Skip to main content

Plant Transposable Elements

  • Chapter
Plant Genetic Engineering

Part of the book series: Subcellular Biochemistry ((SCBI,volume 17))

  • 202 Accesses

Abstract

Transposable elements were first detected in maize by Barbara McClintock and reported in the 1950s. These were revealed by experiments that were designed for a cytogenetic study involving the short arm of chromosome 9. It was in the progeny of plants undergoing the chromosomal type of breakage—fusion—bridge cycle that a burst of somatic instability and mutations appeared. Initially, McClintock focused on the breakage events occuring at a specific locus between waxy (wx) gene and the centromere on the short arm of chromosome 9. She termed this “the standard locus of Ds (Dissociation).” However, these breakage events required the presence of another autonomous element, which she termed the activator (Ac). She noted cases in which Ds activity disapeared from the standard locus and reappeared elsewhere in the genome. In addition, somatic instability was observed at several gene loci. Such mutator activity was also under the control of the Ac. McClintock made an operational distinction between genes and transposable elements. Genes occupy fixed loci and transposable elements can move from one location to another. Because the frequency and temporal occurrence of somatic instability were under the control of the Ds state and Ac dose, respectively, she called these “controlling elements.” McClintock (1951) also characterized another family of transposable elements which she termed Supprssor-mutator (Spm), which was independently isolated and characterized by Peterson (1961), but termed Enhancer (En).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allagikar, S. B., Pawar, S. E., Mitra, R. K., and Notani, N. K., 1990, Analysis of a case of somatic instability in maize, in Proc. D.A.E. Symp. on Advances in Molecular Biology, Bombay, pp. 487–494.

    Google Scholar 

  • Baker, B., Coupland, G., Fedoroff, N., Starlinger, P., and Schell, J. 1987, Phenotypic assay for excision of the maize controlling element Ac in tobacco, EMBO J. 6:1547–1554.

    PubMed  CAS  Google Scholar 

  • Bhattacharya, M. K., Smith, A. M., Noel Ellis, T. H., Hedley, C., and Martin, C. 1990, The wrinkled-seed character described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme, Cell 60:115–122.

    Article  Google Scholar 

  • Brink, R. A., and Nilan, R. A., 1952, The relation between light variegated and medium variegated pericarp in maize, Genetics 37:519–544.

    PubMed  CAS  Google Scholar 

  • Carpenter, R., Hudson, A., Robbins, T., Almeida, J., Martin, C., and Coen, E., 1988, Genetic and molecular analysis of transposable elements in Antirrhinum majus, in Plant Transposable Elements (O. E. Nelson, ed.), pp. 69–80, Plenum Press, New York.

    Google Scholar 

  • Chandler, V. L., and Walbot, V., 1986, DNA modification of a maize transposable element correlates with loss of activity, Proc. Natl. Acad. Sci. USA 83:1767–1771.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C. H., Oishi, K. K., Kloeckener-Gruissen, B., and Freeling, M., 1987, Organ-specific expression of maize Adhl is altered after a Mu transposon insertion, Genetics 116:469–477.

    PubMed  CAS  Google Scholar 

  • Chomet, P. S., Wessler, S., and Dellaporta, S. L., 1987, Inactivation of the maize transposable element Activator (Ac) is associated with its DNA modification, EMBO J. 6:295–302.

    PubMed  CAS  Google Scholar 

  • Dooner, H., English, J., Ralston, E., and Week, E., 1986, A single genetic unit specifies two transposition functions in the maize element Activator, Science 234:210–211.

    CAS  Google Scholar 

  • Doling, H-P., 1989, Tagging genes with maize elements: An overview,Maydica 34:73–88.

    Google Scholar 

  • Fedoroff, N., Furtek, D., and Nelson, O. E., 1984, Cloning of the Bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Ac, Proc. Natl. Acad. Sci. USA 81:3825–3839.

    Article  CAS  Google Scholar 

  • Gierl, A., Schwartz-Sommer, Z., and Saedler, H., 1985, Molecular interactions between the components of the En-1 transposable elements inZea mays, EMBO J. 4:579–583.

    PubMed  CAS  Google Scholar 

  • Gierl, A., and Saedler, H., 1989, Maize transposable elements, Annu. Rev. Genet. 23:71–85.

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt, I. M., 1984, A chromosome replication pattern deduced from pericarp phenotypes resulting from movements of the transposable elements Modulator in maize, Genetics 108:471–485.

    PubMed  CAS  Google Scholar 

  • Kim, H-Y., Schiefelbein, J. W., Raboy, V., Furtek, D. B., and Nelson, O. E., Jr., 1987, RNA splicing permits expression of a maize gene with a defective suppressor-mutator transposable element insertion in an exon, Proc. Natl. Acad. Sci. USA 84:5863–5867.

    Article  PubMed  CAS  Google Scholar 

  • Kunze, R., Stochaj, U., Laufs, J., and Starlinger, P., 1987, Transcription of transposable element Activator (Ac) of Zea mays L., EMBO J. 6:1555–1563.

    PubMed  CAS  Google Scholar 

  • McClintock, B., 1951, Chromosome organization and genie expression, Cold Spring Harbor Symp. 16:13–47.

    CAS  Google Scholar 

  • McLaughlin, M., and Walbot, V., 1987, Cloning of a mutable bz2 allele of maize by transposon tagging and differential hybridization, Genetics 117:771–776.

    PubMed  CAS  Google Scholar 

  • Mouli, C., and Notani, N. K., 1970, Absence of a detectable change in Ds at the A1 locus in maize following mutagenic treatments, Can. J. Genet. Cytol. 12:436–442.

    PubMed  CAS  Google Scholar 

  • Muller-Neumann, M., Yoder, Y. I., and Starlinger, P., 1984, The DNA sequence of the transposable element Ac of Zea mays L., Mol. Gen. Genet. 198:19–24.

    Article  Google Scholar 

  • Pereira, A., Cuypers, H., Gierl, A., Schwarz-Sommer, Zs., and Saedler, H., 1986, Molecular analysis of the En/Spm transposable element system of Zea mays, EMBO J. 5:835–841.

    CAS  Google Scholar 

  • Peterson, P. A., 1961, Mutableal of En system in maize,Genetics 46:759–771.

    PubMed  CAS  Google Scholar 

  • Pohlman, R. F., Fedoroff, N. V., and Messing, J., 1984, The nucleotide sequence of the maize controlling element Activator, Cell 37:635–643.

    Article  CAS  Google Scholar 

  • Robertson, D. S., 1978, Characterization of a mutator system in maize, Mutat. Res. 51:21–28.

    Article  Google Scholar 

  • Robertson, D. S., and Stinard, P. S., 1987, Genetic evidence of Mutator induced deletions in the short arm of chromosome 9 of maize, Genetics 115:353–361.

    PubMed  CAS  Google Scholar 

  • Robertson, D. S., Morris, D. W., Stinard, P. S., and Roth, B. A., 1988, Germ line and somatic Mutator activity: Are they functionally related? in Plant Transposable Elements (O. E. Nelson, ed.), pp. 17–42, Plenum Press, New York.

    Google Scholar 

  • Schwartz, D., and Dennis, E., 1986, Transposase activity of the Ac controlling element in maize is regulated by its degree of methylation, Mol. Gen. Genet. 205:476–482.

    Article  CAS  Google Scholar 

  • Schwartz, D., 1989, Gene-controlled cytosine demethylation on the promoter region of the Ac transposable element in maize, Proc. Natl. Acad. Sci. USA 86:2789–2793.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz-Sommer, Z., and Saedler, H., 1988, Transposition and retrotransposition in plants, inPlant Transposable Elements (O. E. Nelson, ed.), pp. 175–187, Plenum Press, New York.

    Google Scholar 

  • Sommer, H., Carpenter, R., Harrison, B. J., and Saedler, H., 1985, The transposable element Tam 3 of Antirrhinum majus generates a novel type of sequence alterations upon excision,Mol. Gen. Genet. 199:225–231.

    Article  CAS  Google Scholar 

  • Sundaresan, V., 1988, ExtrachromosomalMu, in Plant Transposable Elements (O. E. Nelson, ed.), pp. 251–259, Plenum Press, New York.

    Google Scholar 

  • Taylor, L. P., and Walbot, V., 1987, Isolation and characterization of a 1.7 kb transposable element from a mutator line of maize, Genetics 117:297–307.

    PubMed  CAS  Google Scholar 

  • Theres, N., Scheele, T., and Starlinger, P., 1987, Cloning of the Bz2 locus of Zea mays using the transposable element Ds as a gene tag, Mol. Gen. Genet. 209:193–197.

    Article  PubMed  CAS  Google Scholar 

  • Wessler, S. R., Boran, G., and Varagona, M., 1987, The maize transposable element Ds is spliced from RNA, Science 237:916–918.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Notani, N.K. (1991). Plant Transposable Elements. In: Biswas, B.B., Harris, J.R. (eds) Plant Genetic Engineering. Subcellular Biochemistry, vol 17. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9365-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9365-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9367-2

  • Online ISBN: 978-1-4613-9365-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics