Advertisement

Mass spectra of organophosphorus esters and their alteration products

  • J. M. Desmarchelier
  • D. A. Wustner
  • T. R. Fukuto
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 63)

Abstract

There have been a number of recent reviews on the mass spectra of pesticides, including organophosphorus (OP) esters (Biros 1971 a and b, Wacks and Laurie 1971, Garrison et al. 1972, Gillis and Occolowitz 1972, Müller and Korte 1972). The mass spectra of biological esters, including OP esters, have also been extensively reviewed (Hanessian 1971, Milne 1971, Gouw 1972, Santoro 1972, Waller 1972); however, no comprehensive review on OP esters that are added to the environment and their alteration products has been published in which emphasis is placed on structure identification. With increasingly routine use of mass spectrometry and especially gas-liquid chromatography—mass spectrometry (GLC-MS) in pesticide residue and metabolite analysis, a wide variety of investigators find it necessary to interpret the mass spectra of OP compounds. It is mainly for this audience of nonspecialists in mass spectrometry that this review is designed.

Keywords

Mass Spectrum Methyl Parathion Mass Spectral Fragmentation Phosphine Sulfide Phenylphosphonic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aplin, R. T., A. R. Hands, and A. J. H. Mercer: Electron-impact induced oxygen migration in the mass spectra of β-ketoalkylidene phosphoranes. Org. Mass Spectrom. 2, 1017 (1969).CrossRefGoogle Scholar
  2. Bafus, D. A., E. J. Gallegos, and R. W. Kiser: An electron impact investigation of some alkyl phosphate esters. J. Phys. Chem. 70, 2614 (1966).CrossRefGoogle Scholar
  3. Bakke, J. E., V. J. Feil, and R. G. Zaylskie: Characterization of the major sheep urinary metabolites of cyclophosphamide, a defleecing chemical. J. Agr. Food Chem. 19, 788 (1971).CrossRefGoogle Scholar
  4. Bakke, J. E., V. J. Feil, and R. G. Zaylskie, C. E. Fjestal, and E. J. Thacker: Metabolism of cyclophosphamide by sheep. J. Agr. Food Chem. 20, 384 (1972).CrossRefGoogle Scholar
  5. Bar-Tana, J., O. Ben-Zeen, G. Rose, and J. Deutsch: Determination of 18O content of phosphate compounds—A novel method. Biochem. biophys. Acta, 264, 214 (1972).Google Scholar
  6. Bayer, E., K. H. Gugel, K. Hagela, H. Hagenmaier, S. Jessipow, W. A. Konig, and H. Zahner: Stoffweckselprodukte von Mikroorganismen. Phosphinothricin and Phosphino- thricyl-Alanyl-Alanin. Helv. chim. Acta 55, 224 (1972).Google Scholar
  7. Bentrude, W. G., W. D. Johnson, W. A. Khan, and E. R. Witt: Pentacovalent Phosphorus. I. Reactions of dimethylketene dimers with tertiary phosphites. J. Org. Chem. 37, 631 (1972 a).CrossRefGoogle Scholar
  8. Bentrude, W. G., W. D. Johnson, W. A. Khan, and E. R. Witt, and W. A. Khan: Pentacovalent phosphorus. IV. Cyclic pentacovalent phosphoranes from reaction of trivalent phosphorus compounds with dimethylketene. J. Am. Chem. Soc. 94, 3058 (1972b).CrossRefGoogle Scholar
  9. Bergman, E. C., M. Rabinonitz, C. Lifshitz, D. Shapiro, and I. Agranant: Fulvenes and thermochromic ethylenes—LVI. The mass spectra of some fluorenylidene-triphenyl- phosphoranes. Org. Mass Spectrom. 4, 89 (1970).CrossRefGoogle Scholar
  10. Biros, F. J.: Mass spectrometry and residue analysis. Residue Reviews 40, 1 (1971 a).PubMedGoogle Scholar
  11. Biros, F. J., Applications of combined gas chromatography-mass spectrometry to pesticide residue identification. Pesticide identification at the residue level. Adv. Chem. Ser. 104, 132 (1971 b).CrossRefGoogle Scholar
  12. Biros, F. J., and A. C. Walker: Pesticide residue analysis in human tissue by combined gas chromatography-mass spectrometry. J. Agr. Food Chem. 18, 425 (1970).CrossRefGoogle Scholar
  13. Bogolyubov, G. M.: Polarization model of electron impact in the mass spectrometry of organic compounds. J. Gen. Chem. U.S.S.R. 39, 2729 (1969).Google Scholar
  14. Bogolyubov, G. M., N. N. Grishin, and A. A. Petrov: Compounds containing P—P bonds. IV. Mass spectrometric investigations of phosphines, P—P bond energy in diphosphines. J. Gen. Chem. U.S.S.R. 38, 2595 (1968).Google Scholar
  15. Bogolyubov, G. M., Organic derivatives of elements of groups V-VII. XVIII. Conjugation energy in the P—P bond. Mass spectra of phosphine sulfides. J. Gen. Chem. U.S.S.R. 41, 817 (1971 a).Google Scholar
  16. Bogolyubov, G. M., N. A. Razumova, and A. A. Petrov: Organic derivatives of elements of groups V-VII. XVII. Mass spectra of 3-phospholene-l-oxides and 1-sulfides. J. Gen. Chem. U.S.S.R. 41, 520(1971 b).Google Scholar
  17. Bohn, G., G. Ruecker, and K. H. Luckas: Mass spectrometric and gas chromatographic detection of parathion in autopsy material after murdered by poisoning. Z. Rechtmedizin 68, 45 (1971); through Chem Abstr. 76, 68–805 (1972).Google Scholar
  18. Borer, W. Z., and K. Cohn: Mass spectral studies of some substituted phosphines. Anal, chim. Acta 47, 355 (1969).Google Scholar
  19. Bowie, J. H., and B. Nussey: Electron-impact studies—LV: Skeletal rearrangement and hydrogen scrambling processes in the positive and negative ion spectra of phenyl derivatives of elements of group IV and V. Org. Mass Spectrom. 3, 933 (1970).CrossRefGoogle Scholar
  20. Boyde, G. R.: Preparation of volatile neutral esters from acidic esters of phosphoric acid. J. Agr. Food Chem. 18, 742 (1970).CrossRefGoogle Scholar
  21. Brooks, R., and C. A. Bunton: Aluminum chloride catalyzed reactions between J-butyl benzene and phosphorus trichloride. J. Org. Chem. 35, 2642 (1970).CrossRefGoogle Scholar
  22. Brown, P., and C. Djerassi: Electron-impact induced rearrangements of organic molecules. Angew. Chem., Internat. Ed. (Engl.) 6, 477 (1967).CrossRefGoogle Scholar
  23. Bublitz, D. E., and A. W. Baker: Mass spectra of triphenyl derivatives of group VA elements. J. Organometal. Chem. 9, 383 (1967).CrossRefGoogle Scholar
  24. Budzikiewicz, H., and Z. Pelah: Zum massenspecktroskopischen Fragmentierungoverhalten von Anylalkylphosphonaten. Monatsh. Chem. 96, 1739 (1965).CrossRefGoogle Scholar
  25. Budzikiewicz, H., and Z. Pelah, C. Djerassi, and D. H. Williams: Mass spectrometry of organic compounds, 2nd Ed. San Francisco: Holden-Day (1968).Google Scholar
  26. Bursey, M. M., and P. T. Kissinger: The significance of Hammett correlations in mass spectral decompositions. Org. Mass Spectrom. 3, 395 (1970).CrossRefGoogle Scholar
  27. Callot, H. J., and C. Benezra: Spectres de masse de phosphonates dimethyliques dérivés du norbornane, du norbornène et du nortricyclane. Org. Mass Spectrom. 5, 343 (1971).CrossRefGoogle Scholar
  28. Callot, H. J., and C. Benezra, The stereochemistry of the addition of two diazoalkanephosphonates to norbornene and norbornadiene; photolysis of the adducts. An entry into the dimethyl tricyclo [2.1.1.02.4]octyl phosphonate system. Can. J. Chem. 50, 1078 (1972).CrossRefGoogle Scholar
  29. Caprioli, R. M., and E. J. Heron: Determination of isotopie distribution in [18O]glycerol 1-phosphate by mass spectrometry. Biochem. biophys. Acta 296, 321 (1973).Google Scholar
  30. Cavanagh, L. A.: Mass spectroscopy of pesticides. S.R.I. Pesticide Research Bull. 3 (1), 1 (1963).Google Scholar
  31. Cavell, R. G., and R. C. Dobbie: Fragmentation and rearrangement processes in the mass spectra of fluoroalkylphosphorus compounds. I. Trifluoromethylphosphines and tri-fluoromethyl halogenophosphines. Inorg. Chem. 7, 101 1968 a).CrossRefGoogle Scholar
  32. Cavell, R. G., and R. C. Dobbie, Fragmentation and rearrangement processes in the mass spectra of fluoroalkylphosphorus compounds. II. Compounds containing two or more phosphorus atoms. Inorg. Chem. 7, 690 (1968 b).CrossRefGoogle Scholar
  33. Cavell, R. G., and R. C. Dobbie, E. D. Day, W. Byers, and P. M. Watkins: Metal complexes of substituted dithiophos-phinic acids. Part 5. Complexes of manganese, iron and cobalt. Inorg. Chem. 11, 1759 (1972).Google Scholar
  34. Chan, T. H., and K. T. Nwe: Anomaly in the reaction of dialkyl (2’-bromomethyl)benzyl- phosphonate with sodium bis(2-methoxyethoxy) aluminum hydride. Tetrahedron Letters, p. 3601 (1973).Google Scholar
  35. Chasin, D. G., and E. G. Perkins: The mass spectra of alkyl 2-diethylphosphonoalkanoates. Chem. Phys. Lipids 6, 311 (1971).CrossRefGoogle Scholar
  36. Cooks, R. G.: Bond formation upon electron impact. Org. Mass Spectrom. 2, 481 (505a) (1969).Google Scholar
  37. Cooks, R. G., and A. F. Gerrard: Electron impact induced rearrangements in compounds having the P=S bond. J. Chem. Soc. (B), p. 1327 (1968).Google Scholar
  38. Cooks, R. G., and A. F. Gerrard, R. S. Ward, D. H. Williams, M. A. Shaw, and J. C. Telby: Studies in mass spectrometry.XXII. The decomposition of some stable alkylidine triphenyl phosphoranes upon electron impact. Reactions occurring with and without deuterium/hydrogen scrambling in labelled phenyl rings. Tetrahedron 24, 3289 (1968).Google Scholar
  39. Cremlyn, R. J. W., B. B. Dewhurst, and D. H. Wakeford: Studies of organophosphorochloridates. Part I. Synthesis of N-substituted phosphoramidic chlorides and acids. J. Chem. Soc. (C), p. 300(1971 a).Google Scholar
  40. Cremlyn, R. J. W., B. B. Dewhurst, and D. H. Wakeford, Studies of organophosphorochloridates. Part III. Synthesis of N-substituted pyrophosphoramides. J. Chem. Soc. (C), p. 2028 (1971 b).Google Scholar
  41. Daasch, L. W., J. N. Weber, M. A. Ebner, and G. Sparrow: Mass spectra of phosphorus and phosphorus oxides. Internai. J. Mass Spectrom. Ion Phys. 2, 503 1969CrossRefGoogle Scholar
  42. Damico, J. N.: The mass spectra of some organophosphorus pesticide compounds. J. Assoc. Official Anal. Chemists 49, 1027 (1966).Google Scholar
  43. Damico, J. N., R. P. Barron, and J. A. Sphon: Field ionization spectra of some pesticides and other biologically significant compounds. Internat. J. Mass Spectrom. Ion Phys. 2, 161 (1969).CrossRefGoogle Scholar
  44. Damico, J. N.: Pesticides. In G. R. Walker (ed.): Biochemical applications of mass spectrometry. New York: Interscience (1972).Google Scholar
  45. Dannley, R. L., R. L. Waller, R. V. Hoffman, and R. F. Hudson: The mechanism of the rearrangement of bis(diphenylphosphinyl)peroxide. J. Org. Chem. 37, 418 (1972).CrossRefGoogle Scholar
  46. DeJongh, D., M. L. Gay, and R. L. Dusold: Mass spectra of aryl dimethyl phosphates. 19th Ann. Conf. Mass Spectroscopy and Allied Topics. Atlanta, Ga., 2–7 May (1971). Amer. Soc. Mass Spect. and ASTM Committee E-14. Abstr. 134, 35 (1971).Google Scholar
  47. Desmarchelier, J. M.: Three heterocyclic systems. Ph.D. Thesis, Univ. Melbourne, Australia (1969).Google Scholar
  48. De Wilt, H. G. J., and T. Tsuchiya: Mass spectrometry on trimethylsilyl derivatives of carbohydrates. Literature survey. Stitsuryo Bunseki 18, 1294 (1970); through Chem. Abstr. 74, 88–245 (1971).Google Scholar
  49. Duncan, J. H., O. M. Colvin, and C. Fenselau: Mass spectrometric study of the distribution of cyclophosphamide in humans. Toxicol. Applied Pharmacol. 24, 317 (1973).CrossRefGoogle Scholar
  50. Duncan, J. H., O. M. Colvin, and C. Fenselau, W. J. Lennarz, and C. C. Fenselau: Mass spectral analysis of glycerphospholipids. Biochem. 10, 927 (1971).CrossRefGoogle Scholar
  51. Early, R. A., and M. J. Gallagher: Mass spectra of 5,10-dihydrophenarsazines, 5,10- dihydropharsazine and phenophosphazine oxides and related heterocycles. Org. Mass Spectrom. 3, 1287 (1970).CrossRefGoogle Scholar
  52. Ecker, A., and U. Schmidt: Über Thiophosphonsäureanhydride. Monatsh. Chem. 103 (3), 736 (1972).CrossRefGoogle Scholar
  53. Ecker, A., Über Phosphinidene, VII. Additionen und Einschiebungsreaktionen thermisch gebildeter Bruchstücke ans Pentaphenylcyclopentaphosphin. Chem. Ber. 106, 1453 (1973).CrossRefGoogle Scholar
  54. Emoto, T., R. Okazaki, and N. Inamoto: Oxidation of diphosphine dioxides, disulfides and phosphinothioite and photolysis of diphosphine disulfides. Formation of phosphinic and phosphinothioic anhydrides. Bull. Chem. Soc. Japan 46, 898 (1973).CrossRefGoogle Scholar
  55. Emsley, J., and J. M. Williams: The phosphorus-nitrogen bond. Synthesis, characterization, and infra-red studies of heterocyclic phosphoryl (phosphetan) amides. J. Chem. Soc. Dalton, p. 1576 (1973).Google Scholar
  56. Fahmy, M. A. H., and T. R. Fukuto: Oxidative rearrangement of N-(dimethoxyphosphino- thioyl) carbamate esters. Tetrahedron Letters, p. 4245 (1972).Google Scholar
  57. Fehlner, T. P.: The identification of the P2H2 molecule in the pyrolysis of diphosphine. J. Amer. Chem. Soc. 88, 1819 (1966).CrossRefGoogle Scholar
  58. Fehlner, T. P., Mass-spectrometric investigation of the low-pressure pyrolysis of triphosphine-5. J. Amer. Chem. Soc. 90, 4817 (1968 a).CrossRefGoogle Scholar
  59. Fehlner, T. P., Preparation and mass spectroscopy of triphosphine-5. J. Amer. Chem. Soc. 90, 6062 (1968 b).CrossRefGoogle Scholar
  60. Fehlner, T. P., and R. B. Callen: Mass spectroscopy of phosphorus hydrides. Adv. Chem. Ser. 72, 181 (1966).CrossRefGoogle Scholar
  61. Fischer, G. W., and P. Schneider: Organische Phosphorverbindungen, I. Synthese und reaktives Verhalten vinyloger Phosphorsäureacylester. Chem. Ber. 106, 435 (1973).PubMedCrossRefGoogle Scholar
  62. Fischer, J., and M. Halmann: Electron-impact studies of phosphorus compounds. J. Chem. Soc. p. 31 (1964).Google Scholar
  63. Friest, W., K. Schattka, F. Cramer, and B. Jastorff: Neue Darstellungsmethode von Nucleotid-Analogen der S’-amino-S’-desoxy-Nucleoside. Chem. Ber. 105, 991 (1972).CrossRefGoogle Scholar
  64. Fridlyanskii, G. V., V. A. Pavlenko, B. A. Vinogradov, N. N. Grishin, G. M. Bogolyubov, and A. A. Petrov: Organic derivatives of elements of groups V-VII. XX. Exact composition of ions in mass spectra of alkylphosphine sulfides, and the strength of the P=S bond. J. Gen. Chem. U.S.S.R. 41, 1714 (1971).Google Scholar
  65. Gara, A. P., R. A. Massey-Westropp, and J. H. Bowie: Skeletal-rearrangement processes of phosphoranes upon electron impact. Austral. J. Chem. 23, 307 (1970).CrossRefGoogle Scholar
  66. Gardner, A. M., J. N. Damico, E. A. Hansen, E. Lustic, and R. W. Storherr: Previously unreported homolog of malathion found as residue on crops. J. Agr. Food Chem. 17, 1181 (1969).CrossRefGoogle Scholar
  67. Garrison, A. W., H. L. Keith, and A. L. Alford: Confirmation of pesticide residues by mass spectrometry and NMR techniques. IN: Fate of organic pesticides in the aquatic environment. Adv. Chem. Ser. 111, 26 (1972).CrossRefGoogle Scholar
  68. Gillis, R. G., and J. L. Occolowitz: Mass spectrometry of phosphorus compounds. In M. Halmann (ed.): Analytical chemistry of phosphorus compounds, pp. 295–331. New York: Interscience (1972).Google Scholar
  69. Greenhalgh, R., J. Dokladalova, and W. O. Haufe: GLC determination of crufomate (Ruelene) in bovine blood and the use of U.V. irradiation as a confirmatory test. Bull. Environ. Contam. Toxicol. 7, 237 (1972).PubMedCrossRefGoogle Scholar
  70. Gouw, T. H. (ed.): Guide to modern methods of instrumental analysis. New York: Wiley-Interscience (1972).Google Scholar
  71. Granoth, I. and J. B. Levy: Substituent effects in the mass spectral fragmentations of some phenoxaphosphinic acids. J. Chem. Soc. (B), p. 2391 (1971).Google Scholar
  72. Granoth, I. and J. B. Levy, A. Kalir, Z. Pelah, and E. D. Bergmann: Mass spectra of phenoxaphosphine derivatives. Israel J. Chem. 8, 621 (1970 a).Google Scholar
  73. Granoth, I. and J. B. Levy, Mass spectra of phenothiaphosphine derivatives. Org. Mass Spectrom. 3, 1359 (1970 b).CrossRefGoogle Scholar
  74. Haake, P., and P. S. Ossip: A mass spectrometric study of some dialkylphosphinic acids and their alkyl esters. Tetrahedron 24, 565 (1968).CrossRefGoogle Scholar
  75. Haake, P., and P. S. Ossip, M. J. Frearson, and C. E. Diebert: Phosphinic acids and derivatives. III. The mass spectra of diarylphosphinates. J. Org. Chem. 34, 788 (1968).CrossRefGoogle Scholar
  76. Hampton, A., F. Perini, and P. J. Harper: Synthesis of homoadenosine-6’-phosphonic acid and studies of its substrate and inhibitor properties with adenosine monophosphate utilizing enzymes. Biochem. 12, 1730 (1973).CrossRefGoogle Scholar
  77. Hanessian, S.: Mass spectrometry in the determination of structure of certain natural products containing sugars. In D. Glick (ed.): Methods of biochemical analysis. Vol. 19, p. 105. New York: Wiley-Interscience (1971).CrossRefGoogle Scholar
  78. Harless, H. R.: Organophosphites—The effect of ionizing electrons on the relative abundance of their ion species. Anal. Chem. 33, 1387 (1961).CrossRefGoogle Scholar
  79. Harvey, D. J. and M. G. Horning: Characterization of the trimethylsilyl derivatives of sugar phosphates and related compounds by gas chromatography-mass spectrometry. J. Chromatog. 76, 51 (1973 a).Google Scholar
  80. Harvey, D. J. and M. G. Horning, Derivatives for the characterization of alkyl- and aminoalkyl-phosphonates by gas chromatography and gas chromatography-mass spectrometry. J. Chromatog. 79, 65 (1973 b).CrossRefGoogle Scholar
  81. Harvey, D. J. and M. G. Horning, and P. Vouros: Ion-molecule reaction products found in the mass spectra of trimethylsilyl derivatives. Anal. Letters 3, 489 (1970 a).CrossRefGoogle Scholar
  82. Harvey, D. J. and M. G. Horning, The intermolecular transfer of trimethylsilyl groups induced by electron impact. Chem. Commun., p. 898 (1970 b).Google Scholar
  83. Harvey, D. J. and M. G. Horning, Stereochemical requirements for intramolecular rearrangements in trimethyl- silylphosphate derivatives. 19th Ann. Conf. Mass Spectroscopy and Allied Topics. Atlanta, Ga., 2-7 May (1971). Amer. Soc. Mass Spect. and ASTM Committee E-14. Abstr. B2, p. 32 (1971 a).Google Scholar
  84. Harvey, D. J. and M. G. Horning, Some stereochemical factors in the formation of rearrangement ions in the mass spectra of trimethylsilyl derivatives of steroidal phosphates. Tetrahedron 27, 4231 (1971 b).CrossRefGoogle Scholar
  85. Harvey, D. J. and M. G. Horning, The mass spectra of the trimethylsilyl derivatives of glycerophosphoric acids. Inter- and intra-molecular rearrangements of siliconium ions. J. Chem. Soc. (Perkin) I, 1074 (1972).Google Scholar
  86. Hartley, S. B., W. S. Holmes, J. K. Jacques, M. F. Mole, and J. C. McCoubrey: Thermo- chemical properties of phosphorus compounds. Quart. Rev. (London), p. 204 (1963).Google Scholar
  87. Hashizume, A., N. Wasada, and T. Tsuchiya: Mass-spectrometric study of phosphorus oxide. Bull. Chem. Soc. Japan 39, 150 (1966).CrossRefGoogle Scholar
  88. Hasserodt, U., K. Hunger, and F. Korte: Phospholin-Derivate aus Phosphortrihalogeniden und Dienen. Tetrahedron 19, 1563 (1963).CrossRefGoogle Scholar
  89. Hendricker, D. G.: The mass spectra of phosphorus esters. I. Bicyclic phosphites. J. Heterocycl. Chem. 4, 385 (1967).Google Scholar
  90. Hilgetag, G., and H. Teichmann: The alkylating properties of alkyl thiophosphates. Angew. Chem. Internat. (Engl.) 4, 914 (1965).CrossRefGoogle Scholar
  91. Holmstead, R. L., T. R. Fukuto, and R. B. March: The metabolism of 0-(4-bromo-2,5- dichlorophenyl) O-methyl phenylphosphonothioate (leptophos) in the white mouse and on the cotton plant. Arch. Environ. Contam. Toxicol. 1, 133 (1973).PubMedCrossRefGoogle Scholar
  92. Hudson, R. F.: Structure and mechanism in organo-phosphorus chemistry, p. 124. New York: Academic Press (1965).Google Scholar
  93. Hughes, A. N., and M. Woods: Reaction between triphenylphosphine and methyl 5-methoxy- furan-2,3,4-tricarboxylate. Tetrahedron 23, 2973 (1967).CrossRefGoogle Scholar
  94. Hunt, D. F., C. E. Hignite, and K. Biemann: Structure elucidation of dinucleotides by mass spectrometry. Biochem. Biophys. Res. Commun. 33, 378 (1968).PubMedCrossRefGoogle Scholar
  95. Imeson, T. C., and C. S. Harden: Chemical ionization ion cluster mass spectrometry, Tech. rept. June-Dec. ( 1971 ). Edgewood Arsenal, Md. (1972).Google Scholar
  96. Jaglan, P. S., R. B. March, T. R. Fukuto, and F. A. Gunther: Gas-liquid chromatographic determination of methyl parathion and metabolites. J. Agr. Food Chem. 18, 809 (1970).CrossRefGoogle Scholar
  97. Jakobsen, P., S. Treppendahl, and J. Wieczorkowski: Mass spectra of phosphoramidic acid esters. Org. Mass Spectrom. 6, 1303 (1973).CrossRefGoogle Scholar
  98. Janes, N. F., A. F. Machin, M. P. Quick, H. Rogers, D. E. Mundy, and A. J. Cross: Toxic metabolites of diazinon in sheep. J. Agr. Food Chem. 21, 121 (1973).CrossRefGoogle Scholar
  99. Jörg, J.,R. Houriet, and G. Spiteller: Massenspektren von Pflanzenschutzmitteln. Monatsh. Chem. 97, 1064 (1966).CrossRefGoogle Scholar
  100. Karlsson, K. A.: Analysis of compounds containing phosphate and phosphonate by gas- liquid chromatography and mass spectrometry. Biochem. Biophys. Res. Commun. 39, 847 (1970).PubMedCrossRefGoogle Scholar
  101. Karlstedt, N. B., M. V. Proskurnina, and I. F. Lutsenko: Dialkoxyphosphines TI. Addition of dialkoxyphosphines to aldehydes. J. Gen. Chem. U.S.S.R. 42, 2418 (1972).Google Scholar
  102. Keith, L. H., A. W. Garrison, M. M. Walker, A. L. Alford, and A. D. Thurston, Jr.: Role of nuclear resonance spectroscopy and mass spectrometry in water pollution analysis. 158th Meeting, Amer. Chem. Soc., Div. of Water, Air and Waste Chemistry. New York, Sept. (1969).Google Scholar
  103. Klein, R. A.: Mass spectrometry of the phosphatidyl cholines: Dipalmitoyl, dioleoyl and stearoyl-oleoyl glycerylphosphoryl-cholines. J. Lipid Res. 12, 123 (1971 a).Google Scholar
  104. Klein, R. A., Mass spectrometry of the phosphatidylcholines: fragmentation processes for dioleoyl and stearoyl-oleoyl glyceryl-phosphorocholine. J. Lipid Res. 12, 628 (1971 b).PubMedGoogle Scholar
  105. Kuchen, W., and K. Koch: Zur Kenntnis der Organophosphorverbindugen, XIV. Bis(dialkyl- aminophosphino)-acetylene, ihre Darstellung und Reaktionen. Z. anorg. allg. Chem. 394, 74 (1972).CrossRefGoogle Scholar
  106. Lawson, A. M., R. N. Stillwell, M. M. Tacker, K. Tsuboyama, and J. A. McCloskey: Mass spectrometry of nucleic acid components. Trimethylsilyl derivatives of nucleotides. J. Amer. Chem. Soc. 93, 1914 (1971).CrossRefGoogle Scholar
  107. Leffler, J. E., and H. Jaffe: O-Iodosophenyl-phosphoric acid. J. Org. Chem. 38, 2719 (1973).CrossRefGoogle Scholar
  108. Levy, J. B., G. W. Whitehead, and I. Granoth: Preparation, IR, UV, NMR, and mass spectral fragmentations of new substituted phenoxaphosphinic acids. Israel J. Chem. 10, 27 (1972).Google Scholar
  109. Lovins, R. E.: Identification of pesticides in mixtures by high-resolution mass spectrometry. J. Agr. Food Chem. 17, 663 (1969).CrossRefGoogle Scholar
  110. Matsubara, T., and A. Hayashi: Identification of molecular species of ceramide aminoethyl- phosphonate from oyster adductor by gas-liquid chromatography-mass spectrometry. Biochem. biophys. Acta. 296, 171 (1973).Google Scholar
  111. McLafferty, F. W.: Mass spectrometric analysis. Broad applicability to chemical research. Anal. Chem. 28, 306 (1956).CrossRefGoogle Scholar
  112. McLafferty, F. W., Mass spectral correlations. Adv. Chem. Ser. 40, 29 (1963).Google Scholar
  113. McLafferty, F. W., Interpretation of mass spectra, p. 32 (1967 a), pp. 36-7 (1967 b), p. 42 (1967 c), pp. 80-98 (1967 d), p. 68 (1967 e). New York: Benjamin (1967).Google Scholar
  114. McMurray, W. J., S. R. Lipsky, C. Z. Kioudrou, and G. L. Schmir: The mass spectra of N- phenylphosphoramidate esters. Org. Mass Spectrom. 3, 1031 (1970).CrossRefGoogle Scholar
  115. Miller, J. A., G. M. Stevenson, and B. C. Williams: Reactions of carbonyl compounds with tervalent phosphorus reagents. Part 1. Cyclopentadienones. J. Chem. Soc. (C), p. 2714 (1971).Google Scholar
  116. Miller, J. M.: Mass spectral studies of some perhalogenoaromatic derivatives. J. Chem. Soc. (A), p. 828 (1967).Google Scholar
  117. Milne, G. W. A.: The application of mass spectrometry to problems in medicine and biochemistry. In G. W. A. Milne (ed.): Mass spectrometry: Techniques and applications. New York: Wiley-Interscience (1971).Google Scholar
  118. Muenow, D. W., O. M. Uy, and J. L. Margrove: Mass spectrometric studies of the vaporization of phosphorus oxides. J. Inorg. Nucl. Chem. 32, 3459 (1970).CrossRefGoogle Scholar
  119. Müller, E. W., and F. Körte: Unlagerung von l-Oxo-äthoxyphospholin-(2) in 1-Oxo-l- äthoxyphospholin-(3). Tetrahedron Letters, p. 3039 (1964).Google Scholar
  120. Müller, E. W., and F. Körte, Identification of pesticide conversion products by gas chromatography-mass spectrometry. Proc. Int. Symp. Gas Chromatography—Mass Spectrometry, Isle of Elba, Italy. 17–19 May (1972); A. Frigerio (ed.): Publ. Tamburini Editore, Milan, Italy, pp. 131– 62(1972).Google Scholar
  121. Nishiwaki, T.: The reactions of dialkyl hydrogen phosphites with alkyl vinyl ethers. The mass spectra of the phosphonates. Tetrahedron 22, 1383 (1968).CrossRefGoogle Scholar
  122. Nishiwaki, T., Mass spectrometry of 2-arylaziridin-2-ylphosphonates. Org. Mass Spectrom. 6, 693 (1972).CrossRefGoogle Scholar
  123. O’Brien, R. D.: Insecticides, action and metabolism, p. 38. New York: Academic Press (1967).Google Scholar
  124. Occolowitz, J. L., and J. M. Swan: Organophosphorus compounds. VII. Electron-impact fragmentations of esters of phosphonic acids. Austral. J. Chem. 19, 1187 (1966).CrossRefGoogle Scholar
  125. Occolowitz, J. L., and J. M. Swan, and G. L. White: The mass spectrometry of esters of phosphorus and phosphonic acids. Anal. Chem. 35, 1179 (1963).CrossRefGoogle Scholar
  126. Ogata, Y., Y. Izawa, and T. Ukigai: Photochemical type II elimination of diisobutyl tri- chloromethylphosphonate. Bull. Chem. Soc. Japan 46, 1009 (1973).CrossRefGoogle Scholar
  127. Pardue, J. R., E. A. Hansen, R. P. Barron, and J. T. Chen: Diazinon residues on field-sprayed kale. Hydroxydiazinon—A new alteration product of diazinon. J. Agr. Food Chem. 18, 405 (1970).CrossRefGoogle Scholar
  128. Parham, W. E., K. B. Sloan, K. R. Reddy, and P. E. Olson: Reaction of aromatic amine oxides with acid halides, sulfonyl halides, and phosphorus oxychloride. Stereochemical configuration of substituents in the 1 position of 12,13-benzo-16-chloro[10](2,4)pyridinophanes. J. Org. Chem. 38, 927 (1973).CrossRefGoogle Scholar
  129. Paulsen, H., W. Bartsch, and J. Thiem: Darstellung von Zucherphosphonaten durch Wittig- und Horner-Reaktion. Chem. Ber. 104, 2545 (1971).PubMedCrossRefGoogle Scholar
  130. Pellegrini, G., and R. Santi: Potentiation of toxicity of organophosphorus compounds containing carboxylic ester functions toward warm-blooded animals by some organophosphorus impurities. J. Agr. Food Chem. 20, 944 (1972).CrossRefGoogle Scholar
  131. Petersson, G.: Mass spectrometry of hydroxy dicarboxylic acids as trimethylsilyl derivatives. Rearrangement fragmentations. Org. Mass Spectrom. 6, 565 (1972).CrossRefGoogle Scholar
  132. Pierce, A. E.: Silylation of organic compounds. Rockford, III.: Pierce Chemical Co. (1968).Google Scholar
  133. Pritchard, J. G.: Positive-ion fragmentation mechanisms of some organo-phosphorus esters. Org. Mass Spectrom. 3, 163 (1970).CrossRefGoogle Scholar
  134. Quayle, A.: The mass spectra of some organic phosphates. In J. D. Waldon (ed.): Advances in mass spectrometry, p. 365. New York: Pergamon (1959).Google Scholar
  135. Quayle, A., Industrial applications of mass spectrometry. In I. R. Rowland (ed.): Recent topics in mass spectroscopy, p. 267. New York: Gordon and Breach (1971).Google Scholar
  136. Rankin, P. C.: Negative ion mass spectra of some pesticidal compounds. J. Assoc. Official Anal. Chemists 54, 1340 (1971).Google Scholar
  137. Redmore, D.: Phosphorus derivatives of nitrogen heterocycles. 3. Carbon-phosphorus bonding in pyridyl-2- and -4-phosphonates. J. Org. Chem. 38, 1306 (1973).CrossRefGoogle Scholar
  138. Roesky, H. W., and M. Dietl: A novel covalent azide reaction in phosphorus chemistry. Angew. Chem. Internai. Ed. (Engl.) 12, 5047 (1973).Google Scholar
  139. Roesky, H. W., and M. Dietl, and W. Kloker: Fluorphosphorylamide. Z. anorg. allgem. Chem. 375, 140 (1970).CrossRefGoogle Scholar
  140. Roesky, H. W., and M. Dietl, and W. Schaper: Substitution reactions with phosphorus amides. Z. Naturforsch. B 27, 1137 (1972).Google Scholar
  141. Rossini, F. D., D. D. Wagman, W. H. Evans, S. Levine, and I. Jaffe: Selected values of chemical thermodynamic properties. National Bureau of Standards Circ. No. 500, U.S. Government Printing Office, Washington, D.C. (1952).Google Scholar
  142. Saalfeld, F. E.: The mass spectra of some volatile hydrides. Univ. Microfilms Order No. 62-1368. Dissertation Abstr. 22, 3428 (1962).Google Scholar
  143. Saalfeld, F. E., and H. C. Svec: Mass spectra of some volatile hydrides. U.S. Atomic Energy Commission IS-386 (1961).Google Scholar
  144. Saalfeld, F. E., Mass spectra of volatile hydrides. I. The monoelemental hydrides of the group IVB, VB elements. Inorg. Chem. 2, 46 (1963).CrossRefGoogle Scholar
  145. Saalfeld, F. E., Mass spectra of volatile hydrides. III. Silylphosphine. Inorg. Chem. 3, 1442 (1964).CrossRefGoogle Scholar
  146. Sandoval, A. A., H. C. Moser, and R. W. Kiser: Ionization and dissociation processes in phosphorus trichloride and diphosphorus tetrachloride. J. Phys. Chem. 67, 124 (1963).CrossRefGoogle Scholar
  147. Santoro, E.: Fragmentation by electron impact of various thiophosphoric esters. EUR 4756 f-l-E mass spectrometry, Proc. 2nd Conf. Mass Spectrometry, Ispra, Italy 1-3 Sept. (1971); S. Facchilli (ed.): Euratom. CID, Luxemburg, pp. 273–90 (1972).Google Scholar
  148. Santoro, E., The fragmentation of some alkyl thiophosphate esters by electron-impact. Org. Mass Spectrom. 7, 589 (1973).CrossRefGoogle Scholar
  149. Sartori, P., and M. Thomzik: Trifluoracetyl- und Trifluormethyl-verbindungen des Phosphors. Z. anorg. allg. Chem. 394, 157 (1972).Google Scholar
  150. Shafik, M. T., D. Bradway, F. J. Biros, and H. F. Enos: Characterization of alkylation products of diethyl phosphorothioate. J. Agr. Food Chem. 18, 1174 (1970).CrossRefGoogle Scholar
  151. Sherman, W. R., M. A. Stewart, and M. Zimbo: Mass spectrometric study on the mechanism of D-glucose-6-phosphate-L-myo-inositol-l-phosphate cyclase. J. Biol. Chem. 244, 5703 (1969).PubMedGoogle Scholar
  152. Smith, G. C., and C. Djerassi: Mass spectrometry in structural and stereochemical problems. CCV. The mass spectra of trimethylsilyl ethers of phenols and the importance of neighboring group participation in fragmentation. Org. Mass Spectrom. 5, 487 (1971).CrossRefGoogle Scholar
  153. Stevenson, D. P.: On the average energies of molecular ions. Radiation Res. 10, 610 (1959).PubMedCrossRefGoogle Scholar
  154. Stille, J. K., J. L. Eichelberger, J. Higgins, and M. E. Freeburger: Phenylphosphinidene oxide. Thermal decomposition of 2,3-benzo-l,4,5,6,7-pentaphenyl-7-phosphabi- cyclo[2.2. l]-hept-5-ene oxide. J. Amer. Chem. Soc. 94, 4761 (1972).CrossRefGoogle Scholar
  155. Struck, R. F., Y. F. Shealy, and J. A. Montgomery: Vitamin B6 analogs. 4,4-Deoxyiso- pyridoxal and the phosphonic acid analog of 4-desoxypyridoxime phosphate. J. Med. Chem. 14, 568 (1971).PubMedCrossRefGoogle Scholar
  156. Szwarc, M.: The determination of bond dissociation energies by pyrolytic methods. Chem. Rev. 47, 75 (1950).CrossRefGoogle Scholar
  157. Tashma, Z., J. Katzhendler, and J. Deutsch: Single and double hydrogen rearrangements in the mass spectra of O-ethyl, S-alkyl methane phosphonothioates. Org. Mass Spectrom. 7, 955 (1973).CrossRefGoogle Scholar
  158. Tatematsu, A., H. Yoshizumi, and T. Goto: Analysis of mixed drugs by mass spectrometry. IX. Analysis of tetraethylpyrophosphate (TEPP) by mass spectrometry. Bunseki Kagaku 17, 774 (1968); through Chem. Abstr. 69, 66421u (1968).Google Scholar
  159. Tökés, L., and S. C. K. Wong: The electron-impact induced fragmentation of N-phenylimino- triphenylphosphoranes. Org. Mass Spectrom. 4, 59 (1970).CrossRefGoogle Scholar
  160. Varmuza, K., and P. Krenmayr: Massenspectrometrische Untersuchungen einfacher und gemischter Phosphortrihalogenide. Monatsch. Chem. 102, 1037 (1971).CrossRefGoogle Scholar
  161. Wacks, M. E., and W. A. Laurie: Mass spectral investigation of pesticides. Final Rept. AD- 729907 AROD-9109.1-A. Arizona Univ., Tucson, USA 40P (1971) Govt. Rept. Announcements (USA), V. 71 N. 21 P. 68 (1971).Google Scholar
  162. Wada, Y., and R. W. Kiser: A mass spectrometric study of some alkylsubstituted phosphines. J. Phys. Chem. 68, 2290 (1964).CrossRefGoogle Scholar
  163. Waggoner, T. B.: Metabolism of Nemacur [ethyl 4-(methylthio)-metatolylisopropylphos- phoramidate] and identification of two metabolites in plants. J. Agr. Food Chem. 20, 157 (1972).CrossRefGoogle Scholar
  164. Waller, G. R. (ed.): Biochemical applications of mass spectrometry. New York: Wiley- Interscience (1972).Google Scholar
  165. Whelan, D. J., and J. C. Johannessen: Mass spectra of some diphosphonates. Austral. J. Chem. 24, 887 (1971).CrossRefGoogle Scholar
  166. Wiley, R. H.: Mass spectral evidence for the conversion of benzenephosphonic acid to its cyclic, trimeric anhydride and of benzenephosphonous acid to phenylphosphine. Org. Mass Spectrom. 5, 675 (1971).CrossRefGoogle Scholar
  167. Williams, D. H., R. S. Ward, and R. G. Cooks: Mass spectrometry. XXIV. A study of the reactions induced in triphenylphosphine, triphenylphosphine oxide, and related substances upon electron impact. J. Amer. Chem. Soc. 90, 966 (1968).CrossRefGoogle Scholar
  168. Wustner, D. A., J. M. Desmarchelier, and T. R. Fukuto: Structure for the oxygenated product of peracid oxidation of Dyfonate ® insecticide (O-ethyl S-phenyl ethylphosphono- dithioate). Life Sci. 11 (part II), 583 (1973).CrossRefGoogle Scholar
  169. Yagi, T., S. Takahashi, and T. Murata: Gas chromatography-mass spectrometric identification of parathion residue in green tea. Shimadzu Hyoron 28, 89 (1971); through Chem. Abstr. 76, 12918n (1972).Google Scholar
  170. Yoshifuji, M., R. Okazaki, and N. Inamoto: Aluminum chloride-catalyzed reactions of l-alkyl-3,5-di-J-butylbenzenes with phosphorus trichloride. Migration of a i-butyl group to the phosphorus atom. J. Chem. Soc. (Perkin 1 ), p. 559 (1972).Google Scholar
  171. Zimbo, M., and W. R. Sherman: Gas chromatography and mass spectrometry of trimethylsilyl sugar phosphates. J. Amer. Chem. Soc. 92, 2105 (1970).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1976

Authors and Affiliations

  • J. M. Desmarchelier
    • 1
  • D. A. Wustner
    • 2
  • T. R. Fukuto
    • 2
  1. 1.Division of EntomologyCSIROCity, CanberraAustralia
  2. 2.Division of Toxicology and Physiology, Department of EntomologyUniversity of CaliforniaRiversideUSA

Personalised recommendations