Biological Consequences of Membrane Fluidity and Fusion

  • Milton H. SaierJr.
  • Charles D. Stiles
Part of the Heidelberg Science Library book series (HSL)


In the previous chapter, we saw that the lipid constituents of membranes confer on these structures a fluid character. Membrane fluidity allows for a variety of biological functions. These include cell infection by envelope viruses; cell fusion, as it occurs in the biogenesis of a muscle fiber (a myotube); and the formation of junctions between cells, to allow intercellular communication. It is also clear that exoand endocytosis would be impossible in cells possessing rigid membranes.


Membrane Fluidity Smooth Endoplasmic Reticulum Elaidic Acid Coupling Ratio Intramembraneous Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  1. Axline, S. G. and E. P. Reaven. Inhibition of phagocytosis and plasma membrane mobility of the cultivated macrophage by cytochaiasin B. Role of subplasmalemmal microfilaments. J. Cell Biology, 62:647 (1974).CrossRefGoogle Scholar
  2. Berl, S., S. Puszkin, and W. J. Nicklas. Actomyosin-like protein in brain. Science, 779:441 (1973).CrossRefGoogle Scholar
  3. Braun, V. and K. Hantka. “Biochemistry of bacterial cell envelopes,” in Annual Review of Biochemistry, Vol. 43. Annual Reviews, Inc., Palo Alto, Ca., 1974, p. 89.Google Scholar
  4. Edidin, M. and D. Fambrough. Fluidity of the surface of cultured muscle fibers. Rapid lateral diffusion of marked surface antigens. J. Cell Biology, 57:27 (1973).CrossRefGoogle Scholar
  5. Fischback, G. D., D. Fambrough, and P. G. Nelson. Neuron and muscle cell culture. Federation Proc., 32:1036 (1973).Google Scholar
  6. Fox, C. F. “Membrane assembly,” in Membrane Molecular Biology (C. F. Fox and A. D. Keith, eds.). Sinauer Associates, inc., Stamford, Conn., 1972, p. 345.Google Scholar
  7. Getz, G. S. “Organelle biogenesis,” in Membrane Molecular Biology (C. F. Fox and A. D. Keith, eds.). Sinauer Associates, Inc., Stamford, Conn., 1972, p. 386.Google Scholar
  8. Leive, L. (ed.). Membranes and Walls of Bacteria. Dekker, Inc., New York, 1973.Google Scholar
  9. Loewenstein, W. R. “Transport through membrane junctions,” in The Molecular Basis of Biological Transport (J. F. Woessner, jr., and F. Huijing, eds.). Academic Press, New York, 1972.Google Scholar
  10. Novikoff, A. B. and E. Holtzman. Cells and Organelles. Holt, Rinehart and Winston, Inc., New York, 1970.Google Scholar
  11. Pitts, J. D. “Direct interactions between animal cells,” in Cell Interactions (C. J. Silvestri, ed.). Nort, Holland, 1972, p. 277.Google Scholar
  12. Satir, P. and N. B. Gilula. The fine structure of membranes and intercellular communication in insects. Annual Review of Entomology, Vol. 18. Annual Reviews, Inc., Palo Alto, Ca., 1973, p. 143.Google Scholar
  13. Satir, B., C. Schooley, and P. Satir. Membrane fusion in a model system. Mucocyst secretion in Tetrahymena. J. Cell Biology, 56: 153 (1973).CrossRefGoogle Scholar
  14. Schlesinger, M. J., J. A. Reynolds, and S. Schlesinger. Formation and localization of the alkaline phosphatase of Escherichia coli. Ann. N.Y. Acad. Sci., 766:368 (1969).CrossRefGoogle Scholar
  15. Siekevitz, P., G. E. Palade, G. Dallner, I. Ohad, and T. Omura. “The biogenesis of intracellular membranes,” in Organizational Biosynthesis (H. J. Vogel, J. O. Lampen, and V. Bryson, eds.). Academic Press, Inc., New York, 1967, p. 331.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1975

Authors and Affiliations

  • Milton H. SaierJr.
    • 1
  • Charles D. Stiles
    • 1
  1. 1.Department of Biology, John Muir CollegeUniversity of California at San DiegoLa JollaUSA

Personalised recommendations