Automation in the pesticide analytical laboratory

  • Daniel E. Ott
Part of the Residue Reviews book series (RECT, volume 55)

Abstract

Hundreds of thousands of samples are routinely analyzed for pesticide residues annually in the United States alone. The result has been an acute shortage of analytical personnel adequately trained in this exacting area (Gunther 1962). One solution which was suggested (Gunther and Ott 1966 a and b) to help alleviate this problem was to automate the major and basic routine residue screening methods to the point where less well-trained personnel can operate the required instrumentation. The available skilled analysts can then be partially freed to devote more of their time to those incisive analytical efforts always associated with aberrant samples and also to the ever-increasing evaluative residue programs required under current legislative restrictions imposed to maintain quality in our air, food, fiber, and water supplies. For example, the problem of establishing realistic values of “acceptable daily intakes” for man for pesticide residues and food additives, often necessitating total diet studies which involve residue investigation of large numbers of samples, has been reviewed by Lu (1973) of the World Health Organization; these values must be established for each presently used and each new pesticide chemical “to protect the health of the consumer and to facilitate international trade” (Lu 1973).

Keywords

Arsenic Cyclohexane Amylose Methylphenidate Chlorophenyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abou-Donia, M. B., and D. B. Menzel: Fish brain Cholinesterase: Its inhibition by carbamates and automatic assay. Comp. Biochem. Physiol. 21, 99 (1967).PubMedCrossRefGoogle Scholar
  2. Afghan, B. K., P. D. Goulden, and J. F. Ryan: An automated method for determination of soluble nitrogen in natural waters. Adv. Automat. Anal., Technicon Internat. Congress 1970, 2, 291 (1971).Google Scholar
  3. Afghan, B. K., P. D. Goulden, and J. F. Ryan: Automated method for determination of nitrilotriacetic acid in natural water, detergents, and sewage samples. Anal. Chem. 44, 354 (1972).PubMedCrossRefGoogle Scholar
  4. Aker, N. L., S. H. Schanderl, and N. C. Leeling: Gel permeation cleanup for malathion in wheat, using a non-ionic, cross-linked polystyrene polymer. J. Assoc. Official Anal. Chemists 51, 888 (1968).Google Scholar
  5. Alber, L. L.: A small laboratory computer in a District laboratory. FDA By-Lines 1, 147(1970).Google Scholar
  6. Alber, L. L., and M. W. Overton: Individual tablet assay program for a small computer. J. Assoc. Official Anal. Chemists 54, 1449 (1971).Google Scholar
  7. Alber, L. L., M. W. Overton, and D. E. Smith: GLC data acquisition, using a small digital computer. FDA By-Lines 2, 1, (1971 a).Google Scholar
  8. Alber, L. L., M. W. Overton, and D. E. Smith: Gas-liquid chromatographic assay for salicylamide, acetaminophen, and caffeine mixtures, using on-line, computerized real-time data acquisition. J. Assoc. Official Anal. Chemists 54, 620 (1971 b).Google Scholar
  9. Archimbaud, M., and M. R. Bertrand: Determination of bromides in water. Chim. Anal. (Paris) 52, 531 (1970).Google Scholar
  10. Archimbaud, M., and M. R. Bertrand: Determination of bromides in water. Chem. Abstr. 73, 28695m (1970).Google Scholar
  11. Armstrong, F. A. J., and J. F. Uthe: Semi-automated determination of mercury in animal tissue. Atomic Abs. Newsletter 10, 101 (1971).Google Scholar
  12. Ashley, M. G.: CIPAC Symposium, Brunswick, Germany (1968).Google Scholar
  13. Askew, J., J. H. Růžička, and B. B. Wheals: A general method for the determination of organophosphorus pesticide residues in river waters and effluents by gas, thin-layer, and gel chromatography. Analyst 94, 275 (1969).PubMedCrossRefGoogle Scholar
  14. Association of Official Agricultural Chemists: Official methods of analysis, 10th Ed., p. 117. Assoc. Official Agr. Chemists, Wash., D. C. (1965).Google Scholar
  15. Ayers, C. W.: An automated steam distillation-ultra violet absorption method for the determination of nicotine alkaloids in tobacco and smoke. Automat. Anal. Chem., Technicon Symp. 1966, 2, 107 (1967).Google Scholar
  16. Bailey, B. W., and F. C. Lo: Automated method for determination of mercury. Anal. Chem. 43, 1525 (1971).PubMedCrossRefGoogle Scholar
  17. Bakalyar, S. R.: Using UV detectors in liquid chromatography. Amer. Lab. 3(6), 29 (1971).Google Scholar
  18. Barnett, W. P.: Computer aided flame spectroscopy. Atomic Abs. Newsletter 9, 6 (1970).Google Scholar
  19. Baunok, I., and H. Geissbühler: Specific determination of urea herbicide residues by EC gas chromatography after hydrolysis and iodine derivative formation. Bull. Environ. Contam. Toxicol. 3, 7 (1968).CrossRefGoogle Scholar
  20. Beckwith, D. C.: Computerization—A planned expansion. Amer. Lab. 5(2), 77 (1973).Google Scholar
  21. Belisle, J., C. D. Green, and L. D. Winter: Sample decomposition via flow-through oxygen flask combustion. Anal. Chem. 40, 1006 (1968).CrossRefGoogle Scholar
  22. Birks, L. S.: X-ray absorption and emission. Anal. Chem. 44(5), 557 R (1972).CrossRefGoogle Scholar
  23. Biros, F. J.: Recent applications of mass spectrometry and combined gas chromatography-mass spectrometry to pesticide residue analysis. Residue Reviews 40, 1 (1971).PubMedGoogle Scholar
  24. Bleidner, W. E., H. M. Baker, M. Levttsky, and W. K. Lowen: Determination of 3-(p-chlorophenyl)-1,1-dimethylurea in soils and plant tissue. J. Agr. Food Chem. 2, 476 (1954).CrossRefGoogle Scholar
  25. Bonelli, E. J.: GC/MS/Computer analysis to identify water pollutants. Finnigan Spectra (Finnigan Corp.) 1(1), 1 (1971 a).Google Scholar
  26. Bonelli, E. J.: Computer-controlled GC/MS for the analysis of polychlorinated biphenyls. Amer. Lab. 3(2), 27 (1971b).Google Scholar
  27. Bonelli, E. J.: Gas chromatograph/mass spectrometer techniques for determination of interferences in pesticide analysis. Anal. Chem. 44, 603 (1972).PubMedCrossRefGoogle Scholar
  28. Bourke, J. B., G. Loftus, and D. J. Lisk: A pesticide residue data information retrieval system. J. Agr. Food Chem. 20, 1275 (1972).CrossRefGoogle Scholar
  29. Boutin, D., and J. Brodeur: An automated method for the determination of pseudo-cholinesterase. Clin. Biochem. 2, 187 (1969).CrossRefGoogle Scholar
  30. Boutin, D., and J. Brodeur: An automated method for simultaneous determination of serum pseudocholinesterase activity, dibucaine number, and fluoride number. Adv. Automat. Anal., Technicon Internat. Congress 1969, 1, 35 (1970).Google Scholar
  31. Brandt, M. K.: A system for automatic TLC. Amer. Lab. 4(6), 69 (1972).Google Scholar
  32. Bratton, A. C, and E. K. Marshall, Jr.: A new coupling component for sulfanilamide determination. J. Biol. Chem. 128, 537 (1939).Google Scholar
  33. Briggs, P., D. Dix, D. Glover, and R. Kleinman: A multi-instrument data acquisition system for use with mass spectrometry. Amer. Lab. 4(9), 57 (1972).Google Scholar
  34. Browett, E. V., and R. Moss: Manual and semi-automatic methods for the determination of the lead content of urine. Analyst 90, 715 (1965).PubMedCrossRefGoogle Scholar
  35. Brown, P. R.: High pressure liquid chromatography biochemical and biomedical applications. New York: Academic Press (1972).Google Scholar
  36. Burlingame, A. L., and G. A. Johanson: Mass spectrometry. Anal. Chem. 44(5), 337 R (1972).CrossRefGoogle Scholar
  37. Burns, D. A., L. R. Snyder, and H. J. Adler: Total automation of the analysis of drugs of abuse: A preliminary report. Adv. Automat. Anal., Technicon Internat. Congress 1972, 6, 23 (1973).Google Scholar
  38. Campbell, E. J.: Personal communication (1967).Google Scholar
  39. Campbell, W. J., and J. V. Gilfrich: X-ray absorption and emission. Anal. Chem. 42(5), 248 R (1970).CrossRefGoogle Scholar
  40. Cardenas, R. R., Jr., and A. H. Molof: Nitrification studies on a continuous flow river model using automated analysis. Adv. Automat. Anal., Technicon Internat. Congress 1970, 2, 286 (1971).Google Scholar
  41. Carr, D.: New LC-UV combination provides multi-wavelength detection in high performance liquid chromatography (HPLC). Varían Instrument Applications 7(1), 14 (1973).Google Scholar
  42. Casapieri, P., R. Scott, and E. A. Simpson: The determination of cyanide ions in water and effluents by an Auto Analyzer procedure. Anal. Chim. Acta 49, 188 (1970).CrossRefGoogle Scholar
  43. Cassidy, R. M., and R. W. Frei: A fluorescence detector for high-speed liquid chromatography. J. Chromatogr. 72, 293 (1972).CrossRefGoogle Scholar
  44. Cavagnol, J. C.: Analytical studies of Di-Syston formulations. J. Assoc. Official Anal. Chemists 55, 918 (1972).Google Scholar
  45. Cassidy, R. M., and T. D. Talbott: Preliminary report of an automated determination of Guthion® by the copper chelate method. Automat. Anal. Chem., Technicon Symp. 1966, 1, 160 (1967).Google Scholar
  46. Cerimele, B. J., D. C. Clapp, G. C. Cokinos, B. D. Obermeyer, and R. L. Wolen: Computerized automation in acquisition and processing of patterns from high-pressure ion-exchange chromatography. Clin. Chem. 18, 744 (1972).PubMedGoogle Scholar
  47. Cerimele, B. J., D. C. Clapp, G. C. Cokinos, B. D. Obermeyer, and R. L. Wolen: Computerized automation in acquisition and processing of patterns from high-pressure ion-exchange chromatography. Chem. Abstr. 77, 123505r (1972).Google Scholar
  48. Chromatronix: Pesticide residue analysis. Liquid chromatography application No. 9 (1972 a)Google Scholar
  49. Chromatronix: 3100 Chromatograph, p. 3. Bull. CHH 772 (1972 b).Google Scholar
  50. Cohen, C. J., W. R. Betker, D. M. Wasleski, and J. C. Cavagnol: Analysis of Guthion insecticide. J. Agr. Food Chem. 14, 315 (1966).CrossRefGoogle Scholar
  51. Conlon, R. D.: Liquid chromatography detectors. Anal. Chem. 41(4), 107 A (1969).CrossRefGoogle Scholar
  52. Cooper, J. W.: The computer and signal averager in the laboratory. Criteria for decisions. Amer. Lab. 4(9), 10 (1972).Google Scholar
  53. Cullen, L. F., M. P. Brindle, and G. J. Papariello: Automated Polarographic analysis. Adv. Automated Anal., Technicon Internat. Congress 1972 9, 9 (1973).Google Scholar
  54. Dagnall, R. M., G. F. Kirkbright, T. S. West, and R. Wood: Multi-channel atomic fluorescence and flame photometric determination of calcium, copper, magnesium, manganese, potassium, and zinc in soil extracts. Anal. Chem. 43, 1765(1971).CrossRefGoogle Scholar
  55. Davidson, J., J. Mathieson, and A. W. Boyne: The use of automation in determining nitrogen by the Kjeldahl method, with final calculations by computer. Analyst 95, 181 (1970).PubMedCrossRefGoogle Scholar
  56. Delves, H. T., and P. Vinter: Semi-automatic determination of lead in whole blood. J. Clin. Pathol. 19, 504 (1966).PubMedCrossRefGoogle Scholar
  57. Dessy, R. E., and D. G. Larsen: Minicomputers: Focus of lab revolution. Chem. Eng. News 49(52), 42 (1971).CrossRefGoogle Scholar
  58. Docherty, A. C.: Automatic sampling and analysis of compound fertilizers. Automat. Anal. Chem., Technicon Symp. 1967, 1, 265 (1968).Google Scholar
  59. Dubsky, H.: A disc detector for liquid chromatography. J. Chromatogr. 71, 395 (1972).CrossRefGoogle Scholar
  60. Du Pont Instruments: The analysis of carbaryl and its major hydrolysis product 1-naphthol in plant extract. Chromatographic Methods 820M7, Feb. 13 (1970).Google Scholar
  61. Du Pont Instruments: Model 830 Liquid Chromatograph. Product Bull. 830PB1, Sept. (1971).Google Scholar
  62. Dupre, C., J. M. Gill, and J. Hubbard: G. C. integrator time-share automation performance and payout. Vidar Autolab (Mountain View, CA) Tech. Bull. 100–70 (1970).Google Scholar
  63. Dupre, C., J. M. Gill, and J. Hubbard: A new program for GC (gas chromatographic) data reduction. Amer. Lab. 3(2), 59 (1971).Google Scholar
  64. Eberle, D., D. Naumann, and A. Wüthrich: Automation in der Gaschromatographie. Entwicklung eines Geräts zur automatischen gaschromatographischen Bestimmung von Herbizid- und Insektizid-Rückständen und -Formulierungen. J. Chromatogr. 45, 351 (1969).PubMedCrossRefGoogle Scholar
  65. Edelman, G. M., and W. E. Gall: Cascade chromatography and automated multidimensional fractionation. Proc. Nat. Acad. Sci. USA 68, 1444 (1971).PubMedCrossRefGoogle Scholar
  66. Edstrom, T., and B. A. Petro: Gel permeation chromatographic studies of poly-nuclear aromatic hydrocarbon materials. J. Polymer Sci. C, No. 21, 171 (1968).Google Scholar
  67. Eiduson, H. P. (Chairman): Report of the Committee on Automated Methods. J. Assoc. Official Anal. Chemists 55, 368 (1972).Google Scholar
  68. Eiduson, H. P., and W. M. Hoffman: Magic words—Automated methods of analysis. J. Assoc. Official Anal. Chemists 50, 1021 (1967).Google Scholar
  69. Elkins, J. C.: Selecting a computer system for laboratory automation. Amer. Lab. 4(9), 37 (1972).Google Scholar
  70. Epstein, J., R. W. Rosenthal, and R. J. Ess: Use of γ-(4-nitrobenzyl)pyridine as analytical reagent for ethylenimines and alkylating agents. Anal. Chem. 27, 1435 (1955).CrossRefGoogle Scholar
  71. Eveleigh, J. W., H. J. Adler, and A. S. Reichler: An automated amino acid analysis system. Automat. Anal. Chem., Technicon Symp. 1967, 1, 311 (1968).Google Scholar
  72. Eynard, H., M. Thomas-Colignon, J. Ratelade, and R. P. Martin: Automatic device for voltammetric measurements. Bull. Soc. Chim. Fr. 11, 3865 (1970).Google Scholar
  73. Eynard, H., M. Thomas-Colignon, J. Ratelade, and R. P. Martin: Automatic device for voltammetric measurements. Chem. Abstr. 74, 49044j (1971).Google Scholar
  74. Fabbi, B. P., and L. F. Espos: X-ray fluorescence determination of arsenic, antimony, nickel, rubidium, scandium, vanadium, and zinc in rock standards and other rock samples. U.S. Geol. Surv., Prof. Paper No. 800B, B147 (1972).Google Scholar
  75. Fabbi, B. P., and L. F. Espos: X-ray fluorescence determination of arsenic, antimony, nickel, rubidium, scandium, vanadium, and zinc in rock standards and other rock samples. Chem. Abstr. 77, 53993w (1972).Google Scholar
  76. Faust, S. D., and N. E. Hunter: Chemical methods for the detection of aquatic herbicides. J. Amer. Water Works Assoc. 8, 1028 (1965).Google Scholar
  77. Feller, B., W. A. Boyd, B. E. Di Dario, and A. Ferrari: Use of continuous solvent evaporation in the automated analysis of poultry feed additives (analysis of Amprol Plus in poultry feed). Automat. Anal. Chem., Technicon Symp. 1966, 1, 206 (1967).Google Scholar
  78. Finnigan Corp.: Analytical chemistry at sea. Finnigan Spectra 2(3), 1 (1972).Google Scholar
  79. Fishman, M. J., and D. E. Erdmann: Automation of atomic absorption analyses. Atomic Abs. Newsletter 9, 88 (1970).Google Scholar
  80. Fleet, B., S. Win, and T. S. West: The determination of calcium and magnesium. Automat. Anal. Chem., Technicon Symp. 1967, 2, 355 (1968).Google Scholar
  81. Fosslien, E.: An improved automatic lipid extraction and thin-layer spot application system. J. Chromatogr. 63, 59 (1971).PubMedGoogle Scholar
  82. Fosslien, E., F. Musil, D. Domizi, L. Blickenstaff, and J. Lumeng: A computer-controlled scraper for standard thin-layer plates. J. Chromatogr. 63, 131 (1971).PubMedCrossRefGoogle Scholar
  83. Fowler, B., and A. J. Robins: Methods for the quantitative analysis of sulfur containing compounds in physiological fluids. J. Chromatogr. 72, 105 (1972).PubMedCrossRefGoogle Scholar
  84. Fowler, P. R., and J. M. McKenzie: Detection of mild poisoning by organophosphorus and carbamate pesticides using an automated method of Cholinesterase activity. Automat. Anal. Chem., Technicon Symp. 1966, 1, 155 (1967).Google Scholar
  85. Frazer, J. W.: Design procedures for chemical automation. Amer. Lab. 5(2), 21 (1973).Google Scholar
  86. Fricke, F. L.: Analysis of drugs in pharmaceuticals using simple extractions and semiautomated gas-liquid chromatography. J. Assoc. Official Anal. Chemists 55, 1162 (1972).Google Scholar
  87. Friestad, H. O.: Determination of linuron in soil by application of an automated diazotization and coupling procedure. Bull. Environ. Contam. Toxicol. 2, 236 (1967).CrossRefGoogle Scholar
  88. Friestad, H. O.: Automated colorimetric determination of residues of parathion and similar compounds in plant extracts. IUPAC 2nd Internat. Congress Pest. Chem., Tel Aviv, Israel (1971).Google Scholar
  89. Friestad, H. O.: Rapid screening method, including automated colorimetry, for low residue levels of linuron and/or chlorpropham in vegetables. J. Assoc. Official Anal. Chemists 57, 221 (1974).Google Scholar
  90. Friestad, H. O., D. E. Ott, and F. A. Gunther: Automated colorimetric microdetermination of phenols by oxidative coupling with 3-methyl-2-benzothiazolinone hydrazone. Anal. Chem. 41, 1750 (1969).PubMedCrossRefGoogle Scholar
  91. Fujiwara, S., Y. Umezawa, and T. Kugo: On-line polarograph and its application to the analysis of fluctuating i-t [current-time] curves. Bunseki Kagaku 19, 1119 (1970).CrossRefGoogle Scholar
  92. Fujiwara, S., Y. Umezawa, and T. Kugo: On-line polarograph and its application to the analysis of fluctuating i-t [current-time] curves. Chem. Abstr. 73, 126562k (1970).Google Scholar
  93. Gabler, R. C., Jr., R. E. Brown, and J. G. Haymes: A computer program for AA data processing. Amer. Lab. 3(2), 10 (1971).Google Scholar
  94. Gage, J. C., and M. H. Litchfield: An automated determination of Cholinesterase in micro-samples and in low activity media. Automat. Anal. Chem., Technicon Symp. 1966, 2, 395 (1967).Google Scholar
  95. Gardner, A. M.: A comparative survey of enzyme inhibition methods used in pesticide residue analysis. FDA By-Lines 2, 173 (1972).Google Scholar
  96. Gehrke, C. W., L. L. Wall, Sr., and J. S. Absheer: Preliminary report on the GEHRKE-WALL automated nitrogen methods for feeds. Adv. Automat. Anal., Technicon Internat. Congress 1972, 7, 25 (1973).Google Scholar
  97. Gehrke, C. W., L. L. Wall, Sr., and J. S. Absheer: see also: Automated nitrogen method for feeds. J. Assoc. Official Anal. Chemists 56, 1096 (1973).Google Scholar
  98. Getz, M. E.: An automatic spotter for quantitative thin-layer and paper chromatographic analyses by optical scanning. J. Assoc. Official Anal. Chemists 54, 982 (1971).Google Scholar
  99. Gore, R. C., R. W. Hannah, S. C. Pattacini, and T. J. Porro: Infrared and ultraviolet spectra of seventy-six pesticides. J. Assoc. Official Anal. Chemists 54, 1040 (1971).Google Scholar
  100. Goulden, P. D., and B. K. Afghan: An automated method of determining mercury in water. Adv. Automat. Anal, Technicon Internat. Congress 1970, 2, 317 (1971).Google Scholar
  101. Goulden, P. D., and P. Brooksbank: Determination of nanogram quantities of simple and complex cyanides in water. Anal. Chem. 44, 1845 (1972).PubMedCrossRefGoogle Scholar
  102. Gouw, T. H. (Ed.): Guide to modern methods of instrumental analysis. New York: Wiley-Interscience (1972).Google Scholar
  103. Gregges, A. R., B. F. Dowden, E. M. Barrall II, and T. T. Horikawa: Modification of a gel permeation Chromatograph for automatic sample injection and on-line computer data recording. Separation Sci. 5, 731 (1970).CrossRefGoogle Scholar
  104. Grey, P.: Dedicated minicomputers in the laboratory. Amer. Lab. 5(2), 67 (1973).Google Scholar
  105. Groff, W. A., L. A. Mounter, and V. M. Sim: A multichannel analytical system for continuous monitoring of blood Cholinesterase. Automat. Anal. Chem., Technicon Symp. 1966, 1, 498 (1967).Google Scholar
  106. Gudzinowicz, B. J., and V. J. Luciano: Analysis of organo-metallic fungicides and related compounds by atomic absorption spectroscopy. J. Assoc. Official Anal. Chemists 49, 1 (1966).Google Scholar
  107. Guilbault, G. G.: Enzymic methods of analysis. CRC, Critical Reviews of Anal. Chem. 1, 377 (1970).CrossRefGoogle Scholar
  108. Guilbault, G. G., M. H. Sadar, S. S. Kuan, and D. Casey: Enzymatic methods of analysis. Trace analysis of various pesticides with insect cholinesterases. Anal. Chim. Acta 52, 75 (1970).PubMedCrossRefGoogle Scholar
  109. Gunther, F. A.: Instrumentation in pesticide residue determinations. Adv. Pest Control Res. 5, 191 (1962).Google Scholar
  110. Gunther, F. A., and R. C. Blinn: Analysis of insecticides and acaricides. New York: Interscience (1955).Google Scholar
  111. Gunther, F. A., and D. E. Ott: Forced volatilization cleanup for gas chromatographic assay of pesticide residues. Bull. Environ. Contam. Toxicol. 1, 237 (1966).CrossRefGoogle Scholar
  112. Gunther, F. A., and D. E. Ott: Pesticide residue analysis and screening with the Auto Analyzer. Automat. Anal. Chem., Technicon Symp. 1965, p. 96 (1966 a).Google Scholar
  113. Gunther, F. A., and D. E. Ott: Automated pesticide residue analysis and screening. Residue Reviews 14, 12 (1966 b).PubMedGoogle Scholar
  114. Gunther, F. A., and D. E. Ott: Rapid automated determination of biphenyl in citrus fruit rind. Analyst 91, 475 (1966 c).PubMedCrossRefGoogle Scholar
  115. Guth, J. A., and G. Voss: Automated colorimetric procedure for the determination of total and unchanged urea herbicide residues in soil. Weed Res. 11, 111 (1971).CrossRefGoogle Scholar
  116. Guth, J. A., G. Voss, and L. Ebner: Der Abbau des Getreideherbizids Dicuran® in Böden, bestimmt durch zwei verschiedene Biotests (Avena, Chlorella) und eine automatische colorimetrische Methode. Z. Pflanzenkrankh. Pflanzenschutz Suppl. 5, 51 (1970).Google Scholar
  117. Hadley, F. C.: A partly automated method for the determination of lead in biological fluids. Automat. Anal. Chem., Technicon Symp. 1965, p. 383 (1966).Google Scholar
  118. Hahn, H. L., and D. C. Manning: Background correction in atomic absorption spectroscopy. Amer. Lab. 4(8), 51 (1972).Google Scholar
  119. Hatch, W. R., and W. L. Ott: Determination of sub-microgram quantities of mercury by atomic absorption spectrophotometry. Anal. Chem. 40, 2085 (1968).CrossRefGoogle Scholar
  120. Heath, R. L., R. S. Frankel, R. J. Gehrke, and J. Barstow: Energy dispersive X-ray spectrometry with dedicated computer data reduction. Analysis Instrumentation 9, F-2 (1971).Google Scholar
  121. Henneberg, D., K. Casper, E. Ziegler, and B. Weimann: Computer-aided analysis of organic mass spectra. Angew. Chem., Internat. ed. 11, 357 (1972).CrossRefGoogle Scholar
  122. Henry, R. A., J. A. Schmitt, J. F. Dieckman, and F. J. Murphey: Combined high speed liquid chromatography and bioassay for the evaluation and analysis of an organophosphorus larvicide. Anal. Chem. 43, 1053 (1971).PubMedCrossRefGoogle Scholar
  123. Herlicska, E., A. C. Brown, and J. Hendrickson: Chromatography on-line computer system. Amer. Lab. 3(5), 29 (1971).Google Scholar
  124. Hestrin, S.: The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine, and its analytical application. J. Biol. Chem. 180, 249 (1949).PubMedGoogle Scholar
  125. Hettinger, J. D., J. R. Hubbard, J. M. Gill, and L. A. Miller: A new computing integrator for chromatography. J. Chromatogr. Sci. 9, 710 (1971).Google Scholar
  126. Hewlett-Packard: GC plays key role in controlling use of drugs at Munich Olympic Games. Anal. Adv. (H-P), p. 1, Sept. (1972).Google Scholar
  127. Hewlett-Packard: Pesticide analysis made easier, more automatic with series 5700 electron capture GC’s. Anal. Adv. (H-P), p. 3, Jan. 1973 a).Google Scholar
  128. Hewlett-Packard: New laboratory data system features continuous A/D conversion. Anal. Adv. (H-P),p. 1, Jan. (1973 b).Google Scholar
  129. Hoffman, E. G., W. Stemple, G. Schroft, B. Weimann, E. Ziegler, and J. Brandt: Use of a computer in nuclear magnetic resonance spectroscopy. Angew. Chem., Internat. ed. 11, 375 (1972).CrossRefGoogle Scholar
  130. Horgan, D. F., Jr.: High-speed liquid chromatography. In G. Zweig (Ed.): Analytical methods for pesticides and plant growth regulators. Vol. VII, p. 89. New York and London: Academic Press (1973).Google Scholar
  131. Horgan, D. F., Jr., W. A. Dark, and K. J. Bombaugh: Analytical liquid chromatography the useful approach to pesticide analysis. Waters Associates Inc. Tech. Rept. 19531 (1970).Google Scholar
  132. Horler, D. F.: Gel filtration on Sephadex® LH-20. A general cleanup method for pesticides extracted from grain. J. Sci. Food Agr. 19, 229 (1968).CrossRefGoogle Scholar
  133. Hörmann, W. D., G. Formica, D. O. Eberle, and K. Ramsteiner: Automated instrumental method for the extraction, cleanup, and GLC determination of triazine herbicides in soil. Presented 85th Meeting, Assoc. Official Anal. Chemists, Washington, D. C. (1971).Google Scholar
  134. Hörmann, W. D., G. Formica, K. Ramsteiner, and D. O. Eberle: Automated method for extraction, cleanup, and gas chromatographic determination of triazine herbicides in soil. J. Assoc. Official Anal. Chemists, 55, 1031 (1972).Google Scholar
  135. Humiston, C. G., and G. J. Wright: A new automated method for the determination of Cholinesterase activity. Abstract only: Clin. Chem. 11, 802 (1965).Google Scholar
  136. Humiston, C. G., and G. J. Wright: An automated method for the determination of Cholinesterase activity. Toxicol. Applied Pharmacol. 10, 467 (1967).CrossRefGoogle Scholar
  137. Hunt, E. P.: Use of a 3-channel Auto Analyzer® I to measure enzymes and other chemical constituents in the blood of fish. Adv. Automat. Anal., Technicon Internat. Congress 1970, 2, 165 (1971).Google Scholar
  138. Ives, N. F., and L. Giuffrida: Liquid chromatography of polycyclic aromatic hydrocarbons. J. Assoc. Official Anal. Chemists 55, 757 (1972).Google Scholar
  139. Jackson, H. W.: Gas chromatography automation by integrator and time share. J. Chromatogr. Sci. 9, 706 (1971).Google Scholar
  140. Joynes, P. L., and R. J. Maggs: The monitoring of liquid chromatographic columns: A new approach. J. Chromatogr. Sci. 8, 427 (1970).Google Scholar
  141. Kabadi, B. N.: Semi-automated fluorometric determination of Rauwolfia alkaloid. Adv. Automat. Anal., Technicon Internat. Congress 1970, 2, 247 (1971).Google Scholar
  142. Kahn, L., and C. H. Wayman: Apparatus for continuous extraction of nonpolar compounds from water applied to determination of chlorinated pesticides and intermediates. Anal. Chem. 36, 1340 (1964).CrossRefGoogle Scholar
  143. Karasek, F. W.: GC/MS/Computers. Anal. Chem. 44(4), 32 A (1972).CrossRefGoogle Scholar
  144. Kauffman, J. M.: Automated determination of arsanilic acid in feeds and other arsenical compounds. Automat. Anal. Chem., Technicon Symp. 1966, 1, 152 (1967).Google Scholar
  145. Kawasaki, E. H., O. T. Leong, and T. M. Olcott: Application of the Auto Analyzer for atmospheric trace contaminent analysis in closed environmental systems. Automat. Anal. Chem., Technicon Symp. 1967, 1, 435 (1968).Google Scholar
  146. Keay, J., P. M. A. Menage, and G. A. Dean: Automated method for the micro-determination of sulfur. Analyst 97, 897 (1972).CrossRefGoogle Scholar
  147. Kerner, I., M. Goto, and F. Korte: Zur Frage der automatischen Trendbestimmung von halogenhaltigen organischen Umweltchemikalien in Trink- und Abwässern. Internat. J. Environ. Anal. Chem. 2, 57 (1972).CrossRefGoogle Scholar
  148. Kevex Corp.: Some recent developments, p. 5, Oct. 16 (1972).Google Scholar
  149. Kirkland, J. J.: High-speed liquid chromatography with controlled surface porosity supports. J. Chromatogr. Sci. 7, 7 (1969 a).Google Scholar
  150. Kirkland, J. J.: Techniques for high-performance liquid-liquid and ion exchange chromatography with controlled surface porosity column packings. J. Chromatogr. Sci. 7, 361 (1969b).Google Scholar
  151. Kirkland, J. J.: Controlled surface porosity supports for high speed gas and liquid chromatography. Anal. Chem. 41, 218 (1969 c).CrossRefGoogle Scholar
  152. Kirkland, J. J.: Columns for modern analytical chromatography. Anal. Chem. 43(12), 36 A (1971a).CrossRefGoogle Scholar
  153. Kirkland, J. J.: (Ed.): Modern practice of liquid chromatography. New York: Wiley-Inter-science (1971b).Google Scholar
  154. Klopfenstein, C. E.: Laboratory automation via hierarchical computers. J. Chromatogr. Sci. 10, 22 (1972).Google Scholar
  155. Klopfenstein, C. E.: A planned data system. Amer. Lab. 5(2), 53 (1973).Google Scholar
  156. Koen, J. G., and J. F. K. Huber: A rapid method for residue analysis by column liquid chromatography with Polarographic detection. Anal. Chim. Acta. 51, 303 (1970).PubMedCrossRefGoogle Scholar
  157. Koen, J. G., and J. F. K. Huber, H. Poppe, and G. den Boef: Design of a Polarographic detector for high speed, high efficiency liquid chromatography in columns and its evaluation for the quantitative analysis of pesticides. J. Chromatogr. Sci. 8, 192 (1970).Google Scholar
  158. Kramer, J. P.: Acute parathion poisoning in an adolescent. Delaware Med. J. 44(2), 31(1972).PubMedGoogle Scholar
  159. Krejčí, M., and N. Pospisilova: Experimental comparison of some detectors used in high-efficiency liquid chromatography. J. Chromatogr. 73, 105 (1972).CrossRefGoogle Scholar
  160. Krzeminski, L. F., B. L. Cox, and A. W. Neff: Separation and identification of carbon-14 diphenamid metabolites using chromatographic techniques. Anal. Chem. 44, 126(1972).CrossRefGoogle Scholar
  161. Lauer, G., and R. A. Osteryoung: A general purpose laboratory data acquisition and control system. Anal. Chem. 40(10), 30 A (1968).Google Scholar
  162. Leegwater, D. C., and H. W. van Gend: An automated differential screening method for organophosphorus pesticides. J. Sci. Food Agr. 19, 513 (1968).CrossRefGoogle Scholar
  163. Leitch, R. E.: Precise quantitative analysis with a stable, high-speed liquid-liquid chromatography column. J. Chromatogr. Sci. 9, 531 (1971).Google Scholar
  164. Lento, H. G.: Automated Polarographie analysis. Automat. Anal. Chem., Technicon Symp. 1966, 1, 598 (1967).Google Scholar
  165. Levine, J. B., R. A. Scheidt, and V. A. Nelson: An automated micro determination of serum Cholinesterase. Automat. Anal. Chem., Technicon Symp. 1965, p. 582 (1966).Google Scholar
  166. Lichtenstein, I.: Computer time-sharing and the laboratory. Amer. Lab., Apr. (1970).Google Scholar
  167. Liebmann, S. A., D. H. Ahlstron, T. C. Creighton, G. D. Pruder, R. Avertit, and E. J. Levy: On-line elemental analysis of gas-chromatographic effluents. Anal. Chem. 44, 1411 (1972).CrossRefGoogle Scholar
  168. Lindstedt, G., and I. Skare: Microdetermination of mercury in biological samples. Part II. An apparatus for rapid automatic determination of mercury in digested samples. Analyst 96, 223 (1971).PubMedCrossRefGoogle Scholar
  169. Love, R. K., and M. E. McCoy: The automated determination of nanogram quantities of cyanide in pharmaceutical preparations. Adv. Automat. Anal., Technicon Internat. Congress 1969, 2, 239 (1970).Google Scholar
  170. Lu, F. C.: Toxicological evaluation of food additives and pesticide residues and their “acceptable daily intakes” for man: The role of WHO, in conjunction with FAO. Residue Reviews 45, 81 (1973).PubMedGoogle Scholar
  171. MacDonald, A., M. Dawson, E. Castro, R. Cunningham, J. Westhéimer, and M. J. Walsh: Automated assay of medicated feeds: Rofenaid® and ipronidazole. Adv. Automat. Anal., Technicon Internat. Congress 1970, 2, 219 (1971).Google Scholar
  172. McCall, H. G., R. W. Bovey, M. G. McCully, and M. G. Merkle: Adsorption and desorption of picloram, trifluralin, and paraquat by ionic and non-ionic exchange resins. Weed Sci. 20, 250 (1972).Google Scholar
  173. McFarren, E. F., and R. J. Lishka: The use of collaborative studies to evaluate water analysis instruments. J. Water Poll. Control Fed. 43, 67 (1971).Google Scholar
  174. McFarren, E. F., J. H. Parker, and R. J. Lishka: Water metals No. 4, Study Number 30. Report of a study conducted by Analytical Reference Service. U. S. Public Health Service Publ. 999 UIH-8 (1968).Google Scholar
  175. Maggs, R. J: Use of the electron capture detector as a monitor for liquid Chromatograph columns. Column 2(4), 5 (1968).Google Scholar
  176. Maggs, R. J.: Use of the electron capture detector as a monitor for liquid Chromatograph columns. Chem. Abstr. 73, 83626q (1970).Google Scholar
  177. Maggs, R. J.: Liquid-liquid chromatography detection system. Chem. Abstr. 71, P 116905u (1969).Google Scholar
  178. Malaiyandi, M., and J. P. Barrette: Wet oxidation method for the determination of submicrogram quantities of mercury in cereal grains. J. Assoc. Official Anal. Chemists 55, 953 (1972).Google Scholar
  179. Malmstadt, H. V., and E. Cordos: Automated AF (atomic fluorescence) spectrometer for rapid multielement determinations. Amer. Lab. 4(8), 35 (1972).Google Scholar
  180. Malmstadt, H. V., and E. Cordos, and C. J. Delaney: Automated reaction-rate methods of analysis. Anal. Chem. 44(12), 26 A (1972 a).Google Scholar
  181. Malmstadt, H. V., C. J. Delaney, and E. A. Cordos: Reaction-rate methods of chemical analysis. CRC: Critical Reviews of Anal. Chem. 2, 559 (1972 b).CrossRefGoogle Scholar
  182. Mathiesen, J. M.: We live in a lead lined world. Finnigan Spectra 2(3), 3 (1972).Google Scholar
  183. Maylath, R. E.: Automatic surveillance of New York’s waters. Analysis Instrumentation 9, G-1 (1971).Google Scholar
  184. Mills, P. A., J. H. Onley, and R. A. Gaither: Rapid method for chlorinated pesticide residues in nonfatty foods. J. Assoc. J. Assoc. Official Agr. Chemists 46, 186 (1963).Google Scholar
  185. Mislan, J. P., and S. Elchuk: High sensitivity atomic absorption spectroscopy via continuous sample preconcentration: I. Continuous pre-evaporation. Automat. Anal. Chem., Technicon Symp. 1967, 1, 329 (1968).Google Scholar
  186. Mislan, J. P., and S. Elchuk: Flameless atomic absorption spectroscopy with automated microsampling. Adv. Automat. Anal., Technicon Internat. Congress 1969, 2, 315 (1970).Google Scholar
  187. Mueller, L. H.: Applications of high speed liquid chromatography in pesticide analysis. FDA By-Lines 1, 299 (1971).Google Scholar
  188. Mulla, M. S., J. O. Keith, and F. A. Gunther: Persistence and biological effects of parathion residues in waterfowl habitats. J. Econ. Entomol. 59, 1085 (1966).Google Scholar
  189. Nester/Faust Mfg. Corp.: Liquid chromatography applications bulletin, pesticides: DDT, dieldrin, methoxychlor, and 2,4-D (1971).Google Scholar
  190. Nickless, G.: Book review of “Modern practice of liquid chromatography,” J. J. Kirkland (Ed.). Analyst 97, 759 (1972).Google Scholar
  191. Noonan, D. J., and E. W. March: Performance characteristics of a new GC data system. Amer. Lab. 3(6), 55 (1971).Google Scholar
  192. Ott, D. E.: Dual simultaneous Auto Analyzer for screening some insecticide residues. A total phosphorus system and a new anticholinesterase system. J. Agr. Food Chem. 16, 874 (1968 a).CrossRefGoogle Scholar
  193. Ott, D. E.: Unpublished data (1968 b).Google Scholar
  194. Ott, D. E.: Unpublished data (1972).Google Scholar
  195. Ott, D. E.: Presented Third Internat. Congress of Pesticide Chem., Helsinki, Finland, July (1974).Google Scholar
  196. Ott, D. E.: and F. A. Gunther: Procedure for the analysis of technical grade parathion in water plants by an anticholinesterase (Auto Analyzer) method. J. Econ. Entomol. 59, 227 (1966 a).Google Scholar
  197. Ott, D. E.: and F. A. Gunther: Rapid screening for some anticholinesterase insecticide residues by automated analysis. J. Assoc. Official Anal. Chemists 49, 662 (1966 b).Google Scholar
  198. Ott, D. E.: and F. A. Gunther: Automated elution-filtration analysis of anticholinesterase organophosphorus compounds on thin layer chromatographic scrapings. J. Assoc. Official Anal. Chemists 49, 669 (1966 c).Google Scholar
  199. Ott, D. E.: and F. A. Gunther: Automated determination of orthophosphate: An application designed especially for the combusted product of organophosphorus pesticide residues. Bull. Environ. Contam. Toxicol. 1, 90 (1966 d).CrossRefGoogle Scholar
  200. Ott, D. E.: and F. A. Gunther: Automated analysis of organophosphorus insecticides by wet digestion-oxidation and colorimetric determination of the derived orthophosphate. J. Assoc. Official Anal. Chemists 51, 697 (1968 a).Google Scholar
  201. Ott, D. E.: and F. A. Gunther: Automated wet chemical microcoulometric analyzer for chloride ion: Decomposition and determination of organochlorine pesticides with sodium biphenyl reagent. Paper A 35, 155th Meeting, Amer. Chem. Soc., San Francisco, CA, Apr. (1968 b).Google Scholar
  202. Ott, D. E.: and F. A. Gunther: Automated wet chemical microcoulometric analyzer for chloride ion. Bull. Environ. Contam. Toxicol. 12, 161 (1974).PubMedCrossRefGoogle Scholar
  203. Ott, D. E., M. Ittig, and H. O. Friestad: Automated steam distillation and fluorometry for screening for carbaryl as 1-naplithol in fruits and vegetables. J. Assoc. Official Anal. Chemists 54, 160 (1971 a).Google Scholar
  204. Ott, D. E., G. Formica, G. F. Liebig Jr., D. O. Eberle, and F. A. Günther: Mechanized extraction and cleanup of atrazine residues in soil prior to gas chromatographic analysis. J. Assoc. Official Anal. Chemists 54, 1388 (1971 b).Google Scholar
  205. Paus, P. E.: The application of atomic absorption spectroscopy to the analysis of natural waters. Atomic Abs. Newsletter 10, 69 (1971).Google Scholar
  206. Perkin-Elmer Corp.: The Perkin-Elmer model 4A series automated atomic absorption analyzers. Completely automated systems for multi-sample preparation and analysis. Order no. L-303, Bull. MPL11665 (1965).Google Scholar
  207. Perkin-Elmer Corp.: Automated atomic absorption shows its value. Instrument News 19(2), 6 (1968).Google Scholar
  208. Perkin-Elmer Corp.: Design and performance of a gas chromatography data system. Order no. GC-175 (1971).Google Scholar
  209. Perone, S. P.: The on-line digital computer in analytical chemistry today. J. Chromatogr. Sci. 7, 714 (1969).Google Scholar
  210. Perone, S. P.: Computer applications in the chemistry laboratory—A survey. Anal. Chem. 43, 1288 (1971).CrossRefGoogle Scholar
  211. Perone, S. P., K. Ernst, and J. W. Frazer: A systematic approach to instrument automation. Amer. Lab. 5(2), 39 (1973).Google Scholar
  212. Perone, S. P., J. E. Harrar, F. B. Stephens, and R. E. Anderson: Analytical applications of an on-line digital computer in fast-sweep derivative polarography. Anal. Chem. 40, 899 (1968).CrossRefGoogle Scholar
  213. Peterson, G. V.: Low cost dedicated computer system for GC/Data processing. Anal. Adv. (Hewlett-Packard) 3(1), 1 (1970).Google Scholar
  214. Pickford, C. J., and G. Rossi: Analysis of high purity water by flameless atomic-absorption spectroscopy. Part I. The use of an automated sampling system. Analyst 97, 647 (1972).CrossRefGoogle Scholar
  215. Polesuk, J.: Detection in chromatography. Parts 1 and 2. Amer. Lab., May, p. 27 and June, p. 37 (1970).Google Scholar
  216. Porcaro, P. J., and P. Shubiak: Detection of nanogram quantities of hexachlorophene by ultraviolet liquid chromatography. Anal. Chem. 44, 1865 (1972).CrossRefGoogle Scholar
  217. Pourcel, C.: Ultraviolet photometer for liquid-phase chromatography. Description and performance. Chromatographia 4, 198 (1971).CrossRefGoogle Scholar
  218. Pourcel, C.: Ultraviolet photometer for liquid-phase chromatography. Description and performance. Chem. Abstr. 75, 71128g (1971).Google Scholar
  219. Price, J. G. W., J. C. Scott, and L. O. Wheeler: New applications of an expanded gas chromatography/computer system. J. Chromatogr. Sci. 9, 722 (1971).Google Scholar
  220. Roberts, H. H., and A. N. Baumann: Automated quality control for P2O5 in phosphate rock. Automat. Anal. Chem., Technicon Symp. 1965, p. 134 (1966).Google Scholar
  221. Rosenblatt, D. H., P. Hlinka, and J. Epstein: Use of 1,2-naphthoquinone-4-sulfonate for the estimation of ethylenimine and primary amines. Anal. Chem. 27, 1290(1955).CrossRefGoogle Scholar
  222. Růžička, J., and C. G. Lamm: A new concept of automated radiochemical analysis based upon substoichiometric separation. Talanta 15, 689 (1968).PubMedCrossRefGoogle Scholar
  223. Růžička, J., and C. G. Lamm: Automated determination of traces of mercury in biological materials by substoichiometric radioisotope dilution. Talanta 16, 157 (1969).PubMedCrossRefGoogle Scholar
  224. Růžička, J., and C. G. Lamm: Mercury residue analysis by automated isotope dilution. IUPAC 2nd Internat. Congress Pest. Chem., Tel Aviv, Israel (1971).Google Scholar
  225. Růžička, J., J. Thomson, B. B. Wheals, and N. F. Wood: The application of gel chromatography to the separation of pesticides. Part I. Organophosphorus pesticides. J. Chromatogr. 34, 14 (1968).CrossRefGoogle Scholar
  226. Sawyer, R., and L. M. Grisley: The determination of ammonia in the PPB level in solution. Automat. Anal. Chem., Technicon Symp. 1967, 1, 347 (1968).Google Scholar
  227. Schomburg, G., F. Weeke, B. Weimann, and E. Ziegler: Chromatography on-line to the Mülheim Computer System. J. Chromatogr. Sci. 9, 735 (1971).Google Scholar
  228. Schomburg, G., F. Weeke, B. Weimann, and E. Ziegler: Data processing in gas chromatography. Angew. Chem., Internat, ed. 11, 366 (1972).CrossRefGoogle Scholar
  229. Schroeder, D. L., and H. F. Walter: The time shared computer and chemical laboratory applications. J. Chromatogr. Sci. 10, 14 (1972).Google Scholar
  230. Sebesta, R. W., and G. C. Johnson Jr.: New computerized infrared substance identification system. Anal. Chem. 44, 260 (1972).CrossRefGoogle Scholar
  231. Serrone, D. M., A. A. Stein, E. A. Menegaux, M. A. Gallo, and F. Coulston: Continuous analysis of whole blood Cholinesterase in monkeys. Automat. Anal. Chem., Technicon Symp. 1965, p. 586 (1966).Google Scholar
  232. Skare, I.: Microdetermination of mercury in biological samples. Part III. Automated determination of mercury in urine, fish, and blood samples. Analyst 97, 148 (1972).PubMedCrossRefGoogle Scholar
  233. Smink, J., and D. Weingarten: Automated determination of dithiocarbamates in formulated products. CIPAC Symp., Oeiras, Portugal (1969).Google Scholar
  234. Smith, D. E.: Applications of on-line digital computers to chemical instrumentation. J. Assoc. Official Anal. Chemists. 52, 206 (1969).Google Scholar
  235. Sörensen, O., and H. Althaus: Automatische Festoffdosierung beim gaschro-matographischen Pestizidnachweis. Gewässer und Pflanzenschutzmittel, Zweites Fachgespräch, Berlin, June 14–16 (1972).Google Scholar
  236. Spielholtz, G. I., G. C. Toralballa, and R. J. Steinberg: Determination of arsenic in coal and in insecticides by atomic absorption spectroscopy. Mikrochim. Acta 6, 918 (1971).CrossRefGoogle Scholar
  237. Stack, V. T., Jr.: Water quality surveillance. Anal. Chem. 44(8), 32 A (1972).CrossRefGoogle Scholar
  238. Stalling, D. L., R. C. Tindle, and J. L. Johnson: Cleanup of pesticide and poly-chlorinated biphenyl residues in fish extracts by gel permeation chromatography. J. Assoc. Official Anal. Chemists 55, 32 (1972).Google Scholar
  239. Stanton, R. E., and A. J. McDonald: Application of automated analysis to the determination of zinc, lead, molybdenum, and nickel in extracts of soils. Chem. & Ind., p. 1406 (1961).Google Scholar
  240. Stevenson, A.: Analysis of dithiocarbamates and thiuram disulphides used in agriculture. I. Collaborative study of macro-methods available for the evaluation of technical and formulated products. J. Sci. Food Agr. 15, 509 (1964).CrossRefGoogle Scholar
  241. Stevenson, D. S.: Application of liquid-gel chromatography to the analytical characterization of pyrethrum extract. Pyrethrum Post 11(3), 90 (1972).Google Scholar
  242. Storherr, R. W., and R. R. Watts: A sweep co-distillation cleanup method for organophosphate pesticides. J. Assoc. Official Agr. Chemists 48, 1154 (1965).Google Scholar
  243. Story, M. S., and R. B. Squires: Chemical ionization and mass fragmentography— Application to PCB analysis. Finnigan Spectra (Finnigan Corp.) 2(3), 5 (1972).Google Scholar
  244. Talbott, T. D., J. C. Cavagnol, C. F. Smead, and R. T. Evans: Semiautomated analysis of granular organophosphorus pesticide formulations. J. Agr. Food Chem. 20, 959 (1972).CrossRefGoogle Scholar
  245. Technicon Corp.: Technicon Auto Analyzer® bibliography 1957/1967, Tarrytown, N. Y. (1968).Google Scholar
  246. Terranova, A. C.: Automated procedure for the determination of the aziridine moieties of N,N’-tetramethylenebis(l-aziridinecarboxamide) and other compounds containing aziridine. J. Agr. Food Chem. 17, 1047 (1969).CrossRefGoogle Scholar
  247. Terranova, A. C.: An automated procedure for analysis of busulfan in boll weevils and in fortified boll weevil diet. J. Econ. Entomol. 64, 549 (1971).Google Scholar
  248. Terranova, A. C., J. G. Pomonis, R. F. Severson, and P. A. Hermes: An automated procedure for the simultaneous measurement of total and free aziridines—A preliminary report. Automat. Anal. Chem., Technicon Symp. 1967, 1, 501 (1968).Google Scholar
  249. Thacker, L. H.: A miniature flow fluorometer for liquid chromatography. J. Chromatogr. 73, 117 (1972).CrossRefGoogle Scholar
  250. Timmer, R. B., and H. V. Malmstadt: A minicomputer-controlled uv-vis-nir spectrophotometer. Amer. Lab. 4(9), 43 (1972).Google Scholar
  251. Tindle, R. C., and D. L. Stalling: Automated cleanup for pesticide residue analysis. Paper 72, 162nd Meeting, Amer. Chem. Soc., Washington, D. C., Sept. (1971).Google Scholar
  252. Tindle, R. C., and D. L. Stalling: Apparatus for automated gel permeation cleanup for pesticide residue analysis. Application to fish lipids. Anal. Chem. 44, 1768 (1972).PubMedCrossRefGoogle Scholar
  253. Toren, E. C., Jr., R. N. Carey, A. E. Sherry, and J. E. Davis: LABTRAN—A language and system for programming chemical experiments. Anal. Chem. 44, 339 (1972).PubMedCrossRefGoogle Scholar
  254. Tuinstra, L. G. M. Th., and J. B. H. D. de Graaff: Data processing of GLC pesticide analyses by means of a time-shared computer system. Chromatographia 4, 468 (1971).CrossRefGoogle Scholar
  255. Urbányi, T., and Maria C. H. Lin: Automated infrared technique for the determination of an ester in tablet formulations. Adv. Automat. Anal., Technicon Internat. Congress 1970, 2, 253 (1971).Google Scholar
  256. Valentini, L.: Automated determination of fermentation products. I. Analysis of ergotamine. Automat. Anal. Chem., Technicon Symp. 1966, 2, 27 (1967).Google Scholar
  257. Varían Aerograph: Basic liquid chromatography. Palo Alto, CA (1971).Google Scholar
  258. Vestergaard, P.: Simultaneous multicolumn liquid-liquid and liquid-solid chromatography with a computerized readout system. Clin. Chem. 16, 651 (1970).PubMedGoogle Scholar
  259. Vestergaard, P., L. Hemmingsen, and P. W. Hansen: High-capacity multi-channel computerized read-out system for multi-column chromatography. J. Chromatogr. 40, 16 (1969).PubMedCrossRefGoogle Scholar
  260. Vrvilecchia, R., M. Thiébaud, and R. W. Frei: Separation of polynuclear aza-hetero-cyclics by high-pressure liquid chromatography using a silver impregnated adsorbent. J. Chromatogr. Sci. 10, 411 (1972).Google Scholar
  261. Voss, G.: Automated determination of activity and inhibition of Cholinesterase with acetylthiocholine and dithiobisnitrobenzoic acid. J. Econ. Entomol. 59, 1288 (1966).Google Scholar
  262. Voss, G.: Peacock plasma, a useful Cholinesterase source for inhibition residue analysis of insecticidal carbamates. Bull. Environ. Contam. Toxicol. 3, 339 (1968).CrossRefGoogle Scholar
  263. Voss, G.: Cholinesterase inhibition autoanalysis of insecticidal organophosphates and carbamates. J. Assoc. Official Anal. Chemists 52, 1027 (1969).Google Scholar
  264. Voss, G.: Semiautomated method for more precise and sensitive determination of non-polar anticholinesterase insecticides with Technicon modules. J. Assoc. Official Anal. Chemists 56, 1506 (1973).Google Scholar
  265. Voss, G., and H. Geissbühler: Automated residue determinations of insecticidal enolphosphates. Mededel. Rijksfac. Landbouwetanschap. Gent 32, 877 (1967).Google Scholar
  266. Voss, G., J. A. Guth, and M. Burkhard: Automated determination of aromatic amines derived from pesticide residues. IUPAC 2nd Internat. Congress Pest. Chem., Tel Aviv, Israel (1971).Google Scholar
  267. Wallace, D. L.: Computer acquisition of Chromatograph signals. Amer. Lab. 4(9), 67(1972).Google Scholar
  268. Wampler, J. E., and R. J. DeSa: An on-line spectrofluorimeter system for rapid collection of absolute luminescence spectra. Applied Spectrosc. 25, 623 (1971).CrossRefGoogle Scholar
  269. Waters Associates Inc.: Hexachlorophene in soap. Application Highlights, AH 71–316 (1971a).Google Scholar
  270. Waters Associates Inc.: Inorganic chelates. Application Highlights, AH 71–309 (1971 b).Google Scholar
  271. Waters Associates Inc.: Pollutants—Polynuclear hydrocarbons. Application Highlights, AH 72–321 (1972 a).Google Scholar
  272. Waters Associates Inc.: Poly chlorinated biphenyls. Application Highlights, AH 72–324 (1972 b).Google Scholar
  273. Webb, B. D.: Use of the Solidprep Sampler II in an Auto Analyzer system for the automated determination of amylose in whole kernel rice. Abstr. FA 8, Technicon Internat. Congress 1972, Program p. 55 (1972).Google Scholar
  274. West, L. E.: Communicating analytical methods in a multilaboratory company. Amer. Lab. 3(6), 35 (1971).Google Scholar
  275. Whitley, R. W., and H. E. Alburn: A semi-automated method for the determination of serum phospholipids. Ann. N. Y. Acad. Sci. 130, 634 (1965).PubMedCrossRefGoogle Scholar
  276. Widmark, G.: Where are computers useful in pesticide residue analysis? IUPAC 2nd Internat. Congress Pest. Chem., Tel Aviv, Israel (1971).Google Scholar
  277. Wilks Scientific Corp.: An infrared detector for use with gel permeation chromato-graphs. Infrared News, No. 4, Jan. (1972).Google Scholar
  278. Winefordner, J. D., and R. C. Elser: Atomic fluorescence spectrometry. Anal. Chem. 43(4), 24 A (1971).CrossRefGoogle Scholar
  279. Winefordner, J. D., and T. J. Vickers: Flame spectrometry. Anal. Chem. 42(5), 206 R (1970).CrossRefGoogle Scholar
  280. Winefordner, J. D., and T. J. Vickers: Flame spectrometry. Anal. Chem. 44(5), 150 R (1972).CrossRefGoogle Scholar
  281. Winter, G. D.: Cholinesterase activity determination in an automated analysis system. Ann. N. Y. Acad. Sci. 87, 629 (1960 a).PubMedCrossRefGoogle Scholar
  282. Winter, G. D.: Automated enzymatic assay of organic phosphate pesticide residues. Ann. N. Y. Acad. Sci. 87, 875 (1960 b).PubMedCrossRefGoogle Scholar
  283. Winter, G. D., and A. Ferrari: Automatic wet chemical analysis as applied to pesticide residues. Residue Reviews 5, 139 (1964).PubMedGoogle Scholar
  284. Wood, W. G.: An automated materials analysis system. Amer. Lab. 4(2), 27 (1972).Google Scholar
  285. Yost, R. W., and R. D. Conlon: Selection of optimum solvent systems in adsorptive liquid chromatography. Chromatogr. Newsletter (Perkin-Elmer Corp.) 1, 5 (1972 a).Google Scholar
  286. Yost, R. W., and R. D. Conlon: Selection of optimum instrument design criteria in liquid chromatography. Chromatogr. Newsletter (Perkin-Elmer Corp.) 1, 41 (1972 b).Google Scholar
  287. Zagar, J. B., P. P. Ascione, and G. P. Chrekian: Automated analysis of sulfamethazine and procaine penicillin in feed premixes. J. Assoc. Offic. Anal. Chemists 54, 1272 (1971).Google Scholar
  288. Ziegler, E., D. Henneberg, and G. Schomburg: Computer systems for chemical research. Angew. Chem., Internat. ed. 11, 348 (1972).CrossRefGoogle Scholar
  289. Zweig, G., and T. E. Archer: Residue determination of Sevin (1-naphthyl N-methyl-carbamate) in wine by Cholinesterase inhibition and paper chromatography. J. Agr. Food Chem. 6, 910 (1958).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1975

Authors and Affiliations

  • Daniel E. Ott
    • 1
  1. 1.Department of EntomologyUniversity of CaliforniaRiversideUSA

Personalised recommendations