Advertisement

Reconstitution of Acetylcholine Receptors into Planar Lipid Bilayers

Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 14)

Abstract

The electrical activity of membranes is produced and regulated by the coordinated gating of specific ion channels. Accordingly, the exploration of the molecular basis of membrane excitation and synaptic transmission has required considerable investigation of ion channels, the molecular units that mainly control ion permeabilities of cell membranes. Studies on the mechanisms of action for channel proteins depend on the convergence of knowledge about the structure of the membrane proteins, together with a detailed characterization of their function at the molecular level. The nicotinic acetylcholine receptor (AChR), one of the most detailed investigated channel-forming proteins, provides some unique opportunities, justifying the pursuit of this goal.

Keywords

Acetylcholine Receptor Nicotinic Acetylcholine Receptor Cholinergic Agonist Planar Lipid Bilayer Agonist Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beadle, D. J., and Lees, G., 1986, Insect neuronal cultures a new tool in insect neuropharmacology, in Neuropharmacology and Pesticide Action (M. G. Ford, G. G. Lunt, R. C. Reay, and P. N. R. Usherwood, eds.), pp. 423–444, Ellis Horwood, Chichester, England.Google Scholar
  2. Boheim, G., Hanke, W., Barrantes, F. J., Eibl, H., Sakmann, B., Fels, G., and Maelicke, A., 1981, Agonist-activated ionic channels in acetylcholine receptor reconstituted into planar lipid bilayers. Proc. Natl Acad. Sci. U.S.A. 78:3586–3590.PubMedCrossRefGoogle Scholar
  3. Boheim, G., Hanke, W., Methfessel, C., Eibl, H., Kaupp, U. B., Maelicke, A., and Schultz, J. E., 1982, Membrane reconstitution below lipid phase transition temperature, in Transport in Biomembranes: Model Systems and Reconstitution (R. Antolini, ed.), pp. 87–97, Raven Press, New York.Google Scholar
  4. Boulter, J., Evans, K., Goldman, D., Martin, G., Treco, D., Heineman, S., and Patrick, J., 1987, Isolation of cDNA clone coding for a possible neuronal nicotinic acetylcholine receptor a subunit. Nature (London) 319:368–374.CrossRefGoogle Scholar
  5. Breer, H., Kleene, R., and Hinz, G., 1985, Molecular forms and subunit structure of the acetylcholine receptor in the nervous system of insects. J. Neurosci. 5:3386–3392.PubMedGoogle Scholar
  6. Cohen, F. S., 1986, Fusion of liposomes to planar bilayers, in Ion Channel Reconstitution (C. Miller, ed.), pp. 131–139, Plenum Press, New York.Google Scholar
  7. Colquhoun, D., and Hawkes, A. G., 1977, Relaxation and fluctuation of membrane currents that flow through drug operated channels. Proc. R. Soc. London (Biol.) 119:231–247.CrossRefGoogle Scholar
  8. Colquhoun, D., and Hawkes, A. G., 1981, On the stochastic properties of single ion channels. Proc. R. Soc. London (Biol.) 211:205–235.CrossRefGoogle Scholar
  9. Colquhoun, D., and Hawkes, A. G., 1982, On the stochastic properties of single ion channel openings and of clusters of bursts. Philos. Trans. R. Soc. London (Biol.) 300:1–59.CrossRefGoogle Scholar
  10. Colquhoun, D., and Sakmann, B., 1985, Fast events in single channel currents activated by acetylcholine and its analogues at the frog-muscle end-plate. J. Physiol. 369:501–557.PubMedGoogle Scholar
  11. Conti-Tronconi, B. M., and Raftery, M. A., 1982, The nicotinic cholinergic receptor: Correlation of molecular structure with functional properties. Annu. Rev. Biochem. 51:491–530.PubMedCrossRefGoogle Scholar
  12. Coronado, R., and Latorre, R., 1983, Phospholipid bilayers made from monolayers on patch-clamp pipettes. Biophys. J. 43:231–236.PubMedCrossRefGoogle Scholar
  13. Epstein, M., and Racker, E., 1978, Reconstitution of carbamylcholine-dependent sodium ion flux and desensitization of the acetylcholine receptor from Torpedo californica. J. Biol. Chem. 253:6660–6662.PubMedGoogle Scholar
  14. Hamill, O. P., and Sakmann, B., 1981, Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells. Nature (London) 294:962–964.CrossRefGoogle Scholar
  15. Hanke, W., 1985, Reconstitution of ion channels. CRC Crit. Rev. Biochem. 19:1–44.PubMedCrossRefGoogle Scholar
  16. Hanke, W., 1986, Incorporation of ion channels by fusion, in Ion Channel Reconstitution (C. Miller, ed.), pp. 141–157, Plenum Press, New York.Google Scholar
  17. Hanke, W., and Breer, H., 1986, Channel properties of an insect neuronal acetylcholine receptor protein reconstituted in planar lipid bilayers. Nature (London) 321:171–174.CrossRefGoogle Scholar
  18. Hanke, W., and Breer, H., 1987, Characterization of the channel properties of a neuronal acetylcholine receptor reconstituted into planar lipid bilayers. J. Gen. Physiol. 90:855–879.PubMedCrossRefGoogle Scholar
  19. Hanke, W., and Breer, H., 1988, Gating properties of a neuronal acetylcholine receptor. J. Gen. Physiol., submitted.Google Scholar
  20. Hess, G. P., Kolb, H.-A., Lauger, P., Schoffeniels, P., Schwarze, W., Ugaonkar, J. B., and Pasquale, E. B., 1985, Acetylcholine receptor from Electropherus electricus: A comparison of single channel current recordings and chemical measurements, in Molecular Basis of Nerve Activity (J.-P. Changeaux, F. Hucho, M. Maelicke, and E. Neumann, eds.), pp. 317–331, de Gruyter, Berlin.Google Scholar
  21. Hucho, F., 1986, The nicotinic acetylcholine receptor and its ion channel. Eur. J. Biochem. 158(2):211–326.PubMedCrossRefGoogle Scholar
  22. Jackson, M. B., 1984, Spontaneous openings of the acetylcholine receptor channel. Proc. Natl. Acad. Sci. U.S.A. 81:3901–3904.PubMedCrossRefGoogle Scholar
  23. Jackson, M. B., 1986, Kinetics of unliganded acetylcholine receptor channel gating. Biophys. J. 49:663–672.PubMedCrossRefGoogle Scholar
  24. Kasai, M., and Changeaux, J.-P., 1971, In vitro excitation of purified membrane fragments by cholinergic agonists. J. Membr. Biol. 6:1–80.CrossRefGoogle Scholar
  25. Labarca, P., Lindstrom, J., and Montal, M., 1984, Acetylcholine receptor in planar lipid bilayers: Characterization of the channel properties of the purified nicotinic acetylcholine receptor from Torpedo californica reconstituted in planar lipid bilayers. J. Gen. Physiol. 83:473–496.PubMedCrossRefGoogle Scholar
  26. Labarca, P., Montal, M. S., Lindstrom, J. M., and Montal, M., 1985, The occurrence of long openings in the purified cholinergic receptor channel increases with acetylcholine concentration. J. Neurosci. 5:3409–3413.PubMedGoogle Scholar
  27. Maelicke A., 1984, Biochemical aspects of cholinergic excitation. Angew. Chem. 23:195–221.CrossRefGoogle Scholar
  28. Margiotta, J. F., Darwin, K. B., and Berg, E. D., 1987, The functional properties and regulation of functional acetylcholine receptor on chick ciliary ganglion neurons. J. Neurosci. 7(11): 3612–3622.PubMedGoogle Scholar
  29. Mishina, M., Kurosaki, T., Tobimatsu, T., Morimoto, Y., Noda, M., Yamamoto, T., Terao, M., Lindstrom, J., Takahashi, T., Kuno, M., and Numa, S., 1984, Expression of functional acetylcholine receptor from cloned cDNAs. Nature (London) 307:604–608.CrossRefGoogle Scholar
  30. Mishina, M., Tobimatsu, T., Imoto, K., Tanaka, K., Fujitsu, Y., Fukuda, K., Kurasaki, M., Takahashi, H., Morimoto, Y., Hirose, T., Inayama, S., Takahashi, T., Kuno, M., and Numa, S., 1985, Location of functional regions of acetylcholine receptor a-subunit by site-directed mutagenesis. Nature (London) 313:364–369.CrossRefGoogle Scholar
  31. Mishina, M., Takai, T., Imoto, K., Noda, M., Takahashi, T., Numa, S., Methfessel, C., and Sakmann, B., 1986, Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature (London) 321:406–411.CrossRefGoogle Scholar
  32. Montai, M., and Mueller, P., 1972, Formation of bimolecular membranes from lipid monolayers and a study of their electric properties. Proc. Natl. Acad. Sci. U.S.A. 69:3561–3566.CrossRefGoogle Scholar
  33. Montai, M., Labarca, P., Fredkin, D. R., Suarez-Isla, B. A., and Lindstrom, J., 1984, Channel properties of the purified acetylcholine receptor from Torpedo californica reconstituted in planar lipid bilayer membranes. Biophys. J. 45:165–174.CrossRefGoogle Scholar
  34. Montai, M., Anholt, R., and Labarca, P., 1986, The reconstituted acetylcholine receptor, in Ion Channel Reconstitution (C. Miller, ed.), pp. 157–204, Plenum Press, New York.Google Scholar
  35. Mueller, P., Rudin, D., Tien, H. T., and Wescott, W. C., 1962, Reconstitution of excitable cell membrane structure in vitro. Circulation 26:1167–1171.Google Scholar
  36. Nelson, N., Lindstrom, J., and Montai, M., 1980, Reconstitution of purified acetylcholine receptors with functional ion channels in planar lipid bilayers. Proc. Natl. Acad. Sci. U.S.A. 77:3057–3061.PubMedCrossRefGoogle Scholar
  37. Popot, J. L., and Changeaux, J.-P., 1984, The nicotinic receptor of acetylcholine: Structure of an oligomeric integral membrane protein. Physiolog. Rev. 64:1162–1239.Google Scholar
  38. Sakmann, B., Patlak, J., and Neher, E., 1980, Single acetylcholine activated channels show burst kinetics in presence of desensitizing concentrations of agonist. Nature (London) 286:71–73.CrossRefGoogle Scholar
  39. Sakmann, B., Bormann, J., and Hamill, O. P., 1983, Ion transport by single receptor channels, in Cold Spring Harbor Symposia on Quantitative Biology, Vol. XLVIII, pp. 247–257, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  40. Sakmann, B., Methfessel, C., Mishina, M., Takahashi, T., Takai, T., Kurasaki, M., Fukuda, K., and Numa, S., 1985, Role of acetylcholine receptor subunits in gating of the channel. Nature (London) 318:538–543.CrossRefGoogle Scholar
  41. Satelle, D. B., 1986, Insect acetylcholine receptors-biochemical and physiological approaches, in Neuropharmacology and Pesticide Action (M. G. Ford, G. G. Lunt, R. C. Reay, and P. N. R. Usherwood, eds.), pp. 445–497, Ellis Horwood, Chichester, England.Google Scholar
  42. Schindler, H., and Quast, U., 1980, Functional acetylcholine receptor from Torpedo californica in planar bilayers. Proc. Natl. Acad. Sci. U.S.A. 77:3052–3056.PubMedCrossRefGoogle Scholar
  43. Schinholz, T., and Schindler, H., 1983, Formation of lipid-protein bilayers by micropipette guided contact of two monolayers. FEBS Lett. 152:187–190.CrossRefGoogle Scholar
  44. Suarez-Isla, B. A., Wan, K., Lindstrom, J., and Montai, M., 1983, Single channel recordings from purified acetylcholine receptors reconstituted in t ilayers formed at the tip of patch-pipettes. Biochemistry 22:2319–2323.PubMedCrossRefGoogle Scholar
  45. Tank, D. W., Huganir, R. L., Greengard, p., and Webb, W. W., 1983, Patch-recorded single channel currents of the purified and reconstituted Torpedo acetylcholine receptor. Proc. Natl. Acad. Sci. U.S.A. 80:5129–5133.PubMedCrossRefGoogle Scholar
  46. Whiting, P., and Lindstrom, J., 1987, Purification and characterization of a nicotinic acetylcholine receptor from rat brain. Proc. Natl. Acad. Sci. U.S.A. 84:595–599.PubMedCrossRefGoogle Scholar
  47. Wilmsen, U., Methfessel, C., Hanke, W., and Boheim, G., 1983, Channel current fluctuation studies with solvent free lipid bilayers using Neher-Sakmann pipettes, in Physical Chemistry of Transmembrane Ion Motion (G. Spach, ed.), pp. 479–485, Elsevier, Amsterdam.Google Scholar
  48. Young, J. D.-E., Cohn, Z. A., and Norton, B. G., 1987, Functional assembly of gap-junction conductance in lipid bilayers: Demonstration that the major 27 kD protein forms the junctional channel. cell 48:733–743.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  1. 1.Department of Biology and BiophysicsOsnabrück UniversityOsnabrückFederal Republic of Germany

Personalised recommendations