scholar
  125. Vanden Driessche, T (1971) Les rythmes circadiens, mécanisme de régulation cellulaire. La Recherche 2: 255–261.Google Scholar
  126. Vanden Driessche, T (1975) Circadian rhythms and molecular biology. Biosystems 6: 188–201.CrossRefGoogle Scholar
  127. Vonnahme, FJ (1974) Circadian variation in cell size and mitotic index in tissues having a relatively low proliferation rate in both normal and hypophysectomized rats. Int J Chronobiol 2: 297–309.PubMedGoogle Scholar
  128. Wilson, JW, and LeDuc, EH (1948) The occurrence and formation of binucleate and multi-nucleate cells and polyploid nuclei in the mouse liver. Am J Anat 82: 353–391.PubMedCrossRefGoogle Scholar
  129. Young, RW (1978a) The daily rhythm of shedding and degradation of rod and cone outer segment membranes in the chick retina. Invest Ophthalm Visual Science 17: 105–116.Google Scholar
  130. Young, RW (1978b) Visual cells, daily rhythms and vision research. Vision Res 18: 573–578.PubMedCrossRefGoogle Scholar
  131. Zaviacic, M, and Brozman, M (1978) Circadian rhythms of oxydoreductases in the rat gastric mucosa. Histochemical study. Acta Histochem 62: 155–162.Google Scholar
  132. Zhirnova, AA (1969) Relationships between diurnal rhythm in number of binuclear cells in rat liver and its glycogen-forming function. Byulleten “Eksperimental” not Biologii i Meditsiny 68: 98–100.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1983

Authors and Affiliations

  • Heinz von Mayersbach

There are no affiliations available

Personalised recommendations