Advertisement

Gas chromatographic determination of residues of insecticidal carbamates

  • Edwin D. Magallona
Part of the Residue Reviews book series (RECT, volume 56)

Abstract

With the increasing concern over the effect of the persistent organochlorine insecticides on the living environment, alternative pesticides have been increasingly used, notably the organophosphates and the carbamates. There are two main groups of insecticidal carbamates, the N-methyl- and the N,N-dimethylcarbamates. The latter are used only to a limited extent, especially in the United States, because of the greater insecticidal spectrum and potency exhibited by the N-methylcarbamates (O’Brien 1967). The N-methylcarbamates can be further subdivided, according to the nature of the functional group attached to the carbamyl moiety, into the aryl and the oxime N-methylcarbamates; the aryl N-methylearbamates are the most important from the standpoint of number and tonnage used in pest-control work.

Keywords

Pesticide Residue Pesticide Residue Analysis Carbamate Pesticide Florisil Column Carbamate Insecticide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aly, O. M., and M. A. El-Dib: Studies in the persistence of some carbamate insecticides in the aquatic environment. I. Hydrolysis of Sevin, Baygon, Pyrolan, and Dimetilan in waters. Water Res. 5, 1191 (1971).Google Scholar
  2. Andrawes, N. R., W. P. Bagley, and R. A. Herrett: Fate and carry over properties of Temik aldicarb pesticide [2-methyl-2-(methylthio) propionaldehyde O-(methylcarbamoyl)oxime] in soil. J. Agr. Food Chem. 19, 727 (1971 a).Google Scholar
  3. Andrawes, N. R., W. P. Bagley, and R. A. Herrett: Metabolism of 2-methyl-2-(methylthjo) propionaldehyde O-(methylcarbamoyl)oxime (Temik Aldicarb Pesticide) in potato plants. J. Agr. Food Chem. 19, 731 (1971b).Google Scholar
  4. Argauer, R. J.: Rapid procedure for the chloroacetylation of microgram quantities of phenols and detection by electron capture gas chromatography. Anal. Chem. 40, 122(1968).PubMedGoogle Scholar
  5. Argauer, R. J.: Determination of residues of Banol and other carbamate pesticides after hydrolysis and chloroacetylation. J. Agr. Food Chem. 17, 888 (1969).Google Scholar
  6. Argauer, R. J., and R. E. Webb: Rapid fluorometric evaluation of the deposition and persistence of carbaryl in the presence of an adjuvant on bean and tomato leaves. J. Agr. Food Chem. 20, 732 (1972).Google Scholar
  7. Argauer, R. J., H. Shimanuki, and C. C. Alvarez: Fluorometric determination of carbaryl and 1-naphthol in honeybees (Apis mellifera L.) with confirmation by gas chromatography. J. Agr. Food Chem. 18, 688 (1970).Google Scholar
  8. Asai, R. K., F. A. Gunther, and W. E. Westlake: Influence of some soil characteristics on the dissipation rate of Landrin insecticide. Bull. Environ. Contam. Toxicol. 11, 352 (1974).PubMedGoogle Scholar
  9. Aue, W. A.: Flame detectors for residue analysis by GLC. In R. F. Gould (ed.): Pesticides identification at the residue level. Adv. Chem. Series 104, Chapt. 4 (1971).Google Scholar
  10. Aue, W. A., G. W. Gehrke, R. C. Tindle, D. L. Stalling, and C. D. Ruyle: Application of the alkali flame detector to nitrogen containing compounds. J. Gas Chromatog. 5, 381 (1967).Google Scholar
  11. Bache, C. A., and D. J. Lisk: Microwave emission residue analysis of carbamate and triazine pesticides. J. Gas Chromatog. 6, 301 (1968 a).Google Scholar
  12. Bache, C. A., and D. J. Lisk: Note on the versatility of OV-17 substrate for gas chromatography of pesticides. J. Assoc. Official Anal. Chemists 51, 1270 (1968 b).Google Scholar
  13. Bache, C. A., L. E. St. John Jr., and D. J. Lisk: Gas chromatographic analysis of insensitive pesticides as their halomethyldimethylsilyl derivatives. Anal. Chem. 40, 1241 (1968).PubMedGoogle Scholar
  14. Bartley, W. J., N. R. Andrawes, E. L. Chancey, W. P. Bagley, and H. W. Spurr: The metabolism of Temik aldicarb pesticide [2-methyl-2-(methylthio) propionaldehyde O- (methylcarbamoyl) oxime] in the cotton plant. J. Agr. Food Chem. 18, 446 (1970).Google Scholar
  15. Beckman, H., and W. O. Gauer: The characteristic and operation parameters of a thermionic emission detector selective and sensitive to phosphorus. Bull. Environ. Contam. Toxicol. 1, 149 (1966).Google Scholar
  16. Beckman, H., B. Y. Giang, and J. Qualia: Preparation and detection of derivatives of Temik and its metabolites as residues. J. Agr. Food Chem. 17, 70 (1969).Google Scholar
  17. Benson, W. R.: Report on carbamate pesticides. J. Assoc. Official Anal. Chemists 52, 266 (1969).Google Scholar
  18. Benson, W. R.: Report on carbamate pesticides. J. Assoc. Official Anal. Chemists 53, 351 (1970).Google Scholar
  19. Benson, W. R., and J. N. Damico: Mass spectra of some carbamates and related ureas. II. J. Assoc. Official Anal. Chemists 51, 347 (1968).Google Scholar
  20. Benson, W. R., and J. M. Finocchiaro: Rapid procedure for carbaryl residues: Modification of the official colorimetric method. J. Assoc. Official Anal. Chemists 48, 676 (1965).Google Scholar
  21. Benville, P., Jr., and R. C. Tindle: Dry Ice homogenization procedure for fish samples in pesticide residue analysis. J. Agr. Food Chem. 18, 948 (1970).Google Scholar
  22. Beroza, M., and M. C. Bowman: Correlation of pesticide polarities with efficiencies of milk extraction procedures. J. Assoc. Official Anal. Chemists 49, 1007 (1966).Google Scholar
  23. Beroza, M., and R. A. Coad: Reaction gas chromatography. J. Gas Chromatog. 4, 199 (1966).Google Scholar
  24. Beroza, M., N. Inscoe, and M. C. Bowman: Distribution of pesticides in immiscible binary solvent systems for cleanup and identification and its application in the extraction of pesticides from milk. Residue Reviews 30, 1 (1969).PubMedGoogle Scholar
  25. Bevenue, A.: Gas chromatography. In G. Zweig (ed.): Analytical methods for pesticides, plant growth regulators, and food additives. Chapt. 9, vol. I. New York: Academic Press (1963).Google Scholar
  26. Bevenue, A.: Gas chromatography—Application and general limitations in pesticide residue analysis. In G. Zweig (ed.): Analytical methods for pesticides, plant growth regulators, and food additives. Chapt. 1, vol. V. New York: Academic Press (1967).Google Scholar
  27. Biros, F. J.: Applications of combined gas chromatography-mass spectrometry to pesticide residue identifications. In R. F. Gould (ed.): Pesticides identification at the residue level. Adv. Chem. Series 104, chapt. 9 (1971 a).Google Scholar
  28. Biros, F. J.: Recent applications of mass spectrometry and combined gas chromatography-mass spectrometry to pesticide residue analysis. Residue Reviews 40, 1 (1971 b).PubMedGoogle Scholar
  29. Blagg, A. EL, and J. L. Rawls: GLC analysis of carbamate pesticides and phenolic compounds in water. Amer. Lab. 17, Dec. (1972).Google Scholar
  30. Blinn, R. C.: Infrared microtechniques useful for identification of pesticides at the microgram level. In R. F. Gould (ed.): Pesticides identification at the residue level. Adv. Chem. Series 104, chapt. 6 (1971).Google Scholar
  31. Boulton, J. J. K., B. C. Boyce, P. J. Jewess, and R. F. Jones: Comparative properties of N-acetyl derivatives of oxime N-methylcarbamates and aryl N-methyl-carbamates as insecticides and acetylcholinesterase inhibitors. Pestic. Sci. 2, 10 (1971).Google Scholar
  32. Bowman, M. C., and M. Beroza: Determination of residues of Mobil MC-A 600 [benzo(b)thien-4-yl methylcarbamate] and its hydrolysis product [benzo(b)-thiopene-4-ol] in coastal Bermuda grass and milk. J. Agr. Food Chem. 15, 894 (1967 a).Google Scholar
  33. Bowman, M. C., and M. Beroza: Determination of Niagara NIA-10242 and its phenol degradation product in corn, silage, and milk and determination of other carbamates by GLC of their thiophosphoryl derivatives. J. Assoc. Official Anal. Chemists 50, 926 (1967 b).Google Scholar
  34. Bowman, M. C., and M. Beroza: Spectroflourescent and spectrophosphorescent data on insecticidal carbamates and the analysis of five carbamates in milk by spectrofluorometry. Residue Reviews 17, 23 (1967 c).PubMedGoogle Scholar
  35. Bowman, M. C., and M. Beroza: Apparatus combining gas chromatography with spectrofluorometry by means of a flowing liquid interface. Anal. Ghem. 40, 535 (1968).Google Scholar
  36. Bowman, M. C., and M. Beroza: Determination of Mesurol and five of its metabolites in apples, pears, and corn by gas chromatography. J. Assoc. Official Anal. Chemists 52, 1054 (1969).Google Scholar
  37. Bowman, M. C., and M. Beroza: GLC retention times of pesticides and metabolites containing phosphorus and sulfur on four thermally stable columns. J. Assoc. Official Anal. Chemists 53, 499 (1970).Google Scholar
  38. Bowman, M. C., and M. Beroza: Use of Dexsil 300 on a specially washed Chromosorb W for multicom-ponent residue determinations of phosphorus- and sulfur-containing pesticides by flame photometric GLC. J. Assoc. Official Anal. Chemists 54, 1086 (1971).Google Scholar
  39. Bowman, M. C., M. Beroza, and G. Nickless: An indium-sensitized flame photometric detector for gas chromatography of halogen compounds. J. Chromatog. Sci. 9, 44 (1971).Google Scholar
  40. Bowman, M. C., R. S. Lowrey, D. B. Leuck, and M. Beroza: Effects of feeding cattle forage treated with Mobam. J. Econ. Entomol. 61, 1495 (1968).PubMedGoogle Scholar
  41. Boyack, G. A.: Banol. In G. Zweig (ed.): Analytical methods for pesticides, plant growth regulators, and food additives. Chapt. 8, vol. V. New York: Academic Press (1967).Google Scholar
  42. Brody, S. S., and J. E. Chaney: Flame photometric detector: The application of a specific detector for phosphorus and for sulfur compounds sensitive to sub-nanogram quantities. J. Gas Chromatog. 4, 42 (1966).Google Scholar
  43. Bull, D. L.: Metabolism of UC-21149 [2-methyl-2-(methylthio) propionaldehyde O-(methylcarbamoyl) oxime] in cotton plant and soil in the field. J. Econ. Entomol. 61, 1598 (1968).Google Scholar
  44. Bull, D. L., R. A. Stokes, J. R. Coppedge, and R. L. Ridgway: Further studies of the fate of aldicarb in soils. J. Econ. Entomol. 63, 1283 (1970).Google Scholar
  45. Burchfield, H. P., H. W. Rhoades, and R. J. Wheeler: Simultaneous and selective detection of phosphorus, sulfur, and halogen in pesticides by microcoulo-metric gas chromatography. J. Agr. Food Chem. 13, 511 (1965).Google Scholar
  46. Burke, J. A.: Development of the Food and Drug Administration’s method of analysis for multiple residues of organochlorine pesticides in foods and feeds. Residue Reviews 34, 59 (1971).PubMedGoogle Scholar
  47. Burke, J. A., and M. L. Porter: A study in the effectiveness of some extraction procedures for pesticide residues in vegetables. J. Assoc. Official Anal. Chemists 49, 1157 (1966).Google Scholar
  48. Burke, J. A., and M. L. Porter: Note on the effect of sample moisture content on extraction of TDE from kale. J. Assoc. Official Anal. Chemists 50, 1260 (1967).Google Scholar
  49. Burke, J. A., P. A. Mills, and D. C. Bostwick: Experiments with evaporation of solutions of chlorinated pesticides. J. Assoc. Official Anal. Chemists 49, 999 (1966).Google Scholar
  50. Butler, L. I., and L. M. McDonough: Method of the determination of residues of carbamate insecticides by electron capture gas chromatography. J. Agr. Food Chem. 16, 403 (1968).Google Scholar
  51. Butler, L. I., and L. M. McDonough: Specific GLC method for determining residues of carbaryl by electron capture detection after derivative formation. J. Assoc. Official Anal. Chemists 53, 495(1970).Google Scholar
  52. Butler, L. I., and L. M. McDonough: Determination of residues of carbofuran and its toxic metabolites by electron capture gas chromatography after derivative formation. J. Assoc. Official Anal. Chemists 54, 1357 (1971).Google Scholar
  53. Carey, W. F., and K. Helrich: Improved quantitative method for the determination of aldicarb and its oxidation products in plant materials. J. Assoc. Official Anal. Chemists 53, 1296 (1970).Google Scholar
  54. Cassel, C. C., R. P. Stanovick, and R. F. Cook: A specific gas chromatographic method for residues of organic nitrogen pesticides. Residue Reviews 23, 63 (1969).Google Scholar
  55. Chasar, A. G., and C. A. Lucchesi: Methods for the determination of Mobam (4-benzothienyl N-methylcarbamate). J. Agr. Food Chem. 15, 1030 (1967).Google Scholar
  56. Chen, J. T., and W. R. Benson: Characteristic infrared absorption spectra and frequencies of carbamate pesticides. J. Assoc. Official Anal. Chemists 49, 412 (1966).Google Scholar
  57. Chiba, M.: Factors affecting the extraction of organochlorine insecticides from soil. Residue Reviews 30, 63 (1969).Google Scholar
  58. Claborn, H. V., R. H. Roberts, H. D. Mann, M. C. Bowman, M. C. Ivey, C. P. Werdenbach, and R. D. Radeleff: Residues in body tissues of livestock sprayed with Sevin or given Sevin in the diet J. Agr. Food Chem. 11, 73 (1963).Google Scholar
  59. Clarke, D. D., S. Wilk, and S. Gitlow: Electron capture properties of halogenated amine derivatives. J. Gas Chromatog. 4, 310 (1966).Google Scholar
  60. Cochrane, W. P., B. P. Wilson, and R. Greenhalgh: Determination of sulfur-and chlorine-containing pesticides with an electrolytic conductivity detector. J. Chromatog. 75, 207 (1973).Google Scholar
  61. Cohen, I. C., J. Norcup, J. H. A. Ruzicka, and B. B. Wheals: Trace determination of phenols by gas chromatography as their 2,4-dinitrophenyl ethers. J. Chromatog. 44, 251 (1969).Google Scholar
  62. Cohen, I. C., J. Norcup, J. H. A. Ruzicka, and B. B. Wheals: An electron capture gas chromatographic method for the determination of some carbamate insecticide as 2,4-dinitrophenyl derivatives of their phenol moieties. J. Chromatog. 49, 215 (1970).Google Scholar
  63. Cook, R. F., R. P. Stanovick, and C. C. Cassil: Determination of carbofuran and its carbamate metabolite residues in corn using a nitrogen-specific gas chromatographic detector. J. Agr. Food Chem. 17, 277 (1969).Google Scholar
  64. Coppedge, J. R., D. A. Lindquist, D. L. Bull, and H. W. Dorough: Fate of 2-methyl-2-(methylthio) propionaldehye O- (methylcarbamoyl) oxime (Temik) in cotton plants and soil. J. Agr. Food Chem. 15, 902 (1967).Google Scholar
  65. Coulson, D. M.: Electrolytic conductivity detector for gas chromatography. J. Gas Chromatog. 3, 134 (1965).Google Scholar
  66. Coulson, D. M.: Selective detection of nitrogen compounds in electrolytic conductivity gas chromatography. J. Gas Chromatog. 4, 285 (1966).Google Scholar
  67. Coulson, D. M.: Electrochemical detector for trace determination of nitrogen, halide, sulfur, and carbon with gas chromatography. Amer. Lab., May 22 (1969).Google Scholar
  68. Coulson, D. M., L. A. Cavanagh, J. E. Devries, and B. Walther: Microcoulometric gas chromatography of pesticides. J. Agr. Food Chem. 8, 399 (1960).Google Scholar
  69. Craven, D. A.: Simplified version of the alkali flame detector for nitrogen mode operation. Anal. Chem. 42, 1679 (1970).Google Scholar
  70. Crosby, D. G., and J. B. Bowers: Amine derivatives for pesticide residue analysis. J. Agr. Food Chem. 16, 839 (1968).Google Scholar
  71. Damico, J. N., and W. R. Benson: The mass spectra of some carbamate pesticides. J. Assoc. Official Anal. Chemists 48, 344 (1965).Google Scholar
  72. de Riveros, M. H. C. K., and E. E. Vonesch: Colorimetric determination of carbaryl and apple, lettuce, chard, and tomato. J. Assoc. Official Anal. Chemists 54, 1083 (1971).Google Scholar
  73. Dorough, H. W.: Metabolism of insecticidal methylcarbamates in animals. J. Agr. Food Chem. 18, 1015 (1970).Google Scholar
  74. Dorough, H. W., and J. E. Casida: Nature of certain carbamate metabolites of the insecticide Sevin. J. Agr. Food Chem. 12, 294 (1964).Google Scholar
  75. Dorough, H. W., R. B. Davis, and G. W. Ivie: Fate of Temik carbon 14 in lactating cows during a 14-day feeding period. J. Agr. Food Chem. 18, 135 (1970).Google Scholar
  76. Douch, P. G. C., and J. N. Smith: Metabolism of m-tert.-butylphenyl N-methyl-carbamate in insects and mice. Biochem. J. 125, 385 (1971 a).PubMedGoogle Scholar
  77. Douch, P. G. C., and J. N. Smith: The metabolism of 3,5-di-tert.-butylphenyl N-methylearbamate in insects and by mouse liver enzymes. Biochem. J. 125, 395 (1971 b).PubMedGoogle Scholar
  78. Dressler, M., and J. Janak: Detection of sulphur compounds with an alkali flame ionization detector. J. Gas Chromatog. 7, 451 (1969).Google Scholar
  79. Eberle, D. O., and F. A. Gunther: Chromatographic, spectrophotometric, and irradiation behavior of 5 carbamate insecticides. J. Assoc. Official Anal. Chemists 48, 927 (1965).Google Scholar
  80. Ebing, W.: Gas chromatographische Analyse insectizider Carbamate. Chimia 19, 501 (1965).Google Scholar
  81. Epstein, A. J., D. R. Gaskill, and C. A. Lucchesi: Gas chromatographic determination of 4-benzothienyl N-methylcarbamate. Anal. Chem. 39, 721 (1967).Google Scholar
  82. Faust, S. D., and H. M. Gomaa: Chemical hydrolysis of some organophosphorus and carbamate pesticides in aquatic environments. Environ. Letters 3, 171 (1972).Google Scholar
  83. Fahey, J. E., M. C. Wilson, and E. J. Armbrust: Residues of Supracide and carbo-furan in green and dehydrated alfalfa. J. Econ. Entomol. 63, 589 (1970).Google Scholar
  84. Fahmy, M. A. H., T. R. Fukuto, R. O. Myers, and R. B. March: The selective toxicity of new N-phosphorothioyl carbamate esters. J. Agr. Food Chem. 18, 793 (1970).Google Scholar
  85. Faucheux, L. J., Jr.: Rapid cleanup for carbaryl using channel layer chromatography. J. Assoc. Official Anal. Chemists 51, 676 (1968).Google Scholar
  86. Finocchiaro, J. M., and W. R. Benson: Thin layer chromatography of some carbamate and phenylurea pesticides. J. Assoc. Official Anal. Chemists 50, 888 (1967).Google Scholar
  87. Fishbein, K., and W. L. Zielinski: Gas chromatography of trimethylsilyl derivatives. I. Pesticidal carbamates and ureas. J. Chromatog. 20, 9 (1965).Google Scholar
  88. Fishbein, K., and W. L. Zielinski: Chromatography of carbamates. Chromatog. Reviews 9, 37 (1967).Google Scholar
  89. Fishbein, K., and W. L. Zielinski: Structural transformations during the gas chromatography of carbamates. Chromatographia 2, 38 (1969).Google Scholar
  90. Fraser, J., P. C. Clinch, and R. C. Reay: ZV-Acylation of IV-methylcarbamate insecticides and its effect on biological activity. J. Sci. Food Agr. 16, 615 (1965).Google Scholar
  91. Friestad, H. O., D. E. Ott, and F. A. Gunther: Automated colorimetric micro-determination of phenols by oxidative coupling with 3-methyl-2-benzothiazolinone hydrazone. Anal. Chem. 41, 1750 (1969).PubMedGoogle Scholar
  92. Fukuto, T. R., and R. G. Metcalf: Metabolism of insecticides in plants and animals. Ann. N. Y. Acad. Sci. 160, 97 (1969).PubMedGoogle Scholar
  93. Gajan, R. G., W. R. Benson, and J. M. Finocchiaro: Determination of carbaryl in crops by oscillographic polarography. J. Assoc. Official Anal. Chemists 48, 958 (1965).Google Scholar
  94. Gerhardt, K. O., and W. A. Aue: The negative alkali flame detector response. J. Chromatog. 52, 49 (1970).Google Scholar
  95. Gudzinowicz, B. J.: Gas chromatographic analysis of drugs and pesticides, p. 605. New York: Dekker (1967).Google Scholar
  96. Gunther, F. A., and R. C. Blinn: Analysis of insecticides and acaricides. New York: Interscience (1955).Google Scholar
  97. Gunther, F. A., and R. C. Blinn, and G. E. Carman: Residues of Sevin on and in lemons and oranges. J. Agr. Food Chem. 10, 222 (1962).Google Scholar
  98. Gunther, F. A., and R. C. Blinn, and D. E. Ott: Forced volatilization cleanup for gas chromatographic assay of pesticide residues. Bull. Environ. Contam. Toxicol. 1, 237 (1966).Google Scholar
  99. Gunther, F. A., and R. C. Blinn, A. Lopez-Roman, R. I. Asai, and W. E. Westlake: Expanded utility of the Beilstein flame test for organically bound halogens as a sensitive and specific flame photometric detector in the gas chromatographic determination of R-X compounds as illustrated with organochlorine pesticides. Bull. Environ. Contam. Toxicol. 4, 202 (1969).Google Scholar
  100. Gutenmann, W. H., and D. J. Lisk: Gas chromatographic residue determination of Sevin as brominated 1-naphthyl acetate. J. Agr. Food Chem. 13, 48 (1965).Google Scholar
  101. Gutenmann, W. H., and D. J. Lisk, D. G. Wagner, and D. J. Lisk: Gas chromatographic analysis of the fate of N-methyl-2,3-substituted phenyl carbamate in the dairy cow. J. Dairy Sci. 47, 821 (1964).Google Scholar
  102. Gyrisco, G. G., D. J. Lisk, S. N. Fertig, E. W. Huddleston, F. J. Fox, R. F. Holland, and G. W. Trimberger: The effects of feeding high levels of Sevin on residue, flavor, and odor of the milk of dairy cattle. J. Agr. Food Chem. 8, 409 (1960).Google Scholar
  103. Hall, R. G.: A highly sensitive and selective microelectrolytic conductivity detector for gas chromatography. J. Chromatog. Sci. 12, 152 (1974).Google Scholar
  104. Hartmann, C. J.: Phosphorus detector for pesticide analysis. Bull. Environ. Contam. Toxicol. 1, 159 (1966).Google Scholar
  105. Hartmann, C. J.: Alkali flame detector for organic nitrogen compounds. J. Chromatog. Sci. 7, 163(1969).Google Scholar
  106. Hernandez, R., R. Hernandez, Jr., and L. R. Axelrod: Standardization of silicic acid for chromatography. Anal. Chem. 33, 370 (1961).Google Scholar
  107. Hetherington, R. M., and C. Parouchais: Channel layer chromatography, with a rapid spotting technique, for one-stage cleanup in pesticide residue analysis. J. Assoc. Official Anal. Chemists 53, 146 (1970).Google Scholar
  108. Holden, E. R.: Gas chromatographic determination of residues of methylcarbamate insecticides in crops as their 2,4-dinitrophenyl ether derivatives. J. Assoc. Official Anal. Chemists 56, 713 (1973).Google Scholar
  109. Holden, E. R., W. M. Jones, and M. Beroza: Determination of methyl and dimethyl carbamate insecticides by gas chromatography of their 2,4-dinitroaniline derivatives. J. Agr. Food Chem. 17, 56 (1969).Google Scholar
  110. Hugunin, A. G., and R. L. Bradley Jr.: Distribution of organochlorine pesticides among some milk components. J. Dairy Sci. 54, 355 (1971).PubMedGoogle Scholar
  111. Ives, N. F., and L. Giuffrtda: Investigation of thermionic detector response for the gas chromatography of P, N, As, and Cl organic compounds. J. Assoc. Official Anal. Chemists 50, 1, (1967).Google Scholar
  112. Johns, T., and C. H. Braithwaite Jr.: Selective detection and identification of pesticide residues. Residue Reviews 5, 45 (1964).PubMedGoogle Scholar
  113. Johnson, D. P., and H. A. Stansbury: Adaptation of Sevin insecticide (carbaryl) residue method to various crops. J. Agr. Food Chem. 13, 235 (1965 a).Google Scholar
  114. Johnson, D. P., and H. A. Stansbury: Determination of carbaryl residues in honey bees. J. Assoc. Official Anal. Chemists 48, 771 (1965 b).Google Scholar
  115. Johnson, D. P., F. E. Critchfield, and B. W. Arthur: Determination of Sevin insecticide and its metabolites in poultry tissues and eggs. J. Agr. Food Chem. 11, 77 (1963).Google Scholar
  116. Jones, L. R., and J. A. Riddick: Separation of organic insecticides from plant and animal tissues. Anal. Chem. 24, 569 (1952).Google Scholar
  117. Karinen, J. F., J. G. Lamrerton, N. E. Stewart, and L. C. Terriere: Persistence of carbaryl in the marine estuarine environment. Chemical and biological stability in aquarium systems. J. Agr. Food Chem. 15, 148 (1967).Google Scholar
  118. Karmen, A.: Differential specificity in detecting phosphorus, nitrogen, and halogens with alkali flames. J. Chromatog. Sci. 7, 541 (1969).Google Scholar
  119. Kawahara, F. K.: Microdetermination of derivatives of phenols and mercaptans by means of electron capture gas chromatography. Anal. Chem. 40, 1009 (1968).PubMedGoogle Scholar
  120. Kawahara, F. K.: Gas chromatographic analysis of mercaptans, phenols, and organic acids in surface waters with use of perfluorobenzyl derivatives. Environ. Sci. Technol. 5, 235 (1971).Google Scholar
  121. Kawahara, T., and T. Kashiwa: Gas-liquid chromatography of phenyl N-methyl-carbamates. Japan Analyst 17, 925 (1968).Google Scholar
  122. Kearby, W. H., C. D. Ercegovich, and M. Bliss, Jr.: Residue studies on aldicarb in soil and scotch pine. J. Econ. Entomol. 63, 1317 (1970).Google Scholar
  123. Keith, L. H., and A. L. Alford: The high resolution NMR spectra of pesticides. III. The carbamates. J. Assoc. Official Anal. Chemists 53, 157 (1970).Google Scholar
  124. Khalifa, S., and R. O. Mumma: Gas chromatographic separation of the aglycone metabolites of carbaryl J. Agr. Food Chem. 20, 632 (1972).Google Scholar
  125. Klein, A. K.: Report on extraction procedures for chloro-organic insecticides. J. Assoc. Official Agr. Chemists 41, 551 (1958).Google Scholar
  126. Klein, A. K., E. P. Laug, and J. D. Sheehan Jr.: Report on extraction procedures for chloro-organic insecticides. J. Assoc. Official Agr. Chemists 42, 539 (1959).Google Scholar
  127. Klein, M., J. Tallant, and L. J. Sullivan: The metabolism of 2-(methylthio)pro-pionaldehyde O-(methylcarbamoyl)oxime in the rat. J. Agr. Food Chem. 14, 573 (1966).Google Scholar
  128. Knaak, J. B., D. M. Munger, and J. F. McCarthy: Metabolism of carbofuran and alfalfa and bean plants. J. Agr. Food Chem. 18, 827 (1970).Google Scholar
  129. Krishna, J. G., H. W. Dorough, and J. E. Casida: Synthesis of N-methyl carbamates via methyl isocyanate-C14 and chromatographic purification. J. Agr. Food Chem. 10, 462 (1962).Google Scholar
  130. Kuhr, R. J.: Metabolism of carbamate insecticide chemicals in plants and insects. J. Agr. Food Chem. 18, 1023 (1970).Google Scholar
  131. Kuhr, R. J., and J. E. Casida: Persistent plycosides of metabolites of methylcarbamate insecticide chemicals formed by hydroxylation in bean plants. J. Agr. Food Chem. 15, 814 (1967).Google Scholar
  132. Landowne, R. A., and S. R. Lipsky: The electron capture spectrometry of halo-acetates: A means of detecting ultramicro quantities of sterols by gas chromatography. Anal. Chem. 35, 532 (1963).Google Scholar
  133. Laski, R. R., and R. R. Watts: Gas chromatography of organonitrogen pesticides, using a nitrogen-specific detection system. J. Assoc. Official Anal. Chemists 56, 328 (1973).Google Scholar
  134. Lau, S. C., and R. L. Marxmiller: Residue determination of Landrin insecticide by fluoroacetylation and electron capture gas chromatography. J. Agr. Food Chem. 18, 413 (1970).Google Scholar
  135. Law, L. M., and D. F. Goerlitz: Microcolumn chromatographic cleanup for the nalysis of pesticides in water. J. Assoc. Official Anal. Chemists 53, 1276 (1970).Google Scholar
  136. Lawrence, J. F., and R. W. Frei: Fluorigenic labeling of IV-methyl- and N,N-dimethylcarbamates with 4-chloro-7-nitrobenzo-2,1,3-oxadiazole. Anal. Chem. 44, 2046(1972).PubMedGoogle Scholar
  137. Leuck, D. B., M. C. Bowman, J. C. Johnson Jr., E. W. Beck, and R. S. Lowery: Niagara NIA-10242 insecticide residues: Their persistence in coastal Bermuda grass, corn, and silages, and their effect, fed in silage, on lactating cows. J. Econ. Entomol. 61, 1349 (1968).PubMedGoogle Scholar
  138. Lloyd, J. E., and J. G. Matthysse: Residues of dichlorvos, diazinon, and Dimetilan in milk of cows fed PVC-insecticide feed additives. J. Econ. Entomol. 64, 821 (1971).PubMedGoogle Scholar
  139. Magallona, E. D.: ZV-Derivatization for the gas chromatographic detection of insecticidal aryl N-methylcarbamates. Ph.D. thesis, Univ. Calif., Riverside (1973).Google Scholar
  140. Maitlen, J. C., L. M. McDonough, and M. Beroza: Determination of residues of 2-methyl-2(methylthio) propionaldehyde O-(methylcarbamoyl) oxime (UC 21149, Temik) and its sulfoxide and its sulfone by gas chromatography. J. Agr. Food Chem. 16, 549 (1968).Google Scholar
  141. Maitlen, J. C., L. M. McDonough, and M. Beroza: Rapid method for the extraction, cleanup, and GC determination of toxic residues of Temik. J. Assoc. Official Anal. Chemists 52, 786 (1969).Google Scholar
  142. Maitlen, J. C., L. M. McDonough, F. Dean, B. A. Butt, and B. J. Landis: Aldicarb residues in apples, pears, sugarbeets, and cottonseed; performance in apples and pears. U.S. Department of Agriculture ARS-33–135. Mar. (1970).Google Scholar
  143. Martin, R. L.: Fast and sensitive method for determination of nitrogen-selective nitrogen detector for gas chromatography. Anal. Chem. 9, 1209 (1966).Google Scholar
  144. Matherne, M. J. Jr., and W. M. Bathalter: Channel layer chromatography (CLC): A cleanup procedure for pesticide residue analysis. J. Assoc. Official Anal. Chemists 49, 1012 (1966).Google Scholar
  145. Meikle, R. W.: Metabolism of 4-dimethylamino-3,5-xylyl methylcarbamate (Mexa-carbate, active ingredient of Zectron insecticide): A unified picture. Bull. Environ. Contam. Toxicol 10, 29 (1973).Google Scholar
  146. Mendoza, C. E.: Analysis of pesticides by the thin-layer chromatographic-enzyme inhibition technique. Residue Reviews 43, 105 (1972).Google Scholar
  147. Mendoza, C. E., and J. B. Shields: Esterase specificity and sensitivity to organophosphorus and carbamate pesticides: Factors affecting determination by thin layer chromatography. J. Assoc. Official Anal. Chemists 54, 507 (1971).Google Scholar
  148. Mendoza, C. E., and J. B. Shields: Determination of some carbamates by enzyme inhibition techniques using thin-layer chromatography and colorimetry. J. Agr. Food Chem. 21, 178 (1973).Google Scholar
  149. Metcalf, R. L., T. R. Fukuto, C. Collins, K. Borck, S. Abd El-Aziz, R. Muñoz, and C. C. Cassil: Metabolism of 2,2-dimethyl-2,3-dihydrobenzofuranyl-7 N-methylcarbamate (Furadan) in plants, insects, and mammals. J. Agr. Food Chem. 16, 300 (1968).Google Scholar
  150. Mills, P. A., J. H. Onley, and R. A. Gaither: Rapid method for chlorinated pesticide residues in non-fatty foods. J. Assoc. Official Agr. Chemists 46, 186 (1963).Google Scholar
  151. Miskus, R. P., M. Look, T. L. Andrews, and R. L. Lyon: Biological activity as an effect of structural changes in aryl N-methylcarbamates. J. Agr. Food Chem. 16, 605 (1968).Google Scholar
  152. Miyamoto, J., K. Yamamoto, and T. Matsumoto: Metabolism of 3,4-dimethylphenyl N-methylcarbamate in white rats. Agr. Biol. Chem. 33, 1060 (1969).Google Scholar
  153. Moats, W. A.: One-step cleanup of chlorinated insecticide residues by chromatography in carbon-Celite mixtures. J. Assoc. Official Agr. Chemists 47, 587 (1964).Google Scholar
  154. Moffitt, R. A.: Residue analysis in the dairy industry. In G. Zweig (ed.): Analytical methods for pesticides, plant growth regulators, and food additives. Chapt. 21, vol. I. New York: Academic Press (1963).Google Scholar
  155. Morley, H. V.: Adsorbents and their application to column cleanup of pesticide residues. Residue Reviews 16, 1 (1966).Google Scholar
  156. Moye, H. A.: Reaction gas chromatographic analysis of pesticides. I. On-column transesterification of N-methylcarbamates by methanol. J. Agr. Food Chem. 19, 452(1971).Google Scholar
  157. Moye, H. A.: Esters of sulfonyl chlorides as derivatives for the gas chromatographic analysis of carbamate pesticides. Presented Amer. Chem. Soc. Meeting, Dallas, Texas, Apr. (1973).Google Scholar
  158. O’Brien, R. D.: Insecticides, action and metabolism. New York: Academic Press (1967).Google Scholar
  159. Oonnithan, E. S., and J. E. Casida: Oxidation of methyl- and dimethylcarbamate insecticide chemicals by microsomal enzymes and anticholinesterase activity of the metabolites. J. Agr. Food Chem. 16, 28 (1968).Google Scholar
  160. Ott, D. E., M. Ittig, and H. O. Friestad: Automated steam distillation and fluo-rometry for screening of carbaryl as 1-naphthol in fruits and vegetables. J. Assoc. Official Anal. Chemists 54, 160 (1971).Google Scholar
  161. Overfield, C. V., and J. D. Winefordner: The selective indiumhalide detector— A potentially useful detector for gas chromatography. J. Chromatog. Sci. 8, 233 (1970).Google Scholar
  162. Patchett, G. G.: Evaluation of the electrolytic conductivity detector for residue analysis of nitrogen-containing pesticides. J. Chromatog. Sci. 8, 155 (1970).Google Scholar
  163. Paulson, G. D., and C. E. Portnoy: Sulfate ester conjugates—a one-step method for replacing the sulfate with an acetyl group. J. Agr, Food Chem. 18, 160 (1970).Google Scholar
  164. Paulson, G. D., R. G. Zaylskie, M. V. Zehr, C. E. Portnoy, and V. J. Feil: Metabolites of carbaryl(l-naphthyl methylcarbamate) in chicken urine. J. Agr. Food Chem. 18, 110 (1970).Google Scholar
  165. Pease, H. L., and J. J. Kirkland: Determination of methomyl residues using microcoulometric gas chromatography. J. Agr. Food Chem. 16, 554 (1968).Google Scholar
  166. Peck, J. M., and K. J. Harkiss: Gas chromatographic analysis of some carbamate derivatives. J. Chromatog. Sci. 9, 370 (1971).Google Scholar
  167. Pieper, G. R., and R. P. Miskus: Determination of Zectran residues in aerial forest spraying. J. Agr. Food Chem. 15, 915 (1967).Google Scholar
  168. Pol, E. W. V. D.: Note on the determination of carbaryl residues in hen skin. J. Assoc. Official Anal. Chemists 51, 901 (1968).Google Scholar
  169. Porter, M. L., R. J. Gajan, and J. A. Burke: Acetonitrile extraction and determination of carbaryl in fruits and vegetables. J. Assoc. Official Anal. Chemists 52, 177 (1969).Google Scholar
  170. Ralls, J. W., and A. Cortes: Determination of Sevin in green beans by bromina-tion and electron capture gas chromatography. J. Gas Chromatog. 2, 132 (1964).Google Scholar
  171. Riva, M., and A. Carisano: Compact dual-channel flame ionization-cum-thermionic detector for high specificity chromatographic analysis. J. Chromatog. 36, 269 (1968).Google Scholar
  172. Riva, M., and A. Carisano: Direct gas chromatographic determination of carbaryl. J. Chromatog. 42, 464 (1969).Google Scholar
  173. Roberts, R. H., J. B. Jackson, W. E. Westlake, A. J. Ackerman, and H. V. Claiborn: Residue studies of livestock sprays containing Sevin. J. Econ. Entomol. 53, 326 (1960).Google Scholar
  174. Roberts, R. B., R. P. Miskus, C. K. Duckles, and T. T. Sakai: In vivo fate of the insecticide Zectran in spruce budworm, tobacco budworm, and housefly larvae. J. Agr. Food Chem. 17, 107 (1969).Google Scholar
  175. Saunders, J. H., and K. C. Frisch: Polyurethanes. Chemistry and technology. Part I. Chemistry, pp. 118–119. New York: Interscience (1967).Google Scholar
  176. Seiber, J. N.: N-Perfluoroacyl derivatives for methylcarbamate analysis by gas chromatography. J. Agr. Food Chem. 20, 443 (1972).Google Scholar
  177. Seiber, J. N., D. G. Crosby, H. Fouda, and C. J. Soderquist: Ether derivatives for the determination of phenols and phenol-generating pesticides by electron capture gas chromatography. J. Chromatog. 73, 89 (1972).Google Scholar
  178. Selucky, M. L.: Specific gas chromatography detectors. Part II: Electrolytic conductivity detector. Chromatographia 5, 359 (1972).Google Scholar
  179. Shafik, M. T., H. C. Sullivan, and H. F. Enos: A method for the determination of 1-naphthol in urine. Bull. Environ. Contam. Toxicol. 6, 34 (1971).PubMedGoogle Scholar
  180. Shaw, F. R., D. Miller, and C. P. S. Yadava: Persistence of carbofuran and 3-hy-droxycarbofuran on alfalfa. J. Econ. Entomol. 62, 953 (1969).Google Scholar
  181. Shrivastava, S. P., M. Tsukamoto, and J. E. Casida: Oxidative metabolism of C14-labeled Baygon by living house flies and by house fly enzyme preparations. J. Econ. Entomol. 62, 483 (1969).Google Scholar
  182. Slade, M., and J. E. Casida: Metabolic fate of 3,4,5- and 2,3,5-trimethylphenyl methylcarbamates, the major constituents in Landrin insecticide. J. Agr. Food Chem. 18, 467 (1970).Google Scholar
  183. Stanley, C. W., and J. S. Thornton: Gas chromatographic method for residues of Baygon and its major metabolite in animal tissues and milk. J. Agr. Food Chem. 20, 1269 (1972).Google Scholar
  184. Stanley, C. W., and J. S. Thornton, and D. B. Katague: Gas chromatographic method for residues of Baygon and metabolites in plant tissues. J. Agr. Food Chem. 20, 1265 (1972).Google Scholar
  185. Storherr, R. W.: Reports on carbamate pesticides and on fumigants and miscellaneous pesticides. J. Assoc. Official Anal. Chemists 54, 324 (1971).Google Scholar
  186. Storherr, R. W.: Reports on carbamate pesticides and on fumigants and miscellaneous pesticides. J. Assoc. Official Anal. Chemists 55, 283 (1972).Google Scholar
  187. Storherr, R. W.: Reports on carbamate pesticides, fumigants, and miscellaneous. J. Assoc. Official Anal. Chemists 56, 296 (1973).Google Scholar
  188. Storherr, R. W.: pesticides. I. Recoveries from fortified crops. J. Assoc. Official Agr. Chemists 48, 1154 (1965).Google Scholar
  189. Storherr, R. W., P. Ott, and R. R. Watts: A general method for organophosphorus pesticide residues in nonfatty foods. J. Assoc. Official Anal. Chemists 54, 513 (1971).Google Scholar
  190. Strother, A.: Gas chromatography of various phenyl ZV-methylcarbamates. J. Gas Chromatog. 6, 110 (1968).Google Scholar
  191. Sullivan, L. J., J. M. Eldridge, and J. B. Knaak: Determination of carbaryl and some other carbamates by gas chromatography. J. Agr. Food Chem. 15, 927 (1967).Google Scholar
  192. Sumida, S., M. Takaki, and T. Miyamoto: Rapid gas chromatographic determination of microquantities of N-methylcarbamates as their 2,4-dinitrophenyl derivatives. Agr. Biol. Chem. 34, 1576 (1970 a).Google Scholar
  193. Sumida, S., M. Takaki, and T. Miyamoto: Method for the determination of residue of Meobal(3,4-dimethyl phenyl N-methylcarbamate) in rice grains. Botyu-Kagaku 35, 72 (1970 b).Google Scholar
  194. Suzuki, K., H. Nagayoshi, and T. Kashtwa: Systematic separation and identification of 13 carbamate pesticides in their mixture. Agr. Biol. Chem. 37, 218 (1973).Google Scholar
  195. Tappan, W. B., W. B. Wheeler, and H. W. Lundy: Methomyl residues on cigar-wrapper and flue-cured tobaccos in Florida. J. Econ. Entomol. 66, 197 (1972).Google Scholar
  196. Thornburg, W. W.: Preparation and extraction of samples prior to pesticide residue analysis. J. Assoc. Official Agr. Chemists 48, 1023 (1965).Google Scholar
  197. Thornburg, W. W.: Pesticide residues. Anal. Chem. 43, 145R (1971).Google Scholar
  198. Thornburg, W. W.: Pesticide residues. Anal. Chem. 45, 151R (1973).Google Scholar
  199. Thornburg, W. W., and H. Beckman: Pesticide residues. Anal. Chem. 41, 140R (1969).PubMedGoogle Scholar
  200. Tilden, R. L., and C. H. van Middelem: Determination of carbaryl as an amide derivative by electron capture gas chromatography. J. Agr. Food Chem. 18, 154 (1970).Google Scholar
  201. Timmerman, J. A. Jr., H. W. Dorough, J. R. Buttram, and B. W. Arthur: In vitro stability and recovery of insecticides from milk. J. Econ. Entomol. 54, 441 (1961).Google Scholar
  202. Uejt, M., and J. Kanazawa: Method for the determination of carbamate insecticide residues. Japan Anal. 22, 16 (1973).Google Scholar
  203. van Middelem, C. H., and A. J. Peplow: Evaluation of extraction procedures for the removal of 14C-carbofuran and its toxic metabolites from cabbage leaves. J. Agr. Food Chem. 21, 100 (1973).Google Scholar
  204. Thornburg, W. W.:, T. L. Norwood, and R. W. Waites: Residue determination of Sevin and other carbamates following hydrolysis and bromination. J. Gas Chromatog. 3, 310 (1965).Google Scholar
  205. Thornburg, W. W.:, H. A. Moye, and M. J. Janes: Carbofuran and 3-hydroxy-carbofuran determination in lettuce by alkali flame gas chromatography. J. Agr. Food Chem. 19, 459 (1971).Google Scholar
  206. Vonesch, E. E., and M. H. C. K. de Riveros: Colorimetric determination of carbaryl in wettable formulations. J. Assoc. Official Anal. Chemists 54, 128 (1971).Google Scholar
  207. Wales, P. J., H. A. McLeod, and W. P. McKinley: TLC-Enzyme inhibition procedure to detect some carbamate standards and carbaryl in food extracts. J. Assoc. Official Anal. Chemists 51, 1239 (1968).Google Scholar
  208. Watts, R. R.: Extraction efficiency study-examination of three procedures for extracting 14C-labeled and unlabeled residues of organophorus pesticides and carbaryl from bean leaves and kale. J. Assoc. Official Anal. Chem. 54, 953 (1971).Google Scholar
  209. Watts, R. R., and R. W. Storherr: II. Rapid extraction method for crops. J. Assoc. Official Anal. Chemists 48, 1158 (1965).Google Scholar
  210. Watts, R. R., and R. W. Storherr: Sweep co-distillation cleanup of milk for determination of organophos-phate and chlorinated hydrocarbon pesticides. J. Assoc. Official Anal. Chemists 50, 581 (1967).Google Scholar
  211. Westlake, W. E.: Gas chromatographic measurement and identification of pesticide residues with electron capture, microcoulometric, and electrical conductivity detectors. In R. F. Gould (ed.): Pesticides identification at the residue level. Adv. Chem. Series 104, chapt. 5 (1971).Google Scholar
  212. Westlake, W. E., and F. A. Gunther: Advances in gas chromatographic detectors illustrated from applications to pesticide residue evaluations. Residue Reviews 18, 175 (1967).PubMedGoogle Scholar
  213. Westlake, W. E., M. Ittig, and F. A. Gunther: Determination of m-sec-butylphenyl N-methyl-N-thiophenylcarbamate(RE-11775) in water, soil, and vegetation. Bull. Environ. Contam. Toxicol 8, 109 (1972).PubMedGoogle Scholar
  214. Wheeler, L., and A. Strother: Chromatography of N-methylcarbamates in the gaseous phase. J. Chromatog. 45, 362 (1969).Google Scholar
  215. Whitehurst, W. E., E. T. Bishop, F. E. Critchfield, G. Gyrisco, E. W. Huddles-ton, H. Arnold, and D. J. Lisk: The metabolism of Sevin in dairy cows. J. Agr. Food Chem. 11, 167 (1963).Google Scholar
  216. Whitlock, L. R., S. Siggia, and J. E. Smola: Spectrophotometric analysis of phenols and of sulfonates by formation of an azo dye. Anal. Chem. 44, 532 (1972).Google Scholar
  217. Williams, I. H.: Carbamate insecticide residues in plant materials: Determination by gas chromatography. Residue Reviews 38, 1 (1971).PubMedGoogle Scholar
  218. Williams, I. H., and M. J. Brown: Determination of carbofuran and 3-hydroxycarbofuran residues in small fruits. J. Agr. Food Chem. 21, 399 (1973).Google Scholar
  219. Williams, S., and S. W. Cook: Pesticide residues. Anal. Chem. 39, 142R (1967).PubMedGoogle Scholar
  220. Wisniewski, J. V.: Sample decomposition during analysis. Gas chromatography of aromatic carbamates. Facts and Methods Sci. Res. 7, 5 (1966).Google Scholar
  221. Woodham, D. W., R. G. Reeves, and R. R. Edwards: Total toxic aldicarb residues in weeds, grasses, and wildlife from the Texas high plains following a soil treatment with the insecticide. J. Agr. Food Chem. 21, 604 (1973).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1975

Authors and Affiliations

  • Edwin D. Magallona
    • 1
  1. 1.Department of Entomology, College of AgricultureUniversity of the Philippines at Los BañosLagunaPhilippines

Personalised recommendations