Skip to main content

DDT metabolism in microbial systems

  • Conference paper
Residue Reviews

Part of the book series: Residue Reviews ((RECT,volume 61))

Abstract

The metabolic fate of DDT1 is of interest not only because of widespread concern for environmental pollution but also because it affords an opportunity to study the complex metabolic reactions carried out in different organisms and various other ecosystems. Although DDT has been used for more than three decades, much of the knowledge of its metabolism in different systems is incomplete, misleading, or fraught with inconsistencies. Only with the advent of gas-liquid (GLC) and thin-layer chromatography (TLC) and mass spectrometry (MS) coupled with more extensive use of radiolabeled compounds has real progress been made.

Published with the approval of the Director of the Colorado Agricultural Experimental Station as Scientific Series Paper No. 1979, Contribution of Western Regional Research Project W-45.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albone, E. S., G. Eglinton, N. C. Evans, J. M. Hunter, and M. M. Rhead: Fate of Ddt in Severn estuary sediments. Environ. Sci. Technol. 6, 914 (1972 a).

    Article  CAS  Google Scholar 

  • Albone, E. S., G. Eglinton, N. C. Evans, and M. M. Rhead: Formation of bis (p-chlorophenyl) -acetonitrile (p,p’-Ddcn) from p,p’-Ddt in anaerobic sewage sludge. Nature 240, 420 (1972 b).

    Article  CAS  Google Scholar 

  • Alexander, M.: Introduction to soil microbiology, p. 63. New York: Wiley (1961).

    Google Scholar 

  • Alexander, M.: Persistence and biological reactions of pesticides in soils. Soil Sci. Soc. Amer. Proc. 29, 1 (1965).

    CAS  Google Scholar 

  • Alexander, M.: The breakdown of pesticides in soils, p. 331. In N. C. Brady (ed.): Agriculture and the quality of our environment. Washington: Amer. Assoc. Adv. Sci. (1967).

    Google Scholar 

  • Alexander, M.: Amicrobial degradation of pesticides, p. 365. In F. Matsumura, G. M. Boush, and T. Misato (eds.): Environmental toxicology of pesticides. New York: Academic Press (1972).

    Chapter  Google Scholar 

  • Allison, D., B. J. Kallman, O. B. Cope, and C. C. Van Valin: Insecticides: Effects on cutthroat trout of repeated exposure to Ddt. Science 142, 958 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J. P. E., and E. P. Lichtenstein: Effect of nutritional factors on Ddt-degradation by Mucor alternans. Can. J. Microbiol. 17, 1291 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J. P. E., and E. P. Lichtenstein: Effects of various soil fungi and insecticides on the capacity of Mucor alternans to degrade Ddt. Can. J. Microbiol. 18, 553 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J. P. E., and E. P. Lichtenstein, and W. F. Whittingham: Effect of Mucor alternans on the persistence of Ddt and dieldrin in culture and in soil. J. Econ. Entomol. 63, 1595 (1970).

    PubMed  CAS  Google Scholar 

  • Barker, P. S., and F. O. Morrison: The metabolism of Tde by Proteus vulgaris. Can. J. Zool. 43, 652 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Barker, P. S., and R. S. Whitaker: Conversion of Ddt to Ddd by Proteus vulgaris, a bacterium isolated from the intestinal flora of a mouse. Nature 205, 621 (1965).

    Article  CAS  Google Scholar 

  • Bitman, J., H. C. Cecil, and G. F. Fries: Non-conversion of o,p’-Ddt to p,p’-Ddt in rats, sheep, chickens, and quail. Science 174, 64 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Bollag, J.-M.: Biochemical transformation of pesticides by soil fungi. Crc Crit. Rev. Microbiol. 2, 35 (1972).

    CAS  Google Scholar 

  • Bowes, G. W.: Uptake and metabolism of 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (Ddt) by marine phytoplankton and its effect on growth and chloroplast electron transport. Plant Physiol. 49, 172 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Braunberg, R. C., and V. Beck: Interaction of Ddt and the gastrointestinal micro-flora of the rat. J. Agr. Food Chem. 16, 451 (1968).

    Article  CAS  Google Scholar 

  • Burge, W. D.: Anaerobic decomposition of Ddt in soil. Acceleration by volatile components of alfalfa. J. Agr. Food Chem. 19, 375 (1971).

    Article  CAS  Google Scholar 

  • Castro, C. E.: The rapid oxidation of iron (II) porphyrins by alkyl halides. A possible mode of intoxication of organisms by alkyl halides. J. Amer. Chem. Soc. 86, 2310 (1964).

    Article  CAS  Google Scholar 

  • Castro, T. F., and T. Yoshida: Degradation of organochlorine insecticides in flooded soils in the Philippines. J. Agr. Food Chem. 19, 1168 (1971).

    Article  CAS  Google Scholar 

  • Chacko, C. I., J. L. Lockwood, and M. Zabik: Chlorinated hydrocarbon pesticides: Degradation by microbes. Science 154, 893 (1966).

    Article  CAS  Google Scholar 

  • Cherrington, A. D., U. Paim, and O. T. Page: In vitro degradation of Ddt by intestinal contents of Atlantic salmon (Salmo salar). J. Fish. Res. Bd. Can. 26, 47 (1969).

    Article  CAS  Google Scholar 

  • Chiba, M., and F. Doornbos: Studies on the degradation of Ddt during fermentation of grapes and its solubility in wine. Amer. J. Enol. Viticul. 22, 189 (1971).

    CAS  Google Scholar 

  • Cranmer, M. F.: Absence of conversion of o,p’-Ddt to p,p’-Ddt in the rat. Bull. Environ. Contam. Toxicol. 7, 121 (1972).

    Article  CAS  Google Scholar 

  • Crosby, D. G.: The nonmetabolic decomposition of pesticides. Ann. N.Y. Acad. Sci. 160, 82 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Crosby, D. G.: Dthe nonbiological degradation of pesticides in soils. In: Pesticides in the soil—A symposium, p. 86. Mich. St. Univ.: East Lansing (1970).

    Google Scholar 

  • Ecobichon, D. J., and P. W. Saschenbrecker: Dechlorination of Ddt in frozen blood. Science 156, 663 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Edwards, C. A.: Insecticide residues in soils. Residue Reviews 13, 83 (1966).

    CAS  Google Scholar 

  • Eichelberger, J. W., and J. J. Lichtenberg: Persistence of pesticides in river water. Environ. Sci. Technol. 5, 541 (1971).

    CAS  Google Scholar 

  • Engst, R., and M. Kujawa: Enzymatischer Abbau des Ddd durch Schimmelpilze. II. Mitt. Reaktionsurlauf des enzymatischen Ddt-Abbaues. Nahrung 11, 751 (1967).

    Article  CAS  Google Scholar 

  • Engst, R., and M. Kujawa: Enzymatischer Abbau des Ddt durch Schimmelpilze. Iii. Mitt. Darstellung des 2,2-Bis (p-chlorophenyl) acetaldehydes (Ddho) und seine Bedeutung im Abbaucyclus. Nahrung 12, 783 (1968).

    Article  CAS  Google Scholar 

  • Finley, R. B., JR., and R. E. Fillmore: Conversion of Ddt to Ddd in animal tissue. Amer. Inst. Biol. Sci. Bull. 13, 41 (1963).

    CAS  Google Scholar 

  • Focht, D. D.: Microbial degradation of Ddt metabolites to carbon dioxide, water, and chloride. Bull. Environ. Contam. Toxicol. 7, 52 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Focht, D. D., and M. Alexander: Ddt metabolites and analogs: Ring fission by Hydrogenomonas. Science 170, 91 (1970).

    Google Scholar 

  • Focht, D. D., and M. Alexander:AAerobic cometabolism of Ddt analogues by Hydrogenonmonas sp. J. Agr. Food Chem. 19, 20 (1971).

    Article  CAS  Google Scholar 

  • Franzke, C., M. Kujawa, and R. Engst: Enzymatischer Abbau des Ddt durch Schimmelpilze. IV. Mitt. Einfluss des Ddt auf das Wachstum von Fusarium oxysporum sowie auf die Pilzesterase. Nahrung 14, 339 (1970).

    Article  CAS  Google Scholar 

  • French, A. L., and R. A. Hoopingarner: Dechlorination of Ddt by membranes isolated from Escherichia coli. J. Econ. Entomol. 63, 756 (1970).

    PubMed  CAS  Google Scholar 

  • Fries, G. F.: Metabolism of Ddt by rumen microorganisms in vitro. J. Dairy Sci. 51, 981 (1968).

    Google Scholar 

  • Fries, G. F.: Degradation of chlorinated hydrocarbons under anaerobic conditions. Adv. Chem. Series Iii, 256 (1972).

    Google Scholar 

  • Fries, G. F., C. H. Gordon, and G. S. Marrow, JR.: Effect of ensiling and drying on the Ddt residue content in forage. J. Dairy Sci. 52, 910 (1969 a).

    Google Scholar 

  • Fries, G. F., G. S. Marrow, and C. H. Gordon: Metabolism of o,p’- and p,p’-Ddt by rumen microorganisms. J. Agr. Food Chem. 17, 860 (1969 b).

    Article  CAS  Google Scholar 

  • Glass, B. L.: Relation between the degradation of Ddt and the iron redox system in soils. J. Agr. Food Chem. 20, 324 (1972).

    Article  CAS  Google Scholar 

  • Gray, T. R. G.: Microbial growth in soils. In: Pesticides in the soil—A symposium, p. 36. Mich. St. Univ.: E. Lansing (1970).

    Google Scholar 

  • Guenzi, W. D., and W. E. Beard: Anaerobic biodegradation of Ddt to Ddd in soil. Science 156, 116 (1967).

    Article  Google Scholar 

  • Guenzi, W. D., and W. E. Beard:Banaerobic conversion of Ddt to Ddd and aerobic stability of Ddt in soil. Soil Sci. Soc. Amer. Proc. 32, 522 (1968).

    CAS  Google Scholar 

  • Gunner, H. B., and B. M. Zuckerman: Degradation of `Diazinon’ by synergistic microbial action. Nature 217, 1183 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Halvorson, H., M. Ishaque, J. Solomon, and O. W. Grussendorf: A biodegradability test for insecticides. Can. J. Microbiol. 17, 585 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Henzell, R. F., and R. J. Lancaster: Degradation of commercial Ddt in silage. J. Sci. Food Agr. 20, 499 (1969).

    Article  CAS  Google Scholar 

  • Hthl, D. W., and P. L. Mccarty: Anaerobic degradation of selected chlorinated hydrocarbon pesticides. J. Water Pollut. Control Fed. 39, 1259 (1967).

    Google Scholar 

  • Jensen, S., R. Gothe, and M. O. Kindstedt: Bis-(p-chlorophenyl)-acetonitrile (Ddcn), a new Ddt derivative formed in anaerobic digested sewage sludge and lake sediment. Nature 240, 421 (1972).

    Article  Google Scholar 

  • Johnsen, R. E., C. S. Lin, and K. J. Collyard: Influence of soil amendments on the metabolism of Ddt in soil. Second Internat. Congress Pest. Chem. Proc. 6, 139 (1971).

    Google Scholar 

  • Johnson, B. T., R. N. Goodman, and R. N. Goldberg: Conversion of Ddt to Ddd by pathogenic and saprophytic bacteria associated with plants. Science 157, 560 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Kallman, B. J., and A. K. Andrews: Reductive dechlorination of Ddt to Ddd by yeast. Science 141, 1050 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Kearney, P. C., and C. S. Helling: Reactions of pesticides in soils. Residue Reviews 25, 25 (1969).

    PubMed  CAS  Google Scholar 

  • Kearney, P. C., C. S. Helling, E. A. Woolson, J. R. Plimmer, and A. R. Isensee: Decontamination of pesticides in soils. Residue Reviews 29, 137 (1966).

    Google Scholar 

  • Keil, J. E., and L. E. Priester: Ddt uptake and metabolism by a marine diatom. Bull. Environ. Contam. Toxicol. 4, 169 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. C., and L. G. Harmon: Relationship between some chlorinated hydrocarbon insecticides and lactic culture organisms in milk. J. Dairy Sci. 53, 155 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Klein, A. K., E. P. Lauc, P. R. Datta, J. O. Watts, and J. T. Chen: Metabolites: reductive dechlorination of Ddt to Ddd and isomeric transformation of o,p’Ddt to p,p’-Ddt in vivo. J. Assoc. Official Agr. Chemists 47, 1129 (1964).

    CAS  Google Scholar 

  • Klein, A. K., E. P. Lauc, P. R. Datta, J. O. Watts, J. T. Chen, and J. L. Mendel: Evidence of the conversion of o,p’-Ddt (1,1,1trichloro-2-o-chlorophenyl-2-p-chlorophenylethane) to p,p’-Ddt (1,1,1-trichloro2–2-bis (p-chlorophenyl) ethane) in rats. J. Amer. Chem. Soc. 87, 2520 (1965).

    Article  CAS  Google Scholar 

  • KO, W. H., and J. L. Locxwood: Conversion of Ddt to Ddd in soil and the effect of these compounds on soil microorganisms. Can. J. Microbiol. 14, 1069 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Kujawa, M., and R. Engst: Enzymatischer Abbau des Ddt durch Schimmelpilze. V. Mitt. Versuche zur Fraktionierung des Kulturfiltrats. Nahrung 14, 347 (1970).

    CAS  Google Scholar 

  • Kutches, A. J., and D. C. Church: Ddt-’4C metabolism by rumen bacteria and protozoa in vitro. J. Dairy Sci. 54, 540 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Langlois, B. E.: Reductive dechlorination of Ddt by Escherichia coli. J. Dairy Sci. 50, 1168 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Langlois, B. E., J. A. Collins, and K. G. Sides: Some factors affecting degradation of organo-chlorine pesticides by bacteria. J. Dairy Sci. 53, 1671 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Ledford, R. A., and J. H. Chen: Degradation of Ddt and Dde by cheese microorganisms. J. Food Sci. 34, 386 (1969).

    Article  CAS  Google Scholar 

  • Malone, T. C.: In vitro conversion of Ddt to Ddd by intestinal microflora of the northern anchovy, Engraulis mordax. Nature 227, 848 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Matsvnura, F., and G. M. Bouses: Degradation of insecticides by a soil fungus, Trichoderma viride. J. Econ. Entomol. 61, 610 (1968).

    Google Scholar 

  • Matsvnura, F., and G. M. Bouses: Metabolism of insecticides by microorganisms. In A. D. McLaren and J. Skujins (eds.): Soil biochemistry, p. 320. New York: Marcel Dekker (1971).

    Google Scholar 

  • K. C. Patil, and G. M. Bouses: Ddt metabolized by microorganisms from Lake Michigan. Nature 230, 325 (1971).

    Article  PubMed  Google Scholar 

  • Meikle, R. W.: Decomposition: Qualitative relationships. In C. A. I. Goring and J. W. Hamaker (eds.): Organic chemicals in the soil environment, p. 145. New York: Kedder (1972).

    Google Scholar 

  • Mendel, J. L., and M. S. Walton: Conversion of p,p’-Ddt to p,p’-Ddd by intestinal flora of the rat. Science 151, 1527 (1966).

    Article  PubMed  CAS  Google Scholar 

  • A. K. Klein, J. T. Chen, and M. S. Walton: Metabolism of Ddt and some other chlorinated organic compounds by Aerobacter aerogenes. J. Assoc. Official Anal. Chemists 50, 897 (1967).

    Google Scholar 

  • Menzie, C. M.: Metabolism of pesticides. Special Scientific Report—Wildlife No. 127. Fish and Wildlife Service. U.S. Department of Interior, Washington, D.C. (1969).

    Google Scholar 

  • Miskus, R. P., D. P. Blair, and J. E. Casida: Conversion of Ddt to Ddd by bovine rumen fluid, lake water, and reduced porphyrins. J. Agr. Food Chem. 13, 481 (1965).

    Article  CAS  Google Scholar 

  • Miyazaki, S., and A. J. Thorsteinson: Metabolism of Ddt by fresh water diatoms. Bull. Environ. Contam. Toxicol. 8, 81 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. B., and D. A. Donward: Accumulation and metabolism of pesticides by algae. J. Phycol. 4 (Suppl.), 7 (1968).

    Google Scholar 

  • Oloffs, P. C., L. J. Albright, and S. Y. Szeto: Fate and behavior of five chlorinated hydrocarbons in three natural waters. Can. J. Microbiol. 18, 1393 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Ott, D. E., and F. A. Gunther: Ddd as a decomposition product of Ddt. Residue Reviews 10, 70 (1965).

    PubMed  CAS  Google Scholar 

  • Parr, J. F., S. Smith, and G. H. Willis: Soil anaerobiosis: I. Effect of selected environments and energy sources on respiratory activity of soil microorganisms. Soil Sci. 110, 37 (1970 a).

    Article  CAS  Google Scholar 

  • Parr, J. F., S. Smith, G. H. Willis, and S. Smith: Soil anaerobiosis: II. Effect of selected environments and energy sources on the degradation of Ddt. Soil Sci. 110, 306 (1970 b).

    Article  Google Scholar 

  • Patil, K. C., F. Matsumura, and G. M. Boush: Degradation of endrin, aldrin, and Ddt by soil microorganisms. Applied Microbiol. 19, 879 (1970).

    CAS  Google Scholar 

  • Patil, K. C., F. Matsumura, and G. M. Boush: Metabolic transformation of Ddt, dieldrin, aldrin and endrin by marine microorganisms. Envir. Sci. Technol. 6, 629 (1972).

    Article  CAS  Google Scholar 

  • Pfaender, F. K., and M. Alexander: Extensive microbial degradation of Ddt in vitro and Ddt metabolism by natural communities. J. Agr. Food Chem. 20, 842 (1972).

    Article  CAS  Google Scholar 

  • Pfaender, F. K., and M. Alexander: Effect of nutrient additions on the apparent cometabolism of Ddt. J. Agr. Food Chem. 21, 397 (1973).

    Article  CAS  Google Scholar 

  • Pfister, R. M.: Interactions of halogenated pesticides and microorganisms: A review. Crc Crit. Rev. Microbiol. 2, 1 (1972).

    CAS  Google Scholar 

  • Plimmer, J. R., P. C. Kearney, and D. W. Von Endt: Mechanism of conversion of Ddt to Ddd by Aerobacter aerogenes. J. Agr. Food Chem. 16, 594 (1968).

    Article  CAS  Google Scholar 

  • Rice, C. P., and H. C. Sikka: Uptake and metabolism of Ddt by six species of marine algae. J. Agr. Food Chem. 21, 148 (1973).

    Article  CAS  Google Scholar 

  • Salton, M. R. J.: The bacterial cell wall, p. 92. New York: Elsevier (1964).

    Google Scholar 

  • Sink, J. D., H. Valeraalvarez, and C. Hess: Metabolism of ‘4C-Ddt by ovine rumen fluid in vitro. J. Agr. Food Chem. 20, 7 (1972).

    Article  CAS  Google Scholar 

  • Stenersen, J. H. V.: Ddt-metabolism in resistant and susceptible stableflies and in bacteria. Nature 207, 660 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Thornburg, W. W.: Residue analysis in the food industry, p. 531. In G. Zweig (ed.): Analytical methods for pesticides, plant growth regulators, and food additives, vol. 1. New York: Academic Press (1963).

    Google Scholar 

  • Wedemeyer, G.: Dechlorination of Ddt by Aerobacter aerogenes. Science 152, 647 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Wedemeyer, G.: Dechlorination of 1,1,1-trichloro-2,2-bis (p-chlorophenyl) ethane by Aerobacter aerogenes: I. Metabolic products. Applied Microbiol. 15, 569 (1967 a).

    CAS  Google Scholar 

  • Wedemeyer, G.: Biodegradation of dichlorodiphenyltrichloroethane: Intermediates in dichlorophenylacetic acid metabolism by Aerobacter aerogenes. Applied Microbiol. 15, 149A (1967 b).

    Google Scholar 

  • Wedemeyer, G.: Role of intestinal microflora in the degradation of Ddt by rainbow trout. Life Sci. 7, 219 (1968).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this paper

Cite this paper

Johnsen, R.E. (1976). DDT metabolism in microbial systems. In: Gunther, F.A., Gunther, J.D. (eds) Residue Reviews. Residue Reviews, vol 61. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9401-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9401-3_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9403-7

  • Online ISBN: 978-1-4613-9401-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics