Transfer RNA Involvement in Chlorophyll Biosynthesis

  • Gary P. O’Neill
  • Dieter Jahn
  • Dieter Söll
Part of the Subcellular Biochemistry book series (SCBI, volume 17)

Abstract

Porphyrin-containing molecules, such as hemes and chlorophylls, are key components of respiratory and photosynthetic metabolism. The tetrapyrrole rings of these molecules are formed via a branched biosynthetic pathway from the condensation of the important five-carbon intermediate 5-aminolevulinic acid (δ-aminolevulinic acid, ALA). The central role of ALA in porphyrin biosynthesis is underscored by the observation that it is a major point for regulation of heme and chlorophyll synthesis in prokaryotes, yeast, algae, plants, and in avian and mammalian cells (Beale and Weinstein, 1990; Jordan, 1990; Labbe-Bois and Labbe, 1990). The biosynthesis of ALA has recently attracted considerable research interest because of the discovery, initially made in plants, that one pathway for its biosynthesis requires an unusual involvement of a transfer RNA (tRNA). In this review we shall focus on various aspects of the required tRNA.(e.g., its characterization, role in the pathway, regulation, and involvement in other metabolic processes), and the enzymes involved in this tRNA-dependent formation of ALA. Most of the progress in this area has involved plant experimental systems; however, it has become increasingly apparent in the last year that the tRNA-dependent formation of ALA is also widely distributed among the eubacterial and archaebacterial kingdoms. Since the enzymes and the mechanisms involved in the tRNA-dependent formation of ALA appear to be remarkably similar in plants and bacteria, we shall also discuss the recent rapid progress made in several bacterial systems. Other reviews have dealt with the development of this research area from a historical perspective and in relation to the overall process of porphyrin biosynthesis (Beale, 1990; Beale and Weinstein, 1990; Castelfranco and Beale, 1983; Jordan, 1990; Kannangara, 1991; O’Neill and Soil, 1990a; von Wettstein, 1991).

Keywords

Glycine Selenium NADH Pyrrole Hydroxymethyl 

Abbreviations

ALA

δ-aminolevulinic acid

Glu

glutamate

GluRS

glutamyl tRNA synthetase

GluTR

glutamyl tRNA reductase

GSA

glutamate 1 semialdehyde

KAP

7-keto-8-aminopelargonic acid

ORF

open reading frame

PAP

pyridoxamine 5’-phosphate

PLP

pyridoxal 5’-phosphate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agris, P., Söll, D., and Seno, T., 1973, Biological function of 2-thiouridine in Escherichia coli glutamic acid transfer RNA, Biochemistry 12:4331–4337.PubMedGoogle Scholar
  2. Avissar, Y. J., and Beale, S. I., 1988, Biosynthesis of tetrapyrrole pigment precursors. Formationand utilization of glutamyl-tRNA for δ-aminolevulinic acid synthesis by isolated enzyme fractions, Plant Physiol 88:879–886.PubMedGoogle Scholar
  3. Avissar, Y. J., and Beale, S. I., 1989a, Identification of the enzymatic basis for δ-aminolevulinic acid auxotrophy in a hemA mutant of Escherichia coli, J. Bacteriol. 171:2919–2924.PubMedGoogle Scholar
  4. Avissar, Y. J., and Beale, S. I., 1989b, Biosynthesis of tetrapyrrole pigment precursors, Plant Physiol 89:852–859.PubMedGoogle Scholar
  5. Avissar, Y. J., and Beale, S. I., 1990, Cloning and expression of a structural gene from Chlorobium vibrioforme that complements the hemA mutation in Escherichia coli, J. Bacteriol 172:1656–1659.Google Scholar
  6. Avissar, Y. J., Ormerod, J. G., and Beale, S. I., 1989, Distribution of δ-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups, Arch. Microbiol 151:513–519.PubMedGoogle Scholar
  7. Baldauf, S. L., and Palmer, J. D., 1990, Evolutionary transfer of the chloroplast tufA gene to the nucleus, Nature 344:262–265.PubMedGoogle Scholar
  8. Beale, S. I., 1990, Biosynthesis of the tetrapyrrole pigment precursor, δ-aminolevulinic acid, from glutamate, Plant Physiol 93:1273–1279.PubMedGoogle Scholar
  9. Beale, S. I., and Castelfranco, P. A., 1973, 14C incorporation from exogenous compounds into δ-aminolevulinic acid by greening cucumber cotyledons, Biochem. Biophys. Res. Commun. 52:143–149.PubMedGoogle Scholar
  10. Beale, S. I., and Castelfranco, P. A., 1974, The biosynthesis of δ-aminolevulinic acid in higher plants. II. Formation of 14C-δ-aminolevulinic acid from labeled precursors in greening plant tissues, Plant Physiol 53:297–303.PubMedGoogle Scholar
  11. Beale, S. I., and Weinstein, J. D., 1990, Tetrapyrrole metabolism in photosynthetic organisms, in Biosynthesis of Heme and Chlorophyll (H. A. Dailey, ed.), pp. 287–391, McGraw-Hill, New York.Google Scholar
  12. Beale, S. I., Gough, S. P., and Granick, S., 1975, Biosynthesis of δ-aminolevulinic acid from the intact carbon skeleton of glutamic acid in greening barley, Proc. Natl Acad. Sci. USA 72:2719–2723.PubMedGoogle Scholar
  13. Beale, S. I., Foley, T., and Dzelzkalns, V., 1981, Δ-aminolevulinic acid synthase from Euglena gracilis, Proc. Natl Acad. Sci. USA 78:1666–1669.PubMedGoogle Scholar
  14. Berry-Lowe, S., 1987, The chloroplast tRNA glutamate gene required for δ-aminolevulinate synthesis, Carlsberg Res. Commun. 52:197–210.Google Scholar
  15. Böck, A., and Stadtman, T. C., 1988, Selenocysteine, a highly specific component of certain enzymes is incorporated by a UGA-directed co-translational mechanism, Biofactors 1:245–250.PubMedGoogle Scholar
  16. Breton, R., Sanfacon, H., Papayannopoulos, T., Biemann, K., and Lapointe, J., 1986, Glutamyl-tRNA synthetase of Escherichia coli. Isolation and primary structure of the gltX gene and homology with other aminoacyl-tRNA synthetases, J. Biol Chem. 261:10610–10617.PubMedGoogle Scholar
  17. Breu, V., and Dornemann, D., 1988, Formation of 5-aminolevulinic acid via glutamate 1-semi-aldehyde and 4,5-dioxovalerate with participation of a RNA component in Scenecdesmus obliquus mutant C-2A, Biochem. Biophys. Acta 967:135–140.PubMedGoogle Scholar
  18. Bruyant, P., and Kannangara, C. G., 1987, Biosynthesis of Δ-aminolevulinate in greening barley leaves. VIII. Purification and characterization of the glutamate-tRNA ligase, Carlsberg Res. Commun. 52:99–109.Google Scholar
  19. Carbon, J. A., Hung, L., and Jones, D. S., 1965, A reversible oxidative inactivation of specific transfer RNA species, Proc. Natl Acad. Sci. USA 53:979–986.PubMedGoogle Scholar
  20. Castelfranco, P. A., and Beale, S. I., 1983, Chlorophyll biosynthesis: recent advances and areas of current interest, Annu. Rev. Plant Physiol 34:241–278.Google Scholar
  21. Chang, T. E., Wegmann, B., and Wang, W. Y., 1990, Purification and characterization of glutamyl-tRNA synthetase—An enzyme involved in chlorophyll biosynthesis, Plant Physiol 93:1641–1649.PubMedGoogle Scholar
  22. Chen, M. W., Jahn, D., O’Neill, G. P., and Söll, D., 1990a, Purification of the glutamyl-tRNA reductase from Chlamydomonas reinhardtii involved in S-aminolevulinic acid formation during chlorophyll biosynthesis, J. Biol. Chem. 265:4058–4063.PubMedGoogle Scholar
  23. Chen, M. W., Jahn, D., Schön, A., O’Neill, G. P., and Söll, D., 1990b, Purification and characterization of Chlamydomonas reinhardtii chloroplast glutamyl-tRNA synthetase, a natural mis-acylating enzyme, J. Biol. Chem. 265:4054–4057.PubMedGoogle Scholar
  24. Chereskin, B. A., and Castelfranco, P. A., 1982, Effects of iron and oxygen on chlorophyll biosynthesis. II. Observations on the biosynthetic pathway in isolated etiochloroplasts, Plant Physiol. 69:112–116.PubMedGoogle Scholar
  25. Craigen, W. J., Cook, R. G., Tate, W. P., and Caskey, C. T., 1985, Bacterial peptide chain release factors: Conserved primary structure and possible frameshift regulation of release factor 2, J. Mol. Biol. 138:179–207.Google Scholar
  26. Dickerman, H. W., Steers, E., Redfield, B. G., and Weissbach, H., 1967, Methionyl soluble ribonucleic acid transformylase. I. Purification and partial characterization, J. Biol. Chem. 242:1522–1525.PubMedGoogle Scholar
  27. Dörnemann, D., Kotzabasis, K., Richter, P., Breu, V., and Senger, H., 1989, The regulation of chlorophyll biosynthesis by the action of protochlorophyllide on glu-t-RNA-ligase, Botan Acta 102:112–115.Google Scholar
  28. Drolet, M., Peloquin, L., Echelard, Y., Cousineau, L., and Sasarman, A., 1989, Isolation and nucleotide sequence of the hemA gene of Escherichia coli K12, Mol. Gen. Genet. 216:347–352.PubMedGoogle Scholar
  29. Elliott, T., 1989, Cloning, genetic characterization, and nucleotide sequence of the hemA-prfA operon of Salmonella typhimurium, J. Bacteriol. 171:3948–3960.Google Scholar
  30. Evrard, J. L., Kuntz, M., Straus, N. A., and Weil, J. H., 1988, A class-I intron in a cyanelle tRNA gene from Cyanophora paradoxa: Phylogenetic relationship between cyanelles and plant chloroplasts, Gene 71:115–122.PubMedGoogle Scholar
  31. Friedmann, H. C., and Thauer, R. K., 1986, Ribonuclease-sensitive δ-aminolevulinic acid formation from glutamate in cell extracts of Methanobacterium thermoautotrophicum, FEBS Lett. 207:84–88.Google Scholar
  32. Gibson, K. D., Laver, W. G., and Neuberger, A., 1958, Initial stages in the biosynthesis of porphyrins. II. The formation of 5-ALA from glycine and succinyl CoA by particles from chicken erythrocytes, Biochem. J. 70:71–76.PubMedGoogle Scholar
  33. Gough, S. P., and Kannangara, C. G., 1976, Synthesis of δ-aminolevulinic acid by isolated plastids, Carlsberg Res. Commun. 41:183–190.Google Scholar
  34. Gough, S. P., Kannangara, C. G., and Block, K., 1989, A new method for the synthesis of glutamate 1-semialdehyde. Characterization of its structure in solution by NMR spectroscopy, Carlsberg Res. Commun. 54:99–108.Google Scholar
  35. Grimm, B., 1990, Primary structure of a key enzyme in plant tetrapyrrole synthesis: Glutamate 1-semialdehyde aminotransferase, Proc. Natl. Acad. Sci. USA 87:4169–4173.PubMedGoogle Scholar
  36. Grimm, B., Bull, A., Welinder, K. G., Gough, S. P., and Kannangara, C. G., 1989, Purification and partial amino acid sequence of the glutamate 1-semialdehyde aminotransferase of barley and Synechococcus, Carlsberg Res. Commun. 54:67–79.Google Scholar
  37. Gruissem, W., Narita, J. O., Greenberg, B. M., Prescott, D. M., and Hallick, R. B., 1983, Selective in vitro transcription of chloroplast genes, J. Cell. Biochem. 22:31–46.PubMedGoogle Scholar
  38. Hollingsworth, M. J., and Hallick, R. B., 1982, Euglenq gracilis chloroplast transfer RNA transcription units. Nucleotide sequence analysis of a tRNATyr-tRNAHis-tRNAMet-tRNATrp-tRNAGlu-tRNAGly gene cluster, J. Biol. Chem. 257:12795–12799.PubMedGoogle Scholar
  39. Holschuh, K., Bottomley, W., and Whitfield, P. R., 1984, Organization and nucleotide sequence of the genes for spinach chloroplast tRNA, Plant Mol. Biol. 3:313–317.Google Scholar
  40. Hoober, J. K., Kahn, A., Ash, D. E., Gough, S., and Kannangara, C. G., 1988, Biosynthesis of Δ-aminolevulinate in greening barley leaves. IX. Structure of the substrate, mode of gabaculineinhibition, and the catalytic mechanism of glutamate 1-semialdehyde aminotransferase, Carlsberg Res. Commun. 53:11–25.PubMedGoogle Scholar
  41. Houen, G., Gough, S. P., and Kannangara, C. G., 1983, Δ-aminolevulinate synthesis in greening barley V. The structure of glutamate 1-semialdehyde, Carlsberg Res. Commun. 48:567–572.Google Scholar
  42. Houghton, J. D., Brown, S. B., and Gough, S. P., 1989, Biosynthesis of δ-aminolevulinate in Cyanidium caldarium: Characterization of tRNAGlu, ligase, dehydrogenase and glutamate 1-semialdehyde aminotransferase, Carlsberg Res. Commun. 54:131–143.Google Scholar
  43. Huang, L., and Castelfranco, P. A., 1989, Regulation of 5-aminolevulinic acid synthesis in developing chloroplasts. I. Effect of light/dark treatments in vivo and in organello, Plant Physiol. 90:996–1002.PubMedGoogle Scholar
  44. Huang, D. D., and Wang, W. Y., 1986, Chlorophyll biosynthesis in Chlamydomonas starts with the formation of glutamyl-tRNA, J. Biol. Chem. 261:13451–13455.PubMedGoogle Scholar
  45. Huang, D. D., Wang, W. Y., Gough, S. P., and Kannangara, C. G., 1984, Δ-aminolevulinic acid-synthesizing enzymes need an RNA moiety for activity, Science 225:1482–1484.PubMedGoogle Scholar
  46. Huang, L., Bonner, B. A., and Castelfranco, P. A., 1989, Regulation of 5-aminolevulinic acid (ALA) synthesis in developing chloroplasts. II. Regulation of ALA-synthesizing capacity by phytochrome, Plant Physiol. 90:1003–1008.PubMedGoogle Scholar
  47. Jahn, D., Chen, M. W., and Söll, D., 1991a, Purification and functional characterization of gluta-mate-1-semialdehyde aminotransferase from Chlamydomonas reinhardtii, J. Biol. Chem. 266:161–167.Google Scholar
  48. Jahn, D., Kim, Y. C., Ishino, Y., Chen, M. W., and Söll, D., 1991b, Purification and functional characterization of the Glu-tRNAGln aminotransferase from Chlamydomonas reinhardtii, J. Biol. Chem. 265:8059–8064.Google Scholar
  49. Jahn, D., Michelsen, U., and Söll, D., 1991c, Two glutamyl-tRNA reductase activities in Escherichia coli, J. Biol. Chem. 266:2542–2548.Google Scholar
  50. Jordan, P. M., 1990, Biosynthesis of 5-aminolevulinic acid and its transformation into coproporphyrinogen in animals and bacteria, in Biosynthesis of Heme and Chlorophylls (H. A. Dailey, ed.), pp. 55–121, McGraw-Hill, New York.Google Scholar
  51. Kannangara, C. G., 1991, Biochemistry and molecular biology of chlorophyll biosynthesis, in Cell Culture and Somatic Cell Genetics of Plants (L. Bogorad and I. K. Vasil, eds.), The Molecular Biology of Plastids and Mitochondria, Vol. 7B, Academic Press, New York, pp. 302–321.Google Scholar
  52. Kannangara, C. G., and Gough, S. P., 1977, Synthesis of δ-aminolevulinic acid and chlorophyll by isolated plastids, Carlsberg Res. Commun. 42:441–458.Google Scholar
  53. Kannangara, C. G., and Gough, S. P., 1978, Biosynthesis of δ-aminolevulinate in greening barley leaves: Glutamate 1-semialdehyde aminotransferase, Carlsberg Res. Commun. 43:185–194.Google Scholar
  54. Kannangara, C. G., and Gough, S. P., 1979, Biosynthesis of δ-aminolevulinate in greening barley leaves. II. Induction of enzyme synthesis by light, Carlsberg Res. Commun. 44:11–20.Google Scholar
  55. Kannangara, C. G., and Schouboe, A., 1985, Biosynthesis of δ-aminolevulinate in greening barley leaves. VII. Glutamate 1-semialdehyde accumulation in gabaculine treated leaves, Carlsberg Res. Commun. 50:179–191.Google Scholar
  56. Kannangara, C. G., Gough, S. P., Oliver, R. P., and Rasmussen, S. K., 1984, Biosynthesis of δ-aminolevulinate in greening barley leaves. VI. Activation of glutamate by ligation to RNA, Carlsberg Res. Commun. 49:417–437.Google Scholar
  57. Kannangara, C. G., Gough, S. P., Bruyant, P., Hoober, J. K., Kahn, A., and von Wettstein, D., 1988, tRNAGlu as a cofactor in δ-aminolevuinate biosynthesis: Steps that regulate chlorophyll synthesis, Trends Biochem. Sci. 13:139–143.PubMedGoogle Scholar
  58. Kikuchi, G., Kumar, A., Talmage, P., and Shemin, D., 1958, The enzymatic synthesis of δ-aminolevulinic acid, J. Biol. Chem. 233:1214–1219.PubMedGoogle Scholar
  59. Komine, Y., Adachi, T., Inokuchi, H., and Ozeki, H., 1990, Genomic organization and physical mapping of the transfer RNA genes in Escherichia coli Kl2, J. Mol. Biol. 212:579–598.PubMedGoogle Scholar
  60. Kuntz, M., Weil, J. H., and Steinmetz, A., 1984, Nucleotide sequence of a 2 kbp BamH1 fragment of Vicia faba chloroplast DNA containing the genes for threonine, glutamic acid and tyrosine transfer RNAs, Nucleic Acids Res. 12:5037–5047.PubMedGoogle Scholar
  61. Labbe-Bois, R., and Labbe, P., 1990, Tetrapyrrole and heme biosynthesis in the yeast Saccharomyces cerevisiae, in Biosynthesis of Heme and Chlorophyll (H. A. Dailey, ed.), pp. 235–285, McGraw-Hill, New York.Google Scholar
  62. Lapointe, J., and Söll, D., 1972, Glutamyl-tRNA synthetase of Escherichia coli. I. Purification and properties, J. Biol. Chem. 247:4966–4974.PubMedGoogle Scholar
  63. Lapointe, J., Levasseur, S., and Kern, D., 1985, Glutamyl-tRNA synthetase from Escherichia coli, Methods Enzymol. 113:42–49.Google Scholar
  64. Li, J. M., Brathwaite, O., Cosloy, S. D., and Russell, C. S., 1989a, 5-Aminolevulinic acid synthesis in Escherichia coli, J. Bacteriol. 171:2547–2552.Google Scholar
  65. Li, J. M., Russell, C. S., and Cosloy, S. D., 1989b, Cloning and structure of the hemA gene of Escherichia coli K12, Gene 82:209–217.PubMedGoogle Scholar
  66. London, I. M., Levin, D. H., Matts, R. L., Thomas, N. S. B., Petryshyn, R., and Chen, J. J., 1987, Regulation of protein synthesis, Enzymes 18:359–380.Google Scholar
  67. Mau, Y. L., and Wang, W. Y., 1988, Biosynthesis of Δ-aminolevulinic acid in Chlamydomonas reinhardtii, Plant Physiol. 86:793–797.Google Scholar
  68. Mau, Y. H., Wang, W. Y., Tamura, R. N., and Chang, T. E., 1987, Identification of an intermediate of δ-aminolevulinic acid biosynthesis in Chlamydomonas by HPLC, Arch. Biochem. Biophys. 255:75–79.PubMedGoogle Scholar
  69. Mauzerall, D., and Granick, S., 1956, The occurrence and determination of δ-aminolevulinic acid and porphobilinogen in urine, J. Biol. Chem. 219:435–446.PubMedGoogle Scholar
  70. May, B. K., Borthwick, I. A., Srivastava, G., Piróla, B. A., and Elliott, W. H., 1986, Control of 5-aminolevulinate synthases in animals, Current Topics Cell. Reg. 28:233–262.Google Scholar
  71. Melier, E., Belkin, S., and Harel, E., 1975, The biosynthesis of δ-aminolevulinic acid in greening maize leaves, Phytochemistry 14:2399–2402.Google Scholar
  72. Migita, L. K., and Doi, R. H., 1970, Formylation of methionyl-transfer RNA from prokaryotes and eukaryotes by Bacillus subtilis transformylase, Arch. Biochem. Biophys. 138:457–463.PubMedGoogle Scholar
  73. Mukherjee, J. J., and Dekker, E. E., 1990, 2-Amino-3-ketobutyrate CoA ligase of Escherichia coli: Stoichiometry of pyridoxal phosphate binding and location of the pyridoxal lysine peptide in the primary structure of the enzyme, Biochem. Biophys. Acta 1037:24–29.PubMedGoogle Scholar
  74. Oh-Hama, T., Seto, H., and Miyachi, S., 1986a, 13C NMR evidence for bacteriochlorophyll c formation by the C5 pathway in the green sulfur bacterium Prosthecochloris, Eur. J. Biochem. 159:189–194.PubMedGoogle Scholar
  75. Oh-Hama, T., Seto, H., and Miyachi, S., 1986b, 13C-NMR evidence of bacteriochlorophyll a formation by the C5 pathway in Chromatium, Arch. Biochem. Biophys. 246:192–198.PubMedGoogle Scholar
  76. Oh-Hama, T., Seto, H., Otake, N., and Miyachi, S., 1982, 13C-NMR evidence for the pathway of chlorophyll biosynthesis in green algae, Biochem. Biophys. Res. Commun. 105:647–652.PubMedGoogle Scholar
  77. Oh-Hama, T., Stolowich, N. J., and Scott, A. J., 1988, 5-Aminolevulinic acid formation from glutamate via the C5-pathway in Clostridium thermoaceticum, FEBS Lett. 228:89–93.PubMedGoogle Scholar
  78. Ohme, M., Kamogashira, T., Shinozaki, K., and Sugiura, M., 1985, Structure and cotranscription of tobacco chloroplast genes for tRNAGlu(UUC), tRNATyr(GUA), and tRNAAsp(GUC), Nucleic Acids Res. 13:1045–1056.PubMedGoogle Scholar
  79. Ohyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z., Aota, S., Inokuchi, H., and Ozeki, H., 1986, Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA, Nature 322:572–574.Google Scholar
  80. O’Neill, G. P., and Söll, D., 1990a, Transfer RNA and the formation of the heme and chlorophyll precursor, 5-aminolevulinic acid, Biofactors 2:227–234.PubMedGoogle Scholar
  81. O’Neill, G. P., and Söll, D., 1990b, Expression of the Synechocystis sp. strain PCC 6803 tRNAGlu gene provides tRNA for protein and chlorophyll biosynthesis, J. Bacteriol. 172:6363–6371.PubMedGoogle Scholar
  82. O’Neill, G. P., Peterson, D. M., Schön, A., Chen, M. W., and Söll, D., 1988, Formation of the chlorophyll precursor S-aminolevulinic acid in cyanobacteria requires aminoacylation of a tRNAGIu species, J. Bacteriol. 170:3810–3816.PubMedGoogle Scholar
  83. O’Neill, G. P., Chen, M. W., and Söll, D., 1989, Δ-aminolevulinic acid biosynthesis in Escherichia coli and Bacillus suhtilis involves formation of glutamyl-tRNA, FEMS Microbiol. Lett 60:255–260.Google Scholar
  84. O’Neill, G. P., Schön, A., Chow, H., Chen, M. W., Kim, Y. C., and Söll, D., 1990, Sequence of tRNAGlu and its genes from the chloroplast genome of Chlamydomonas reinhardtii, Nucleic Acids Res. 18:5893.Google Scholar
  85. Otsuka, A. J., Buoncristiani, M. R., Howard, P. K., Flamm, J., Johnson, C., Yamamoto, R., Uchida, K., Cook, C., Ruppert, J., and Matsuzaki, J., 1988, The Escherichia coli biotin biosynthetic enzyme sequences predicted from the nucleotide sequence of the bio operon. J. Biol. Chem. 263:19577–19585.PubMedGoogle Scholar
  86. Peterson, D., Schön, A., and Söll, D., 1988, The nucleotide sequences of barley cytoplasmic transfer RNAs and structural features essential for formation of δ-aminolevulinic acid, Plant Mol. Biol. 11:293–299.Google Scholar
  87. Petricek, M., Rutberg, L., Schröder, I., and Hederstedt, L., 1990, Cloning and characterization of the hemA region of the Bacillus subtilis chromosome, J. Bacteriol. 172:2250–2258.PubMedGoogle Scholar
  88. Porra, R. J., Klein, O., and Wright, P. E., 1983, The proof by 13C-NMR spectroscopy of the predominance of the C5 pathway over the Shemin pathway in chlorophyll biosynthesis in higher plants and the formation of the methyl ester group of chlorophyll from glycine, Eur. J. Biochem. 130:509–516.PubMedGoogle Scholar
  89. Proulx, M., and Lapointe, J., 1985, Purification of glutamyl-tRNA synthetase from Bacillus subtilis, Methods Enzymol. 113:50–54.Google Scholar
  90. Proulx, M., Duplain, L., Lacoste, L., Yaguchi, M., and Lapointe, J., 1983, The monomelic glutamyl-tRNA synthetase from Bacillus subtilis 168 and its regulatory role. Their purification, characterization, and the study of their interaction, J. Biol. Chem. 258:753–759.PubMedGoogle Scholar
  91. Quigley, F., and Weil, J. H., 1985, Organization and sequence of five tRNA genes and of an unidentified reading frame in the wheat chloroplast genome: evidence for gene rearrangements during the evolution of chloroplast genomes, Curr. Genet. 9:495–503.PubMedGoogle Scholar
  92. Rasmussen, O. F., Stummann, B. M., and Henningsen, K. W., 1984, Nucleotide sequence of a 1.1 kb fragment of the pea chloroplast genome containing three tRNA genes, one of which is located within an open reading frame of 91 codons, Nucleic Acids Res. 12:9143–9153.PubMedGoogle Scholar
  93. Ratinaud, M. H., Thomes, J. C., and Julien, R., 1983, Glutamyl-tRNA synthetases from wheat. Isolation and characterization of three dimeric enzymes, Eur. J. Biochem. 135:471–477.PubMedGoogle Scholar
  94. Rieble, S., and Beale, S. I., 1988, Transformation of glutamate to δ-aminolevulinic acid by soluble extracts of Synechocystis sp. PCC 6803 and other oxygenic prokaryotes, J. Biol. Chem. 263:8864–8871.PubMedGoogle Scholar
  95. Rieble, S., Ormerod, J. G., and Beale, S. I., 1989, Transformation of glutamate to 5-aminolevulinic acid by soluble extracts of Chlorobium vibrioforme, J. Bacteriol. 171:3782–3787.PubMedGoogle Scholar
  96. Schneegurt, M. A., and Beale, S. I., 1986, Biosynthesis of protoheme and heme a from glutamate in maize, Plant Physiol. 81:965–971.PubMedGoogle Scholar
  97. Schneegurt, M. A., and Beale, S. I., 1988, Characterization of the tRNA required for biosynthesis of 5-aminolevulinic acid from glutamate. Purification by anticodon-based affinity chromatography and determination that the UUC glutamate anticodon is a general requirement for function in ALA biosynthesis, Plant Physiol. 86:497–504.PubMedGoogle Scholar
  98. Schneegurt, M. A., Rieble, S., and Beale, S. I., 1988, The tRNA required for in vitro δ-aminolevulinic acid formation from glutamate in Synechocystis extracts, Plant Physiol. 88:1358–1366.PubMedGoogle Scholar
  99. Schön, A., and Söll, D., 1988a, Transfer RNA specificity of a mischarging aminoacyl-tRNA synthetase: Glutamyl-tRNA synthetase from barley chloroplasts, FEBS Lett. 228:241–244.Google Scholar
  100. Schön, A., and Söll, D., 1988b, Dual role of glutamyl-tRNA in barley chloroplasts: involvement in chlorophyll and protein biosynthesis, Arch. Biol. Med. Ex. 21:467–474.Google Scholar
  101. Schön, A., Krupp* G., Gough, S., Berry-Lowe, S., Kannangara, C. G., and Söll, D., 1986, The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA, Nature 322:281–284.PubMedGoogle Scholar
  102. Schön, A., Kannangara, C. G., Gough, S., and Söll, D., 1988, Protein biosynthesis in organelles requires misaminoacylation of tRNA, Nature 331:187–190.PubMedGoogle Scholar
  103. Shemin, D., and Russell, C. S., 1953, 5-Aminolevulinic acid, its role in the biosynthesis of porphyrins and purines, J. Am. Chem. Soc. 75:4873–4875.Google Scholar
  104. Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Yamaguchi-Shinozaki, K., Ohto, C., Torazawa, K., Meng, B. Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Katol, A., Tohdoh, N., Shimada, H., and Sugiura, M., 1986, The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression, EMBO J. 5:2043–2049.PubMedGoogle Scholar
  105. Soper, T. S., and Manning, J. M., 1982, Inactivation of pyridoxal phosphate enzymes by gabaculine-correlation with enzymic exchange of beta-protons, J. Biol. Chem. 257:13930–13936.PubMedGoogle Scholar
  106. Sprinzl, M., Hartmann, T., Weber, J., Blank, J., and Zeidler, R., 1989, Compilation of tRNA sequences and sequences of tRNA genes, Nucleic Acids Res. 17:1–172.Google Scholar
  107. Stadtman, T. C., Davis, J. N., Zehelein, E., and Böck, A., 1989, Biochemical and genetic analysis of Salmonella typhimurium and Escherichia coli mutants defective in specific incorporation of selenium into formate dehydrogenase and tRNAs, Biofactors 2:35–44.PubMedGoogle Scholar
  108. Stryer, L., 1988, Biochemistry, 3rd ed., pp. 366–367, W. H. Freeman, San Francisco.Google Scholar
  109. Tanizawa, K., Masu, Y., Asano, S., Tanaka, H., and Soda, K., 1989, Thermostable D-amino acid aminotransferase from a thermophilic Bacillus species. Purification, characterization, and active site sequence determination, J. Biol. Chem. 264:2445–2449.PubMedGoogle Scholar
  110. Urata, G., and Granick, S., 1963, Biosynthesis of α-aminoketones and the metabolism of aminoacetone, J. Biol. Chem. 238:811–820.PubMedGoogle Scholar
  111. Verkamp, E., and Chelm, B. K., 1989, Isolation, nucleotide sequence, and preliminary characterization of the Escherichia coli K-12hemA gene, J. Bacteriol. 171:4728–4735.PubMedGoogle Scholar
  112. von Wettstein, D., 1991, Chlorophyll biosynthesis (in press).Google Scholar
  113. Wang, W. Y., Gough, S. P., and Kannangara, C. G., 1981, Biosynthesis of δ-aminolevulinate in greening barley leaves. IV. Isolation of three soluble enzymes required for the conversion of glutamate to δ-aminolevulinate, Carlsberg Res. Commun. 46:243–257.Google Scholar
  114. Wang, W. Y., Huang, D. D., Stachon, D., Gough, S. P., and Kannangara, C. G., 1984, Purification, characterization, and fractionation of the δ-aminolevulinic acid synthesizing enzymes from light-grown Chlamydomonas reinhardtii cells, Plant Physiol. 74:569–575.PubMedGoogle Scholar
  115. Weinstein, J. D., and Beale, S. I., 1983, Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis, J. Biol. Chem. 258:6799–6807.PubMedGoogle Scholar
  116. Weinstein, J. D., and Beale, S. I., 1985, RNA is required for enzymatic conversion of glutamate to δ-aminolevulinate by extracts of Chlorella vulgaris, Arch. Biochem. Biophys. 239:87–93.Google Scholar
  117. Weinstein, J. D., Mayer, S. M., and Beale, S. I., 1987, Formation of δ-aminolevulinic acid from glutamic acid in algal extracts. Separation into an RNA and three required enzyme components by serial affinity chromatography, Plant Physiol. 84:244–250.PubMedGoogle Scholar
  118. Whatley, J. M., and Whatley, F. R., 1981, Chloroplast evolution. New Phytol. 87:233–247.Google Scholar
  119. Wilcox, M., and Nirenberg, M., 1968, Transfer RNA as a cofactor coupling amino acid synthesis with that of protein, Proc. Natl. Acad. Sci. USA 61:229–236.PubMedGoogle Scholar
  120. Woese, C. R., 1987, Bacterial evolution, Microbiol. Rev. 51:221–271.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Gary P. O’Neill
    • 1
  • Dieter Jahn
    • 1
  • Dieter Söll
    • 1
  1. 1.Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUSA

Personalised recommendations