Genetic Manipulation of Male Gametophytic Generation in Higher Plants

  • Ercole Ottaviano
  • M. Enrico Pè
  • Giorgio Binelli
Part of the Subcellular Biochemistry book series (SCBI, volume 17)


The success of a plant breeding program largely depends on the genetic composition of the base population used to select improved varieties and on the use of efficient selection procedures. The conventional approach offers a large spectrum of methods allowing increase of genetic variability and efficiency of selection. Practical results are well documented by the remarkable genetic gains obtained for many crops (Russell, 1974; Duvick, 1981; Borlaug, 1983). However, recent advances in biotechnology offer the possibility of increasing the efficiency of the conventional selection procedures and of enriching the genetic pool of a crop species by adding genes from alien species or obtained from in vitro manipulation. In this context, pollen technology can play an important role.


Pollen Tube Cytoplasmic Male Sterility Pollen Tube Growth Pollen Development Specific Combine Ability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, A. G., and Fauron, C. M. R. 1986, Structural alteration in a transcribed region of T type cytoplasmic male sterile maize mitochondrial genome, Curr. Genet. 10:777–783.PubMedGoogle Scholar
  2. Albani, D., Robert, L. S., Donaldson, P. A., Altosaar, I., Arnison, P. G., and Fabijanski, S. F., 1990, Characterization of a pollen specific gene family from Brassica napus which is activated during early microspore development, Plant Mol. Biol. 15:605–622.PubMedGoogle Scholar
  3. Albertsen, M. C., and Phillips, R. L., 1981, Developmental cytology of 13 male sterile loci in maize, Can. J. Genet. Cytol. 23:195–208.Google Scholar
  4. Anderson, M. A., Cornish, E.C., Mau, S. L., Williams, E. G., Hoggart, R. D., Atkinson, A., Bonig, I., Grego, B., Simpson, R., Roche, P. J., Haley, J. D., Niall, H. D., Tregear, G. W., Coughlan, J. P., Crawford, R. J., and Clarke, A. E., 1986, Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata, Nature 321:38–44.Google Scholar
  5. Bailey-Serres, J., Dixon, L. K., Liddell, A. D., and Leaver, C. J., 1986, Nuclear-mitochondrial interactions in cytoplasmic male sterile sorghum, Theor. Appl. Genet. 73:252–260.Google Scholar
  6. Benito Moreno, R. H., Macke, F., Hauser, M. T., Alwen, A., Heberle-Bors, E., 1988, Sporophytes and male gametophytes from in vitro cultured, immature tobacco pollen, in Sexual Reproduction in Higher Plants (M. Cresti, P. Gon, and E. Pacini, eds.) pp. 137–142, Springer-Verlag, Berlin.Google Scholar
  7. Bennetzen, J. L., Lin, C., McCormick, S., and Staskawicz, B. J., 1988, Transformation of Adh null pollen to Adh+ by macroinjection, Maize Genet. Coop. Newslett. 62:113–114.Google Scholar
  8. Bergamini-Mulcahy, G., and Mulcahy, D. L., 1986, Pollen-pistil interaction, in Biotechnology and Ecology of Pollen (D. L. Mulcahy, G. Bergamini-Mulcahy, and E. Ottaviano, eds.), Springer- Verlag, New York.Google Scholar
  9. Bianchi, A., and Lorenzoni, C., 1975, Gametophytic factors in Zea mays, in Gamete Competition in Plants and Animals (D.L. Mulcahy, ed.), pp. 257–264, Elsevier, Amsterdam.Google Scholar
  10. Binelli, G., Vieira de Manincor, E., and Ottaviano, E., 1985, Temperature effects on pollen germination and pollen tube growth in maize, Genet. Agri. 39:269–281.Google Scholar
  11. Bino, R. J., Hille, J., and Franken, J., 1987, Kanamycin resistance during in vitro development of pollen from transgenic tomato plants,Plant Cell Rep. 6:333–336.Google Scholar
  12. Bino, R. J., Franken, J., Witsenboer, H. M. A., Hille, J., and Dons, J. J. M., 1988, Effects of Alternaria alternata f.sp. Lycopersici toxins on pollen, Theor. Appl. Genet. 76:204–208.Google Scholar
  13. Borlaug, N. E., 1983, Contributions of conventional plant breeding to food production, Science 219:689–693.PubMedGoogle Scholar
  14. Brewbaker, J. L., 1971, Pollen enzymes and isoenzymes, in Pollen: Development and Physiology (J. Heslop-Harrison, ed.), pp. 156–170, Butterworth, London.Google Scholar
  15. Brown, S. M., and Crouch, M. L., 1990, Characterization of a gene family abundantly expressed in Oenothera organensis pollen that shows sequence similarity to polygalacturonase, Plant Cell 2:263–274.PubMedGoogle Scholar
  16. Buchert, J. G., 1961, The stage of genome-plasmon interaction in the restoration of fertility to cytoplasmically pollen-sterile maize, Proc. Natl. Acad. Sci. USA 47:1426–1440.Google Scholar
  17. Caligari, P. S. D., Ingram, N. R., and Jinks, J. L., 1981, Gene transfer in Nicotiana rustica by means of irradiated pollen. I. Unselected progeny, Heredity 47:12–26.Google Scholar
  18. Correns, C., 1928, Bestimmung, Vererbung und Verteilung des Geschlechtes bei den höheren Pflanzen, Hanbuch Vererbungswissensch. 2:1–138.Google Scholar
  19. Crossway, A., Oakes, J., Iavine, J., Ward, B., Knauf, V., and Shewmaker, C., 1986, Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts, Mol. Gen. Genet. 202:179–185.Google Scholar
  20. de la Pena, A., Lorz, H., and Schell, J., 1987, Transgenic rye plants obtained by injecting DNA into young floral tillers, Nature 325:274–276.Google Scholar
  21. de Nettancourt, D., 1977, Incompatibility in Angiosperms, in Monographs on Theoretical and Applied Genetics N°3 (R. Frankel, G. A. E. Gall, and H. F. Linskens, eds.), Springer-Verlag, Berlin.Google Scholar
  22. de Wet, J. M. J., Berthand, J., Cubero, J. I., and Hepburn, A., 1988, Genetic transformation of cereals, in Crop Plant Biotechnology in Tropical Crop Improvement, Proc. Int. Biotechnol. Workshop, pp. 27–32, Hyderabad.Google Scholar
  23. de Wet, J. M. M., de Wet, A. E., Brink, D. E., Hepburn, A. G., and Woods, J. A., 1986,Gametophyte transformation in maize, in Biotechnology and Ecology of Pollen (D. L. Mulcahy and E. Ottaviano, eds.), pp. 59–64, Springer-Verlag, New York.Google Scholar
  24. Deshayes, A., Herrera-Estrella, L., and Caboshe, M., 1985, Liposome-mediated transformation of tobacco mesophyll protoplasts by Escherichia coli plasmid, EMBO Jour. 4:2731–2737.Google Scholar
  25. Dewey, R. E., Levings III, C. S., and Timothy, D. H., 1986, Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male sterile cytoplasm, Cell 44:439–449.PubMedGoogle Scholar
  26. Dewey, R. E., Timothy, D. H., and Levings III, C. S., 1987, A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize, Proc. Natl. Acad. Sci. USA 84:5374–5378.PubMedGoogle Scholar
  27. Dungey, S. G., Sang, J. R, Rothnie, N. E., Palmer, M. V., Burke, D. G., Knox, R. B., Williams, E. G., Hilliard, E. P., and Salisbury, P. A., 1988, Glucosinolates in the pollen of rapeseed and Indian mustard, Phytochemistry 27:815–817.Google Scholar
  28. Duvick, D. N., 1965, Cytoplasmic pollen sterility in corn, Adv. Genet. 13:1–56.Google Scholar
  29. Duvick, D. N., 1981, Progress in conventional plant breeding, in Gene Manipulation in Plant Improvement (J. P. Gustavson, ed.), pp. 17–31, Plenum Publ., New York.Google Scholar
  30. Ebert, P. R., Anderson, M. A., Bernatzky, R., Altschuler, M., and Clarke, A. E., 1989, Genetic polymorphism of self-incompatibility in flowering plants,Cell 56:255–262.PubMedGoogle Scholar
  31. Edwardson, J. R., 1970, Cytoplasmic male sterility, The Botanical Review, 36:341–420.Google Scholar
  32. Escote, L. J., Gabay-Laughnan, S., and Laughnan, J. R., 1985, Cytoplasmic reversion to fertility in cms-S maize need not involve loss of linear mitochondrial plasmids, Plasmid 14:264–267.PubMedGoogle Scholar
  33. Evans, D. E., Rothnie, N. E., Palmer, M. V., Burke, D. G., Sang, J. P., Knox, R. B., Williams, E. G., Hilliard, E. P., and Salisbury, P. A., 1987, Comparative analysis of fatty acids in pollen and seed of rapeseed, Phytochemistry 26:1895–1898.Google Scholar
  34. Evans, D. E., Rothnie, N. E., Sang, J. P., Palmer, M. V., Mulcahy, D. L., Singh, M. B., and Knox, R. B., 1988, Correlations between gametophytic (pollen) and sporophytic (seed) generations for polyunsaturated fatty acids in oilseed rape Brassica napus L., Theor. Appl. Genet. 76:411–419.Google Scholar
  35. Faraughi-Wehr, B., Fiendt, W., Scuchmann, R., Kohler, F., and Wenzel, G., 1986, In vitro selection for resistance, in Somaclonal Variation and Plant Improvement (J. Semal, ed.), pp. 35–44, Nijhoff M./Junk, W., The Hague, The Netherlands.Google Scholar
  36. Feder, W. A., 1986, Predicting species response to ozone using a pollen screen, in Biotechnology and Ecology of Pollen (D. L. Mulcahy, G. Bergamini-Mulcahy, and E. Ottaviano, eds.), pp. 89–94, Springer-Verlag, New York.Google Scholar
  37. Frankel, R., and Galun, E., 1977, Pollination Mechanisms, Reproduction and Plant Breeding, 281 pp. Springer-Verlag, New York.Google Scholar
  38. Fromm, M., Taylor, L. P., and Walbot, V., 1986, Stable transformation of maize after gene transfer by electroporation, Nature 319:791–793.PubMedGoogle Scholar
  39. Frova, C., 1990, Analysis of gene expression in microspores, pollen and silks of Zea mays L. Sex. Plant Reprod. 3:200–206.Google Scholar
  40. Frova, C., Sari Gorla, M., Ottaviano, E., and Pella, C., 1983, Haplo-diploid gene expression in maize and its detection, Biochem. Genet. 21:923–931.PubMedGoogle Scholar
  41. Frova, C., Binelli, G., and Ottaviano, E., 1987, Isozyme and hsp gene expression during male gametophyte development in maize, in Isozymes, Geneticsi Development and Evolution (M. C. Rattazzi, J. G., Scandalios, and G. S. Whitt, eds.), pp. 97–120, Alan R. Liss, New York.Google Scholar
  42. Frova, C., Taramino, G., and Binelli, G., 1989, Heat-shock proteins during pollen development in maize, Dev. Genet. 10:324–332.Google Scholar
  43. Gasser, C. S., Smith, A. G., Budelier, K. A., Hinchee, M. A., McCormick, S., et al, 1988, Isolation of differentially expressed genes from tomato flowers, in Temporal and Spacial Regulation of Plant Genes (D. P. S. Verma and B. Goldberg, eds.), pp. 83–96, Springer-Verlag, New York.Google Scholar
  44. Goldberg, R. B., 1988, Plants: Novel developmental processes, Science 240:1460–1466.PubMedGoogle Scholar
  45. Golubovskavya, I. N., 1989, Meiotic mutants in maize: mei genes and conception of genetic control of meiosis, Adv. Genet. 26:149–192.Google Scholar
  46. Gotteschalk, W., and Kaul, M. L. H., 1974, The genetic control of microsporogenesis in higher plants, Nucleus 17:133–166.Google Scholar
  47. Grimsley, N., Hohn, T., Davies, T. W., and Hohn, B., 1987, Agrobacterium-mediated delivery of infectious maize streak virus into maize plants, Nature 325:177–179.Google Scholar
  48. Hamilton, D. A., Bashe, D. M., Stinson, J. R., and Mascarenhas, J. P., 1989, Characterization of a pollen-specific genomic clone from maize, Sex. Plant Reprod. 2:208–212.Google Scholar
  49. Hanson, D. D., Hamilton, D. A., Travis, J. L., Bashe, D. M., and Mascarenhas, J. P., 1989, Characterization of a pollen-specific cDNA clone from Zea mays and its expression, Plant Cell 1:173–179.PubMedGoogle Scholar
  50. Hanson, M. R., and Conde, M. F., 1985, Functioning and variation of cytoplasmic genomes: Lessons from cytoplasmic-nuclear interactions affecting male sterility in plants, Int. Rev. Cytol. 94:213–267.Google Scholar
  51. Heberle-Bors, E., Benito Moreno, R. M., Alwen, A., Stoger, E., and Vicente, O., 1990, Transformation of pollen, in Current Plant Science and Biotechnology in Agriculture, Progress in Plant Cellular and Molecular Biology, Proc. VII Int. Congress in Plant Tissue and Plant Cell Culture (H. J. J. Nijkamp, L. H. W. Van Der Plas, and J. Van Aartrijk, eds.), pp. 244–251, Kluwer Academic Publisher, Dordrecht.Google Scholar
  52. Hepher, A., Sherman, A., Gates, P., and Boulter, D., 1985, Microinjection of gene vectors and ovaries as a potential means of transforming whole plants, in Experimental Manipulation of Ovule Tissues (G. P. Chapman, S. H. Mantell, and R. W. Daniels, eds.), pp. 52–63, Longman, New York.Google Scholar
  53. Heslop-Harrison, J., 1966, Cytoplasmic connexions between angiosperm meiocytes, Ann. Bot. 30:221–229.Google Scholar
  54. Heslop-Harrison, J., 1971a, Pollen: Development and Physiology, pp. 338, Butterworth, London.Google Scholar
  55. Heslop-Harrison, J., 1971b, The pollen wall: structure and development, in Pollen: Development and Physiology (J. Heslop-Harrison, ed.), pp. 75–98, Butterworth, London.Google Scholar
  56. Heslop-Harrison, J., 1979, The forgotten generation: Some thoughts on the genetics and physiology of angiosperm gametophytes, in The Plant Genome: 4TH Innes Symposium (D. R. Davies and D. A. Hopwood, eds.), pp. 1–14, John Innes Institute, Norwich.Google Scholar
  57. Heslop-Harrison, J., 1987, Pollen germination and pollen tube growth, Int. Rev. Cytol. 107:1–70.Google Scholar
  58. Heslop-Harrison, J., Heslop-Harrison, Y., Knox, R. B., andHowlett, B., 1973, Pollen wall proteins: Gametophytic and sporophytic fraction in pollen wall of Malvaceae, Ann. Bot. 37:403–412.Google Scholar
  59. Hess, D., 1986, The pollen system of gene transfer, in Genetic Manipulation in Plant Breeding (W. Horn, C. J. Jensen, W. Odenbach, and O. Scheider, eds.), pp. 803–811, W. de Gruyter, Berlin.Google Scholar
  60. Hess, D., 1987, Pollen-based techniques in genetic manipulation, Int. Rev. Cytol. 107:367–395.Google Scholar
  61. Hess, D., 1988, Direct and indirect gene transfer using pollen as carriers of exogenous DNA, in Crop Plant Biotechnology in Tropical Crop Improvement, pp. 19–26, Proc. Int. Biotechnol. Workshop, Hyderabad, India, ICRISAT.Google Scholar
  62. Hess, D., and Dressier, K., 1984, Bacterial transferase activity expressed, in Investigations on the Tumor Induction in Nicotiana glauca by pollen transfer of DNA isolated from Nicotiana langsdorfii (D. Hess, G. Schneider, H. Lorz, and G. Blaich, eds.), Z.Pflanzenphysiol. 77:247–254.Google Scholar
  63. Hess, D., Gresshoff, P. M., Fielitz, U., and Gleiss, D., 1974, Uptake of protein and bacteriophage into swelling and germinating pollen of Petunia hybrida, Z. Pflanzenphysiol. 74:371–376.Google Scholar
  64. Hess, D., Dressier, K., and Konle, S., 1985, Gene transfer in higher plants using pollen as vectors: Bacterial transferase activity expressed in Petunia progenies, in Experimental Manipulation of Ovule Tissue (G. P. Chapman, S. H. Mantell, and R. W. Daniels, eds.), pp. 224–239, Longman, New YorkGoogle Scholar
  65. Hodgkin, T., 1988, In vitro pollen selection in Brassica napus L., in Sexual Reproduction in Higher Plants (M. Cresti, P. Gori, and E. Pacini, eds.), pp. 57–62, Springer-Verlag, Berlin.Google Scholar
  66. Hodgkin, T., MacDonald, M. V., 1986, The effect of phytotoxin from Alternaria brassicicola on Brassica pollen, New Phytol 104:631–636.Google Scholar
  67. Hooykaas-Van Slogteren, G., Hooykaas, P. J., and Schilperoort, R. A., 1984, Expression of Ti plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens, Nature 311:763–764.Google Scholar
  68. Horsch, R. B., Fry, J. E., Hoffman, N. L., Eichholtz, D., Rogers, S. G., and Fraley, R. T., 1985, A simple and general method for transferring genes into plants, Science 227:1229–1231.Google Scholar
  69. Jackson, J. F., 1988, DNA repair in Petunia hybrida pollen, in Sexual Reproduction in Higher Plants (M. Cresti, P. Gori, and E. Pacini, eds.), pp. 81–86, Springer-Verlag, Berlin, Heidelberg.Google Scholar
  70. Jinks, J. L., Caligari, P. S. D., and Ingram, N. R., 1981, Gene transfer inNicotiana rustica using irradiated pollen, Nature 291:586–588.Google Scholar
  71. Kaul, M. L. H., 1988, Male sterility in higher plants, 1005 pp., Springer Verlag, Berlin.Google Scholar
  72. Kaul, M. L. H., and Murthy, T. G. K., 1985, Mutant genes affecting higher plant meiosis, Theor. Appl. Genet. 70:449–466.Google Scholar
  73. Kennell, J. C., Wise, R. P., and Pring, D. R., 1987, Influence of nuclear background on transcription of a maize mitochondrial region associated with Texas male sterile cytoplasm, Mol. Gen. Genet. 210:399–406.Google Scholar
  74. Klein, T. M., Wolf, E. D., Wu, R., and Sanford, J. C., 1987, High-velocity microprojectiles for delivering nucleic acids into living cells, Nature 327:70–73.Google Scholar
  75. Klein, T. M., Goff, S. A., Roth, B. A., and Fromm, M. E., 1990, Applications of the particle gun in plant biology, in Current Plant Science and Biotechnology in Agriculture, Progress in Plant Cellular and Molecular Biology, Proc. VII Int. Congress in Plant Tissue and Plant Cell Culture, (H. J. J. Nijkamp, L. H. W. Van Der Plas, and J. Van Aartijk, eds.), pp. 56–66, Kluwer, Dordrecht.Google Scholar
  76. Koltunow, A. M., Truettner, J., Cox, K. H., Wallroth, M., and Goldberg, R. B., 1990, Different temporal and spatial gene expression patterns occur during anther development, The Plant Cell 2:1201–1224.PubMedGoogle Scholar
  77. Landi, P., Frascaroli, E., Tuberosa, R., and Conti, S., 1989, Comparison between responses to gametophytic and sporophytic recurrent selection in maize (Zea mays L.), Theor. Appl. Genet. 77:761–767.Google Scholar
  78. Laughnan, J. R., and Gabay, S. J., 1973, Reaction of germinating maize pollen to Helminthosporium maydis pathotoxins, Crop Sci. 43:681–684.Google Scholar
  79. Laughnan, J. R., and Gabay-Laughnan, S., 1983, Cytoplasmic male sterility in maize, Annu. Rev. Genet. 17:27–48.PubMedGoogle Scholar
  80. Laughnan, J. R., Gabay-Laughnan, S., and Day, J. M., 1989a, Evidence for transposition of the naturally occurring cms-S restorer in inbred line CE1, Maize Genet. Coop. Newslett. 63:121.Google Scholar
  81. Laughnan, J. R., Gabay-Laughnan, S., and Day, J. M., 1989b, Naturally occurring restorers of cms-S are located at various chromosomal sites in different inbred lines and appear to be transposable, Maize Genet. Coop. Newslett. 63:120–121.Google Scholar
  82. Lee, T. D., and Hartgerink, A. P., 1986, Pollination intensity, fruit maturation pattern, and offspring quality in Cassia fasciculata (Leguminosae), in Biotechnology and Ecology of Pollen (D. L. Mulcahy, G. Bergamini Mulcahy, and E. Ottaviano, eds.) PP- 417–422, Springer-Verlag, New York.Google Scholar
  83. Levings, C. S., III, and Brown, G., 1989, Molecular biology of plant mitochondria, Cell 56:171–179.PubMedGoogle Scholar
  84. Levings, C. S., III, Kim, B. D., Pring, D. R., Conde, M. F., Mans, R. J., Laughnan, J. R., and Gabay-Laughnan, S. J., 1980, Cytoplasmic reversion of cms-S in maize: Association with a traspositional event, Science 209:1021–1023.PubMedGoogle Scholar
  85. Mangelsdorf, P. C., 1932, Mechanical separation of gametes in maize, J. Hered. 23:288–295.Google Scholar
  86. Manzocchi, L. A., Daminati, M., Gentinetta, E., and Salamini, F., 1980a, Viable defective endosperm mutants in maize. Kernel weight, protein fraction and zein subunits in mature endosperm, Maydica 25:105–116.Google Scholar
  87. Manzocchi, L. A., Daminati, M. G., and Gentinetta, E., 1980b, Viable defective endosperm mutants in maize. II. Kernel weight, nitrogen and zein accumulation during endosperm development, Maydica 25:199–210.Google Scholar
  88. Mariani, C., De Beuckeleer, M., Treuttner, J., Leemans, J., and Goldberg, R. B., 1990, Induction of male sterility in plants by a chimaeric ribonuclease gene, Nature 347:737–741.Google Scholar
  89. Mascarenhas, J. P., 1975, The biochemistry of Angiosperm pollen development, Bot. Rev. 41:259–314.Google Scholar
  90. Mascarenhas, J. P., 1984, Molecular mechanisms of heat stress tolerance, in Applications of Genetic Engineering to Crop Improvement (G. B. Collins, and J. G. Petolino, eds.), pp. 391–425, M. Nijhoff/Dr W. Junk, Dordrecht.Google Scholar
  91. Mascarenhas, J. P., 1989, The male gametophyte of flowering plants, Plant Cell 1:657–664.PubMedGoogle Scholar
  92. Mascarenhas, J. P., 1990, Gene activity during pollen development, Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:317–338.Google Scholar
  93. Mascarenhas, N. T., Bashe, D., Eisenberg, A., Willing, R. P., Xiao, C. M., and Mascarenhas, J. P., 1984, Messenger RNAs in corn pollen and protein synthesis during germination and pollen tube growth, Theor. Appl. Genet. 68:323–326.Google Scholar
  94. McClure, B. A., Haring, V., Ebert, P. R., Anderson, M. A., Simpson, R. J., Sakiyama, F., and Clarke, A. E., 1989, Style self-incompatibility gene products of Nicotiana alata are ribonucleases, Nature 342:955–957.PubMedGoogle Scholar
  95. McClure, B. A., Gray, J. E., Anderson, M. A., and Clarke, A. E., 1990, Self-incompatibility in Nicotiana alata involves degradation of pollen rRNA, Nature 347:757–760.Google Scholar
  96. McKenna, M. A., 1986, Heterostyly and microgametophytic selection: The effect of pollen competition on sporophytic vigor in two distylous species, in Biotechnology and Ecology of Pollen (D. L. Mulcahy, G. Bergamini Mulcahy, and E. Ottaviano, eds.), pp. 443–448, Springer-Verlag, New York.Google Scholar
  97. McKenna, M., and Mulcahy, D. L., 1983, Ecological aspects of gametophytic competition in Dianthus chinensis, in Pollen: Biology and Implications in Plant Breeding (D. L. Mulcahy and E. Ottaviano, eds.), pp. 419–424, Elsevier Biomedical, New York.Google Scholar
  98. McNay, J. W., Pring, D. R., and Lonsdale, D. H., 1983, Polymorphism of mitochondrial DNA “S” regions among normal cytoplasm of maize, Plant Mol. Biol. 12:177–189.Google Scholar
  99. McRae, D. H., 1985, Advances in chemical hybridization, Plant Breeding Rev. 3:169–191.Google Scholar
  100. Meinke, D. W., 1982, Embryo-lethal mutants of Arabidopsis thaliana: Evidence for gametophytic expression of the mutant genes, Theor. Appl. Genet. 63:381–386.Google Scholar
  101. Meinke, D. W., and Baus, A. D., 1986, Gametophytic gene expression in embryo-lethal mutants of Arabidopsis thaliana, in Biotechnology and Ecology of Pollen (D. L. Mulcahy, G. Bergamini Mulcahy, and E. Ottaviano, eds.), pp. 15–20, Springer-Verlag, New York.Google Scholar
  102. Mulcahy, D. L., 1971, A correlation between gametophytic and sporophytic characteristics in Zea mays L., Science 171:1155–1156.PubMedGoogle Scholar
  103. Mulcahy, D. L., 1974, Correlation between speed of pollen tube growth and seedling weight in Zea mays L., Nature 249:491–492.Google Scholar
  104. Mulcahy, D. L., 1979, The rise of the angiosperms: A genecological factor, Science 206:20–23.PubMedGoogle Scholar
  105. Mulcahy, D. L., and Mulcahy, G. B., 1975, The influence of gametophytic competition on sporophytic quality in Dianthus chinensis, Theor. App. Genet. 46:277–280.Google Scholar
  106. Mulcahy, D. L., Mulcahy, G. B., and Ottaviano, E., 1975, Sporophytic expression of gametophytic competition in Petunia hybrida, in Gamete Competition in Plants and Animals (D. L. Mulcahy, ed.), pp. 227–232, North Holland Publ. Co., Amsterdam.Google Scholar
  107. Nasrallah, J. B., Kao, T. H., Goldberg, M. L., and Nasrallah, M. E., 1985, A cDNA clone encoding an S locus-specific glycoprotein from Brassica oleracea, Nature 318:263–267.Google Scholar
  108. Nasrallah, J. B., Kao, T. H., Chen, C. H., Goldberg, M. L., and Nasrallah, M. E., 1987, Amino- acid sequence of glycoproteins encoded by three alleles of the S locus of Brassica oleracea, Nature 326:617–619.Google Scholar
  109. Negrutiu, K., Heberle-Bors, E., and Potrykus, I., 1986, Attempts to transform for kamamycinresistance in mature pollen of tobacco, in Biotechnology and Ecology of Pollen (D. L. Mulcahy, G. Bergamini-Mulcahy, and E. Ottaviano, eds.), pp. 65–70, Springer-Verlag, New York.Google Scholar
  110. Nelson, O. E., 1952, Non reciprocal cross sterility in maize, Genetics 37:101–124.PubMedGoogle Scholar
  111. Ohta, Y., 1986, High efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA, Proc. Natl Acad. Sci. USA 83:715–719.PubMedGoogle Scholar
  112. Ottaviano, E., 1990, Selection pressure on pollen and its relevance to plant breeding (Sinha, S. K., Sane, P. V., Bhargava, S. C., and Agrawal, P. K., eds.) pp. 1315–1321, Society for Plant Physiology and Biochemistry, New Delhi.Google Scholar
  113. Ottaviano, E., and Mulcahy, D. L., 1986, Gametophytic selection as a factor of crop plant evaluation, in The Origin and Domestication of Cultivated Plants (C. Barigozzi, ed.), pp. 101–120, Elsevier, Amsterdam.Google Scholar
  114. Ottaviano, E., and Mulcahy, D. L., 1989, Genetics of Angiosperm Pollen, Advances in Genetics 26:1–64.Google Scholar
  115. Ottaviano, E., and Sari Gorla, M., 1979, Genetic variability of male gametophyte in maize. Pollen genotype and pollen-style interaction, in Israeli-Italian Joint Meeting on Genetics and Breeding of Crop Plants, pp. 89–106, Monogr. Genet. Agraria IV, Rome.Google Scholar
  116. Ottaviano, E., Sari Gorla, M., and Mulcahy, D. L., 1980, Pollen tube growth rate in Zea mays: Implications for genetic improvement of crops, Science 210:437–438.PubMedGoogle Scholar
  117. Ottaviano, E., Sari-Gorla, M., and Pè, E., 1982, Male gametophytic selection in maize, Theor. Appl. Genet. 63:249–254.Google Scholar
  118. Ottaviano, E., Sari Gorla, M., and Arenari, I., 1983, Male gametophytic competitive ability in maize. Selection and implications with regard to the breeding system, in Pollen: Biology and Implications for Plant Breeding (D. L. Mulcahy, and E. Ottaviano, eds.), pp. 367–373, Elsevier Biomedical, New York.Google Scholar
  119. Ottaviano, E., Petroni, D., and Pè, E., 1988a, Gametophytic expression of genes controlling endosperm development in maize, Theor. Appl. Genet. 75:252–258.Google Scholar
  120. Ottaviano, E., Sari Gorla, M., and Villa, M., 1988b, Pollen competitive ability in maize: Within population variability and response to selection, Theor. Appl. Genet. 76:601–608.Google Scholar
  121. Pallais, N., Malagamba, P., Fong, N., Garcia, R., and Scmiediche, P., 1986, Pollen selection through storage: a tool for improving true potato seed quality? in Biotechnology and Ecology of Pollen (D. L. Mulcahy, G. Bergamini-Mulcahy, and E. Ottaviano, eds.), pp. 153–158. Springer-Verlag, New York.Google Scholar
  122. Pandey, K. K., 1975, Sexual transfer of specific genes without gametic fusion,Nature 256:310–313.PubMedGoogle Scholar
  123. Pandey, K. K., 1980, Further evidence for egg transformation in Nicotiana, Heredity 45:15–29.Google Scholar
  124. Pandey, K. K., 1983, Evidence for gene transfer by the use of sublethally irradiated pollen in Zea mays and theory of occurrence by chromosome repair through somatic recombination and gene conversion, Mol. Gen. Genet. 191:358–365.Google Scholar
  125. Paszkowski, J., Shillito, R. D., Saul, M., Mandak, V., Hohn, T., Hohn, B., and Potrykus, I., 1984, Direct gene transfer to plants, EMBO J. 3:2717–2722.PubMedGoogle Scholar
  126. Pedersen, S., Simonsen, V., Loeschke, V., 1987, Overlap of gametophytic and sporophytic gene expression in barley, Theor. Appl. Genet. 75:200–206.Google Scholar
  127. Peloquin, S. J., 1986, Genetic engineering with meiotic mutants, in Biotechnology and Ecology of Pollen (D. L. Mulcahy, and E. Ottaviano, eds.), pp. 361–367, Elsevier Biomedical, New York.Google Scholar
  128. Pfahler, P. L., 1983, Comparative effectiveness of pollen genotype selection in higher plants, in Biotechnology and Ecology of Pollen (D. L. Mulcahy, and E. Ottaviano, eds.), pp. 361–367, Elsevier Biomedical, New York.Google Scholar
  129. Potrykus, I., 1990, Gene transfer to cereal: an assessment, Bio/Technology 6:531–542.Google Scholar
  130. Pring, D. R., and Levings, C. S., III, 1978, Heterogeneity of maize cytoplasmic genomes among male-sterile cytoplasms, Genetics 89:121–136.PubMedGoogle Scholar
  131. Pring, D. R., Levings, C. S., III, Hu, W. W., and Timothy, D. H., 1977, Unique DNA associated with mitochondria in “S” type cytoplasm of male sterile maize, Proc. Natl. Acad. Sci. USA 74:2904–2908.PubMedGoogle Scholar
  132. Puertas, M. J., de le Pena, A., Estades, B., and Merino, F., 1984, Early sensitivity to colchicine in developing anthers of rye, Chromosoma 89:121–126.Google Scholar
  133. Quin, T., and Dun, D., 1990, Character and inheritance of a new Y-type cytoplasmic male-sterile line, Maize Genet. Coop. Newslett. 64:61–62.Google Scholar
  134. Rabinowitch, H. D., Reting, N., and Kedar, N., 1978, The mechanism of preferential fertilization in tomatoes carrying the I-allele for Fusarium resistance, Euphytica 27:219–224.Google Scholar
  135. Rajora, O. P., and Zsuffa, L., 1986, Sporophytic and gametophytic gene expression in Populus deltoides marsh., P. nigra L., and P. maximowiczii henry, Can. J. Genet. Cytol. 28:476–482.Google Scholar
  136. Rocheford, T. R., and Pring, D. R., 1990, Nuclear-mitochondrial interactions affecting transcription of mitochondrial open reading frames, Maize Genet. Coop. Newslett. 64:61–62.Google Scholar
  137. Russell, W. A., 1974, Comparative performance of maize hybrids representing different eras of maize breeding, in Proc. 29th Annual Corn and Sorghum Conference (D. Walkinson, ed.), pp. 81–101, Am. Seed Trade Assoc., Washington, DC.Google Scholar
  138. Sacher, R., Mulcahy, D. L., and Staples, R., 1983, Developmental selection for salt tolerance during self pollination of Licopersicon x Solanum Fj for salt tolerance of F2, in Pollen: Biology and Implications for Plant Breeding (D. L. Mulcahy, and E. Ottaviano, eds.), pp. 329–334, Elsevier Biomedical, New York.Google Scholar
  139. Sanford, J. C., 1983, Pollen studies using a laser microbeam, in Pollen: Biotechnology and Implications for Plant Breeding (D.L. Mulcahy, and E. Ottaviano, eds.), pp. 107–116, Elsevier Biomedical, New York.Google Scholar
  140. Sanford, J. C., and Skubik, K. A., 1986, Attempted pollen-mediated transformation using Ti plasmids, in Biotechnology and Ecology of Pollen (D.L. Mulcahy, G. Bergamini-Mulcahy, and E. Ottaviano, eds.), pp. 71–76, Springer-Verlag, New York.Google Scholar
  141. Sanford, J. C., Chyi, Y. S., and Reish, B. I., 1984, Attempted “egg transformation” in Zea mays L. using irradiated pollen, Theor. Appl. Genet. 68:269–275.Google Scholar
  142. Sanford, J. C., Skubik, K. A., andReisch, B. I., 1985, Attempted pollen-mediated plant transformation employing genomic donor DNA, Theor. Appl. Genet. 69:571–575.Google Scholar
  143. Sari-Gorla, M., Frova, C., Binelli, G., and Ottaviano, E., 1986, The extent of gametophytic- sporophytic gene expression in maize, Theor. Appl. Genet. 72:42–47.Google Scholar
  144. Sari-Gorla, M., Villa, M., and Ottaviano, E., 1987, Pollen irradiation and gene transfer in maize, Maydica 32:239–248.Google Scholar
  145. Sari-Gorla, M., Mulcahy, D. L., Gianfranceschi, L., and Ottaviano, E., 1988a, Gametophytic selection for salt tolerance, Genet. Agri. 42:92–93.Google Scholar
  146. Sari-Gorla, M., Ottaviano, E., Frascaroli, E., and Landi, P., 1989, Herbicide-tolerant corn by pollen selection,Sex Plant Reprod. 2:65–69.Google Scholar
  147. Schlichting, C. D., Stephenson, A. G., Davis, L. E., and Winsor, J. A., 1987, Pollen competition and offspring variance, Evol. Trends Plants 1:35–39.Google Scholar
  148. Schwartz, D., 1960, The analysis of a case of cross-sferility in maize, Proc. Natl. Acad. Sci. USA 36:719–724.Google Scholar
  149. Searcy, K. B., and Mulcahy, D. L., 1985a, Pollen selection and the gametophytic expression of metal tolerance in Silene dioica (Caryophyllaceae) and Mimulus guttatus (Scrophulariaceae), Am. J. Bot. 72:1700–1706.Google Scholar
  150. Searcy, K. B., and Mulcahy, D. L., 1985b, The parallel expression of metal tolerance in pollen and sporophytes of Silene dioica (L.) Clairv., S. alba (Mill.) Krause and Mimulus guttatus DC, Theor. Appl. Genet. 69:597–602Google Scholar
  151. Shivanna, K. R., and Johri, B. M., 1985, The Angiosperm Pollen. Structure and Function, Wiley Eastern Limited, New Delhi.Google Scholar
  152. Smith, G. A., 1986, Sporophytic screening and gametophytic verification of phytotoxin tolerance in sugarbeet (Beta vulgaris L.), in Biotechnology and Ecology of Pollen (D. L. Mulcahy, G. Bergamini Mulcahy, and E. Ottaviano, eds.), pp. 83–88, Springer-Verlag, New York.Google Scholar
  153. Stephenson, A. C., Winsor, J. A., and Davis, L. E., 1986, Effects of pollen load size on fruit maturation and sporophyte quality in zucchini, in Biotechnology and Ecology of Pollen (D.L. Mulcahy, G. Bergamini Mulcahy, and E. Ottaviano, eds.), pp. 429–434, Springer-Verlag, New York.Google Scholar
  154. Stinson, J. R., Eisenberg, A. J., Willing, R. P., Pe, M. E., Hanson, D. D., and Mascarenhas, J. P., 1987, Gene expressed in the male gametophyte of flowering plants and their isolation, Plant Physiol. 83:442–447.PubMedGoogle Scholar
  155. Sunderland, N., and Huang, B., 1987, Ultrastructural aspects of pollen dimorphism, Int. Rev. Cytol. 107:175–219.Google Scholar
  156. Takats, S. T., and Wever, G. H., 1971, DNA polymerase and DNA nuclease activities in S- competent and S-incompetent nuclei fromTradescantia pollen grains, Exp. Cell Res. 69:25–28.PubMedGoogle Scholar
  157. Tanksley, S. D., Zamir, D., and Rick, C. M., 1981, Evidence for extensive overlap of sporophytic and gametophytic gene expression in Lycopersicon esculentum, Science 213:453–455.Google Scholar
  158. Ter-Avanesian, D. V., 1949, The role of the number of pollen grains per flower in plant breeding, Bull. Appl. Bot. Plant Breed., Russian, 28:19–33.Google Scholar
  159. Ter-Avanesian, D. V., 1978, The effect of varying the number of pollen grains used in fertilization, Theor. Appl. Genet. 52:77–79.Google Scholar
  160. Torti, G., Manzocchi, L., and Salamini, F., 1986, Free and bound indole-acetic acid is low in the endosperm of the maize mutant defective endosperm-B18, Theor. Appl. Genet. 72:602–605.Google Scholar
  161. Twell, D., Wing, R. A., Yamaguchi, J., and McCormick, S., 1989a, Isolation and expression of an anther-specific gene from tomato, Mol. Gen. Genet. 217:240–245.PubMedGoogle Scholar
  162. Twell, D., Klein, T. M., Fromm, M. E., and McCormick, S., 1989b, Transient expression of chimeric genes delivered into pollen by microprojectile bombardment, Plant Physiol. 91:1270–1274.PubMedGoogle Scholar
  163. Weber, G., Monajembashi, S., Grenlich, K. O., and Wolfrum, J., 1988, Genetic manipulation of plant cells and organelles with a laser microbeam, Plant Cell Tissue Organ Culture 12:219–222.Google Scholar
  164. Wever, G. H., and Takats, S. T., 1971, Isolation and separation of S-competent and S-incompetent nuclei from Tradescantia pollen,Exp. Cell Res. 69:29–32.PubMedGoogle Scholar
  165. Willing, R. P., and Mascarenhas, J. P., 1984, Analysis of complexity and diversity of mRNAs from pollen shoots of Tradescantia, Plant Physiol. 75:865–868.Google Scholar
  166. Willing, R. P., Bashe, D., and Mascarenhas, J. P., 1988, An analysis of the quantity and diversity of messenger RNAs from pollen and shoots of Zea mays, Theor. Appl. Genet. 75:751–753.Google Scholar
  167. Wise, R. P., Fliss, A. E., Pring, D. R., and Gegenbach, B. G., 1987, Urfl3-Tof T cytoplasm maize mitrochondria encodes a 13Kd polypeptide, Plant Mol. Biol. 9:121–126.Google Scholar
  168. Yamada, M., 1983, Superiority of pollen from Fj plants of maize in selective fertilization, JARQ 17:166–172.Google Scholar
  169. Zabala, G., Gabay-Laughnan, S., and Laughnan, J. R., 1989, Nuclear control over molecular characteristics of cms-S male-fertile cytoplasmic revertamts, Maize Genet. Coop. Newslett. 63:118–119.Google Scholar
  170. Zamir, D., and Gadish, I., 1987, Pollen selection for low temperature adaptation in tomato, Theor, Appl. Genet. 74:545–548.Google Scholar
  171. Zamir, D., and Vallejos, E. C., 1983, Temperature effects on haploid selection of tomato microspores and pollen grains, in Pollen: Biology and Implication for Plant Breeding (D. L. Mulcahy and E. Ottaviano, eds.), pp. 335–342, Elsevier Scientific, New York.Google Scholar
  172. Zamir, D., Tanksley, S.D., and Jones, R. A., 1981, Low temperature effect on selective fertilization by pollen mixtures of wild and cultivated tomato species, Theor. Appl. Genet. 59:235–238.Google Scholar
  173. Zamir, D., Tanksley, S. D., and Jones, A. J., 1982, Haploid selection for low temperature tolerance of tomato pollen, Genetics 101:129–137PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Ercole Ottaviano
    • 1
  • M. Enrico Pè
    • 1
  • Giorgio Binelli
    • 1
  1. 1.Department of Genetics and MicrobiologyUniversity of MilanMilanItaly

Personalised recommendations