Energy-Transducing Complexes in Bacterial Respiratory Chains

Part of the Subcellular Biochemistry book series (SCBI, volume 14)


Oxidative phosphorylation in mitochondria and photophosphorylation in chloroplasts are highly organized systems that yield living energy for eukaryotes. By introducing the concept of an electrochemical H+ gradient across the membrane (\(\Delta \tilde \mu \rm H^ + \))—that is, a proton motive force (pmf) composed of ΔΨ and ΔpH as \(\Delta \tilde \mu \rm H^ + _{(mV)} = \Delta \psi - Z\Delta pH\,(Z \simeq 60\,mV)\)—the chemiosmotic hypothesis (Mitchell, 1966) has played a central role in solving the problem of how organelles synthesize ATP using oxidative or photo energy. According to this hypothesis, the components of the electron transfer chain translocate protons across the membrane unidirectionally. The pmf thus established drives protons through an anisotropic reversible proton-translocating ATPase (ATP synthase) to synthesize ATP from ADP and Pi. There are other translocators (H+ symporters such as Pi carrier and electrogenic translocators such as ATP/ADP translocator) in energy-transducing biomembranes that transport substrates using a pmf. These energy-transducing membranes include the cytoplasmic membranes of bacteria. Eubacteria at least (Archaebacteria may have a slightly different ATP synthase) contain the anisotropic F0·F1 type H+-translocating ATPase (ATP synthase) that has very similar molecular architecture and characteristics to those of the ATP synthases of mitochondria and chloroplasts (Amzel and Pedersen, 1983), as well as having several translocators that utilize pmf. In contrast, the bacterial electron transfer chains that produce a pmf show great variety, even if among those in aerobic respiratory systems (Jones, 1977).


Cytochrome Oxidase NADH Dehydrogenase Electron Transfer Chain Quinone Oxidoreductase Terminal Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amzel, L. M., and Pedersen, P. L., 1983, Proton ATPases: Structure and mechanism. Annu. Rev. Biochem. 52:801–824.PubMedCrossRefGoogle Scholar
  2. Asano, A., Imai, K., and Sato, R., 1967, Oxidative phosphorylation in Micrococcus denitrificans. II. The properties of pyridine nucleotide transhydrogenase. Biochim. Biophys. Acta 143:477–486.PubMedCrossRefGoogle Scholar
  3. Baines, B. S., Hubbard, J. A. M., and Poole, R. K., 1984, Purification and partial characterization of two cytochrome oxidases (caa 3 and o) from the thermophilic bacterium PS3. Biochim. Biophys. Acta 766:438–445.PubMedCrossRefGoogle Scholar
  4. Beattie, D. S., 1986, Is cytochrome bc 1 complex a proton pump?, probably yes. J. Bioenerg. Biomembr. 18:1–20.PubMedCrossRefGoogle Scholar
  5. Bergsma, J., Maarten, B. M., Dongen, V., and Konings, N. W., 1982a, Purification and characterization of NADH dehydrogenase from Bacillus subtilis. Eur. J. Biochem. 128:151–157.PubMedCrossRefGoogle Scholar
  6. Bergsma, J., Meihuizen, E. K., Oeveren, V. W., and Konings, N. W., 1982b, Restoration of NADH oxidation with menaquinones and menaquinone analogues in membrane vesicles from the menaquinone-deficient Bacillus subtilis aroD. Eur. J. Biochem. 125:651–657.PubMedCrossRefGoogle Scholar
  7. Berry, E. A., and Trumpower, B. L., 1985, Isolation of ubiquinol oxidase from Paracoccus denitrificans and resolution into cytochrome bc 1 and cytochrome caa 3 complexes. J. Biol. Chem. 260:2458–2467.PubMedGoogle Scholar
  8. Boogerd, F. C., van Verseveld, H. W., Torenvliet, D., Braster, M., and Stouthamer, A. H., 1984, Reconstitution of the efficiency of energy transduction in Paracoccus denitrificans during growth under a variety of culture conditions. Arch. Microbiol. 139:344–350.CrossRefGoogle Scholar
  9. Boyer, P. D., Chance, B., Ernster, L., Mitchell, P., Racher, E., and Slater, E. C., 1977, Oxidative phosphorylation and photophosphorylation. Annu. Rev. Biochem. 46:955–1025.PubMedCrossRefGoogle Scholar
  10. Brice, J. M., Law, J. F., Meyer, D. J., and Jones, C. W., 1974, Energy conservation in Escherichia coli and Klebsiella pneumoniae. Biochem. Soc. Trans. 2:523–526.Google Scholar
  11. Brodie, A. F., 1959, Oxidative phosphorylation in fractionated bacterial systems. 1. Role of soluble factors. J. Biol. Chem. 234:398–404.PubMedGoogle Scholar
  12. Carver, M. A., and Jones, C. W., 1983, The terminal respiratory chain of the methylotrophic bacterium Methylophilus methylotrophus. FEBS Lett. 155:187–191.PubMedCrossRefGoogle Scholar
  13. Casey, R. P., 1984, Membrane reconstitution of the energy-conserving enzymes of oxidative phosphorylation. Biochim. Biophys. Acta 768:319–347.PubMedGoogle Scholar
  14. Casey, R. P., Thelen, M., and Azzi, A., 1980, Dicyclohexylcarbodiimide binds specifically and covalently to cytochrome c oxidase while inhibiting its H+-translocating activity. J. Biol. Chem. 255:3994–4000.PubMedGoogle Scholar
  15. Chance, B., Saronio, C., and Leigh, J. S., 1975, Functional intermediates in reaction of cytochrome oxidase with oxygen. Proc. Natl. Acad. Sci. U.S.A. 72:1635–1640.PubMedCrossRefGoogle Scholar
  16. Chetkauskaite, A. V., and Grinius, L. L., 1979, Transhydrogenase as an additional site of energy accumulation in the Escherichia coli respiratory chain. Biokhimiya 44:869–876 (in English).Google Scholar
  17. Chicken, E., Spode, J. A., and Jones, C. W., 1981, Respiration-linked proton translocation in the moderate thermophile Bacillus stearothermophilus. FEMS Microbiol. Lett. 11:181–185.Google Scholar
  18. Clarke, D. M., and Bragg, P. D., 1985, Purification and properties of reconstitutively active nicotinamide nucleotide transhydrogenase of Escherichia coli. Eur. J. Biochem. 149:517–523.PubMedCrossRefGoogle Scholar
  19. Clarke, D. M., Loo, T. W., Gllam, S., and Bragg, P. D., 1986, Nucleotide sequence of pnt A and pnt B genes encoding the pyridine nucleotide transhydrogenase of Escherichia coli. Eur. J. Biochem. 158:641–653.CrossRefGoogle Scholar
  20. Cole, S. T., Condon, C., Lemire, B. D., and Weiner, J. H., 1985, Molecular biology, biochemistry and bioenergetics of fumarate reductase, a complex membrane-bound iron-sulfur flavoenzyme of Escherichia coli. Biochim. Biophys. Acta 811:381–403.PubMedGoogle Scholar
  21. Collins, M. D., and Jones, D., 1981, Distribution of isoprenoid quinone structure types in bacteria and their taxonomic implications. Microbiol. Rev. 45:316–354.PubMedGoogle Scholar
  22. De Vries, S., 1986, The pathway of electron transfer in the dimeric QH2: cytochrome c oxidore ductase. J. Bioenerg. Biomembr. 18:195–224.PubMedCrossRefGoogle Scholar
  23. De Vrij, W., 1986, Energy-transducing processes in membrane vesicles from Bacillus subtilis, Thesis, University of Groningen.Google Scholar
  24. De Vrij, W., Azzi, A., and Konings, W. N., 1983, Structural and functional properties of cytochrome oxidase from Bacillus subtilis W23. Eur. J. Biochem. 131:97–103.PubMedCrossRefGoogle Scholar
  25. Downs, A. J., and Jones, C. W., 1975, Energy conservation in Bacillus megaterium. Arch. Microbiol. 105:159–167.PubMedCrossRefGoogle Scholar
  26. Drozd, J. W., and Jones, C. W., 1974, Oxidative phosphorylation in Hydrogenomonas eutropha H16 grown with and without iron. Biochem. Soc. Trans. 2:529–531.Google Scholar
  27. Etemadi, A.-H., 1985, Function and orientational features of protein molecules in reconstituted lipid membranes. Adv. Lipid Res. 21:281–428.PubMedGoogle Scholar
  28. Eytan, G. D., and Racker, E., 1977, Selective incorporation of membrane proteins into proteoliposomes of different composition. J. Biol. Chem. 252:3208–3213.PubMedGoogle Scholar
  29. Fee, J. A., Choc, M. G., Findling, M. L., Lorence, R., and Yoshida, T., 1980, Properties of a copper-containing cytochrome c 1 aa 3 complex: A terminal oxidase of the extreme thermophile Thermus thermophilus HB8. Proc. Natl. Acad. Soc. U.S.A. 77:147–151.CrossRefGoogle Scholar
  30. Fee, J. A., Kuila, D., Michael, W., and Yoshida, T., 1986, Respiratory proteins from extremely thermophilic, aerobic bacteria. Biochim. Biophys. Acta 853:153–185.PubMedGoogle Scholar
  31. Fukumori, Y., Nakayama, K., and Yamanaka, T., 1985a, Cytochrome c oxidase of Pseudomonas AMI: Purification and molecular and enzymatic properties. J. Biochem. 98:493–499.PubMedGoogle Scholar
  32. Fukumori, Y., Nakayama, K., and Yamanaka, T., 1985b, One of the two copper atoms is not necessary for the cytochrome c oxidase activity of Pseudomonas AMI cytochrome aa 3. J. Biochem. 98:1719–1722.PubMedGoogle Scholar
  33. Gabellini, N., and Sebald, W., 1986, Nucleotide sequence and transcription of the fbc operon from Rhodopseudomonas sphaeroides. Eur. J. Biochem. 154:569–579.PubMedCrossRefGoogle Scholar
  34. Gabellini, N., Harnisch, U., McCarthy, J. E. G., Hauska, G., and Sebald, W., 1985, Cloning and expression of the fbc operon encoding the FeS proton, cytochrome b and cytochrome cx from the Rhodopseudomonas sphaeroides b/c 1 complex. EMBO J. 4:549–553.PubMedGoogle Scholar
  35. Gennis, R. B., Ludwig, B., Casey, R. C., and Azzi, A., 1982, Purification and characterization of the cytochrome c oxidase from Rhodopseudomonas sphaeroides. Eur. J. Biochem. 125: 189–195.PubMedCrossRefGoogle Scholar
  36. George, C. L., and Ferguson, S. J., 1984, Immunological identification of a two subunit NADH-ubiquinone oxidoreductase. Eur. J. Biochem. 143:567–573.PubMedCrossRefGoogle Scholar
  37. George, C. L., Ferguson, S. J., Cleeter, M. W. J., and Ragan, C. I., 1986, Structural relationships between the NADH dehydrogenases of Paracoccus denitrificans and bovine heart mitochondria as revealed by immunological cross-reactivities. FEBS Lett. 198:135–139.PubMedCrossRefGoogle Scholar
  38. Graf, M., Bokranz, M., Bocher, R., Friedl, P., and Kroger, A., 1985, Electron transport driven phosphorylation catalyzed by proteoliposomes containing hydrogenase, fumarate reductase and ATP synthase. FEBS Lett. 184:100–103.CrossRefGoogle Scholar
  39. Hamamoto, T., Carrasco, N., Matsushita, K., Kaback, H. R., and Montal, M., 1985, Direct measurement of the electrongenic activity of o-type cytochrome oxidase from E. coli reconstituted into planar lipid bilayers. Proc. Natl. Acad. Sci. U.S.A. 82:2570–2573.PubMedCrossRefGoogle Scholar
  40. Hatefi, Y., 1985, The mitochondrial electron transport and oxidative phosphorylation system. Annu. Rev. Biochem. 54:1015–1070.PubMedCrossRefGoogle Scholar
  41. Hauska, G., Hurt, E., Gabellini, N., and Lockau, W., 1983, Comparative aspects of quinolcytochrome c/platcyanin oxidoreductases. Biochim. Biophys. Acta. 726:97–133.PubMedGoogle Scholar
  42. Hayashi, M., and Unemoto, T., 1987, Subunit components and their roles in the sodium-transport NADH: quinone reductase of a marine bacterium, Vibrio alginolyticus. Biochim. Biophys. Acta 890:47–54.CrossRefGoogle Scholar
  43. Hisae, N., Aizawa, K., Koyama, N., Sekiguchi, T., and Nosoh, Y., 1983, Purification and properties of NADH dehydrogenase from an alkalophilic bacillus. Biochim. Biophys. Acta. 743:232–238.CrossRefGoogle Scholar
  44. Hitchens, G. D., and Kell, D. B., 1984, On the effects of thiocyanate and venturicidin on respiration-driven proton translocation in Paracoccus denitrificans. Biochim. Biophys. Acta 766:222–232.PubMedCrossRefGoogle Scholar
  45. Hon-nami, K., and Oshima, T., 1984, Purification and characterization of cytochrome c oxidase from Thermus thermophilus HB8. Biochemistry 23:454–466.CrossRefGoogle Scholar
  46. Hooper, A. B., and DiSpirito, A. L., 1985, In bacteria which grow on simple reductants, generation of a proton gradient involves extracytoplasmic oxidation of substrate. Microbiol. Rev. 49:140–157.PubMedGoogle Scholar
  47. Hudig, H., and Drews, G., 1984, Reconstitution of b-type cytochrome oxidase from Rhodopseudomonas capsulata in liposomes and turnover studies of proton translocation. Biochim. Biophys. Acta 765:171–177.CrossRefGoogle Scholar
  48. Hurt, G. H., and Hauska, G., 1981, Ubiquinol: cytochrome c reductase isolated in Triton X-100 by hydroxylapatite and gel chromatography. Eur. J. Biochem. 117:591–599.PubMedCrossRefGoogle Scholar
  49. Hurt, E. C., Hauska, G., and Shahnk, Y., 1982, Electrogenic proton translocation by the chloroplast cytochrome b 6 f complex reconstituted into phospholipid vesicles. FEBS Lett. 149:211–216.CrossRefGoogle Scholar
  50. Hurt, E. C., Gabellini, N., Shahak, Y., Lockau, W., and Hauska, G., 1983, Extra proton translocation and membrane potential generation. Universal properties of cytochrome bc1/ b 6 f complexes reconstituted into liposomes. Arch. Biochem. Biophys. 225:879–885.PubMedCrossRefGoogle Scholar
  51. Iba, K., Takamiya, K., and Arata, H., 1985, Isolation and characterization of cytochrome b562 from cytochrome bc 1 complex of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26. FEBS Lett. 183:151–154.CrossRefGoogle Scholar
  52. Iba, K., Morohashi, K., Miyata, T., and Takamiya, K., 1987, Structural gene of cytochrome b-562 from cytochrome bc 1 complex of Rhodobacter sphaeroides. J. Biochem. 102:1511–1518.PubMedGoogle Scholar
  53. Imai, K., Asano, A., and Sato, R., 1967, Oxidative phosphorylation in Micrococcus denitrificans. I. Preparation and properties of phosphorylating membrane fragments. Biochim. Biophys. Acta 143:462–476.PubMedCrossRefGoogle Scholar
  54. Ingledew, J., and Poole, R. K., 1984, Respiratory chains of Escherichia coli. Microbiol. Rev. 48:222–271.PubMedGoogle Scholar
  55. Jaworowski, A., Campbell, H. D., Poulis, M. I., and Young, I. G., 1981a, Genetic identification and purification of the respiratory NADH dehydrogenase of Escherichia coli. Biochemistry 20:2041–2047.PubMedCrossRefGoogle Scholar
  56. Jaworowski, A., Mayo, G., Shaw, D. C., Campbell, H. D., and Young, I. G., 1981b, Characterization of the respiratory NADH dehydrogenase of Escherichia coli and reconstitution of NADH dehydrogenase in ndh mutant membrane vesicles. Biochemistry 20:3621–3628.PubMedCrossRefGoogle Scholar
  57. John, P., and Whatley, F. R., 1977, Bioenergetics of Paracoccus denitrificans. Biochim. Biophys. Acta 463:129–153.PubMedGoogle Scholar
  58. Jones, C. W., 1977, Aerobic respiratory systems in bacteria. Symp. Soc. Gen. Microbiol. 27:23–59.Google Scholar
  59. Jones, C. W., Brice, J. M., Downs, A. J., and Drozd, J. W., 1975, Bacterial respiration-linked proton translocation and its relationship to respiratory chain composition. Eur. J. Biochem. 52:265–271.PubMedCrossRefGoogle Scholar
  60. Kadenbach, B., Stroh, A., Ungibauer, M., Kuhn-Nentwig, L., Büge, U., Jarausch, J., 1986, Isozymes of cytochrome c oxidase: characterization and isolation from different tissues, Methods Enzymol. 126:32–45.PubMedCrossRefGoogle Scholar
  61. Kagawa, Y., 1967, Target of components oxidative phosphorylation. Studies with a linear accelerator. Biochim. Biophys. Acta 131:526–588.CrossRefGoogle Scholar
  62. Kagawa, Y., and Racker, E., 1971, Partial resolution of the enzymes catalyzing oxidative phosphorylation, XXV. Reconstitution of vesicles catalyzing 32Pi-ATP exchange. J. Biol. Chem. 246:5477–5487.Google Scholar
  63. Kasahara, M., and Hinkle, P. C., 1977, Reconstitution and purification of the D-glucose transporter from human erythrocytes. J. Biol. Chem. 252:7384–7390.PubMedGoogle Scholar
  64. Kawada, N., Takada, K., and Nosoh, Y., 1981, Effect of lipids on a membrane-bound NADH dehydrogenase from Bacillus caldotenax. J. Biochem. 89:1017–1027.PubMedGoogle Scholar
  65. Keevil, C. W. and Anthony, C., 1979, Effect of growth conditions on the involvement of cytochrome c in electron transport, proton translocation and ATP synthesis in the facultative methylotroph Pseudomonas AMI. Biochem. J. 182:71–79.PubMedGoogle Scholar
  66. Kempner, E. S., and Schlegel, W., 1979, Size determination of enzymes by radiation inactivation. Anal. Biochem. 92:2–10.PubMedCrossRefGoogle Scholar
  67. Kita, K., Kasahara, M., and Anraku, Y., 1982, Formation of a membrane potential by reconsituted liposomes made with cytochrome b562-ocomplex, a terminal oxidase of E. coli. J. Biol. Chem. 257:7933–7935.PubMedGoogle Scholar
  68. Kita, K., Konishi, K., and Anraku, Y., 1984a, Terminal oxidases of E. coli aerobic respiratory chain. I. J. Biol. Chem. 259:3368–3374.PubMedGoogle Scholar
  69. Kita, K., Konishi, K., and Anraku, Y., 1984b, Terminal oxidases of E. coli aerobic respiratory chain. II. J. Biol. Chem. 259:3375–3381.PubMedGoogle Scholar
  70. Kitada, M., and Krulwich, T. A., 1984, Purification and characterization of the cytochrome oxidase from alkalophilic Bacillus firmus RAB. J. Bacteriol. 158:963–966.PubMedGoogle Scholar
  71. Krinner, M., Hauska, G., Hurt, E., and Lockau, W., 1982, A cytochrome f-b 6 complex with plastoquinol-cytochrome c oxidoreductase activity from Anabaena variabilis. Biochim. Biophys. Acta 681:110–117.CrossRefGoogle Scholar
  72. Kröger, A., Paulsen, J., and Schröder, I., 1986, Phosphorylative electron transport chains lacking a cytochrome bc 1 complex. J. Bioenerg. Biomembr. 18:225–234.PubMedCrossRefGoogle Scholar
  73. Kurowski, B., and Ludwig, B., 1987, The genes of the Paracoccus denitrificans bc 1 complex. J. Biol. Chem. 262:13805–13811.PubMedGoogle Scholar
  74. Kutoh, E. and Sone, N., 1988, Quinol-cytochrome c oxido-reductase from the thermophilic bacterium PS3, J. Biol. Chem. 263:9020–9026.PubMedGoogle Scholar
  75. Lemire, B. D., Robinson, J. J., and Weiner, J. H., 1982, Identification of membrane anchor polypeptides of Escherichia coli fumarate reductase. J. Bacteriol 152:1126–1131.PubMedGoogle Scholar
  76. Ljungdahl, P. O., Pennoyer, J. D., Robertson, D. E., and Trumpower, B. L., 1987, Purification of highly active cytochrome bc 1 complexes froifi phylogenically diverse species by a single chromatographic procedure. Biochim. Biophys. Acta 891:227–241.PubMedCrossRefGoogle Scholar
  77. Lorence, R. M., Koland, J. G., and Gennis, R. B., 1986, Coulometric and spectroscopic analysis of the purified cytochrome d complex: Evidence for the identification of “cytochrome a 1” as cytochrome b-595. Biochemistry 25:2314–2321.PubMedCrossRefGoogle Scholar
  78. Ludwig, B., 1980, Heme aa 3-type cytochrome c oxidases from bacteria. Biochim. Biophys. Acta 594:177–189.PubMedGoogle Scholar
  79. Ludwig, B., 1987, Cytochrome c oxidase in prokaryotes. FEMS Microbiol. Rev. 46:41–56.CrossRefGoogle Scholar
  80. Ludwig, B., and Schatz, G., 1980, A two-subunit cytochrome c oxidase (cytochrome aa 3) from Paracoccus denitrificans. Proc. Natl. Acad. Sci. U.S.A. 77:196–200.PubMedCrossRefGoogle Scholar
  81. Mains, I., Power, D. M., and Thomas, E. W., 1980, Purification of an NADH: Dichlorophenolindophenol oxidoreductase from Bacillus stearothermophilus. Biochem. J. 191:457–465.PubMedGoogle Scholar
  82. Matsushita, K., Patel, L., and Kaback, H. R., 1984, Cytochrome o type oxidase from E. coli; characterization of the enzyme and mechanism of electrochemical proton gradient generation. Biochemistry 23:4703–4714.PubMedCrossRefGoogle Scholar
  83. Matsushita, K., Nonobe, M., Shinagawa, E., Adachi, O., and Ameyama, M., 1987a, Reconstitution of pyrroloquinoline quinol-dependent D-glucose oxidase respiratory chain of Escherichia coli with cytochrome o oxidase. J. Bacteriol. 169:205–209.PubMedGoogle Scholar
  84. Matsushita, K., Shinagawa, E., Adachi, O., and Ameyama, M., 1987b, Purification, characterization and reconstitution of cytochrome o-type oxidase from Gluconobacter suboxydans. Biochim. Biophys. Acta 894:304–312.CrossRefGoogle Scholar
  85. Matsushita, K., Ohnishi, T., and Kaback, H. R., 1987c, NADH-ubiquinone oxidoreductases of the Escherichia coli aerobic respiratory chain. Biochemistry 26:7732–7737.PubMedCrossRefGoogle Scholar
  86. McKay, A., Quilter, J., and Jones, C. W., 1982, Energy conservation in extreme thermophile Thermus thermophilus HB8. Arch. Microbiol. 131:43–50.CrossRefGoogle Scholar
  87. Mell, H., Wellnitz, C., and Kroger, A., 1986, The electrochemical proton potential and the proton/ electron ratio of the electron transport with fumarate in Wollinella succinogenes. Biochim. Biophys. Acta. 852:212–221.CrossRefGoogle Scholar
  88. Miller, M. J., and Gennis, R. B., 1983, The purification and characterization of the cytochrome d terminal oxidase complex of the Escherichia coli aerobic respiratory chain. J. Biol. Chem. 258:9159–9165.PubMedGoogle Scholar
  89. Mitchell, P., 1966, Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 41:445–502.PubMedCrossRefGoogle Scholar
  90. Mitchell, P., 1976, Possible molecular mechanism of the proton motive function of cytochrome systems. J. Theor. Biol. 62:327–367.PubMedCrossRefGoogle Scholar
  91. Ogura, T., Sone, N., Tagawa, K., and Kitagawa, T., 1984, Resonance Raman study of the aa 3-type cytochrome oxidase of thermophilic bacterium PS3. Biochemistry 23:2826–2831.PubMedCrossRefGoogle Scholar
  92. Oshima, T., and Drews, G., 1981, Isolation and partial characterization of the membrane-bound NADH dehydrogenase from the phototrophic bacterium Rhodopseudomonas capsulata. Z. Naturforsch. 36:400–406.Google Scholar
  93. Poole, R. K., 1983, Bacterial cytochrome oxidases. A structurally and functionally diverse group of electron-transfer proteins. Biochim. Biophys. Acta 726:205–243.PubMedGoogle Scholar
  94. Power, S. D., Lochrie, M. A., Sevarino, K. A., Patterson, T. E., and Poyton, R. O., 1984, The nuclear-coded subunits of yeast cytochrome c oxidase. J. Biol. Chem. 259:6564–6570.PubMedGoogle Scholar
  95. Quilter, A. M. G., and Jones, C. W., 1982, Energy conservation in the extreme thermophile Thermus thermophilus HB8. Arch. Microbiol. 131:43–50.CrossRefGoogle Scholar
  96. Racker, E., 1979, Reconstitution of membrane processes. Meth. Enzymol. 55:699–711.PubMedCrossRefGoogle Scholar
  97. Racker, E., Violand, S., O’Neal, S., Alfonzo, M., and Telford, J., 1979, Reconstitution, a way of biochemical research, some new approaches to membrane-bound enzymes. A. Biochem. Biophys. 198:470–477.CrossRefGoogle Scholar
  98. Raitio, M., Jalli, T., and Saraste, M., 1987, Isolation and analysis of the genes for cytochrome c oxidase in Paracoccus denitrificans. EMBO J. 6:2825–2833.PubMedGoogle Scholar
  99. Rosevear, P., van Aken, T., Baxter, J., and Fergusson-Miller, S., 1980, Alkyl glucoside detergents: A simpler synthesis and their effects on kinetics and physical properties of cytochrome c oxidase. Biochemistry 19:4108–4115.PubMedCrossRefGoogle Scholar
  100. Rydstrom, J., 1981, Energy-linked nicotinamide nucleotide transhydrogenase, in Chemiosmotic Proton Circuits in Biological Membranes (V. P. Skulachev and P. C. Hinkle, eds.), pp. 483–508, Addison-Wesley, Reading, MA.Google Scholar
  101. Sapshead, L. M., and Wimpenny, J. W. T., 1972, The influence of oxygen and nitrate on the formation of the cytochrome pigments of the aerobic and anaerobic respiratory chain of Micrococcus denitrificans. Biochim. Biophys. Acta 267:388–397.PubMedCrossRefGoogle Scholar
  102. Saraste, M., Raitio, M., Jalli, T., and Peramaa, A., 1986, A gene in Paracoccus for subunit III of cytochrome oxidase. FEBS Lett. 206:154–156.PubMedCrossRefGoogle Scholar
  103. Schagger, H., Link, Th. A., Engel, W. D., and von Jagow, G., 1986, Isolation of the eleven protein subunits of the bc 1 complex from beef heart. Meth. Enzymol. 126:224–237.PubMedCrossRefGoogle Scholar
  104. Scholes, P. B., and Mitchell, P., 1970, Respiration-driven proton translocation in Micrococcus denitrificans. J. Bioenerg. 1:309–323.CrossRefGoogle Scholar
  105. Solioz, M., Carafoli, E., and Ludwig, B., 1982, The cytochrome c oxidase from Paracoccus denitrificans pumps protons in a reconstituted system. J. Biol. Chem. 257:1579–1582.PubMedGoogle Scholar
  106. Sone, N., 1986, Measurement of proton pump activity of the thermophilic bacterium PS3 and Nitrobacter agilis at the cytochrome oxidase level using total membranes and heptyl thioglucoside. J. Biochem. 100:1465–1470.PubMedGoogle Scholar
  107. Sone, N., and Hinkle, P. C., 1982, Proton transport by cytochrome c oxidase from the thermophilic bacterium PS3 reconstituted in liposomes. J. Biol. Chem. 257:12600–12604.PubMedGoogle Scholar
  108. Sone, N., and Kosako, T., 1986, Evidence for dimer structure of proton-pumping cytochrome c oxidase, an analysis by radiation inactivation. EMBO J. 5:1515–1519.PubMedGoogle Scholar
  109. Sone, N., and Nicholls, P., 1984, Effect of heat treatment on oxidase activity and proton-pumping capability of proteoliposome-incorporated beef heart cytochrome aa 3. Biochemistry 23:6550–6554.PubMedCrossRefGoogle Scholar
  110. Sone, N., and Yanagita, Y., 1982, A cytochrome aa 3-type terminal oxidase of a thermophilic bacterium. Purification, properties and proton pumping. Biochim. Biophys. Acta 682:216–226.CrossRefGoogle Scholar
  111. Sone, N., and Yanagita, Y., 1984, High vectorial proton stoichiometry by cytochrome c oxidase from the thermophilic bacterium PS3 reconstituted in liposomes. J. Biol. Chem. 259:1405–1408.PubMedGoogle Scholar
  112. Sone, N., Yoshida, M., Hirata, H., and Kagawa, Y., 1975, Purification and properties of a dicyclohexylcarbodiimide-sensitive adenosine triphosphatase from a thermophilic bacterium. J. Biol. Chem 250:7917–7923.PubMedGoogle Scholar
  113. Sone, N., Yoshida, M., Hirata, H., Okamoto, H., and Kagawa, Y., 1976, Electrochemical potential of protons in vesicles reconstituted from purified, proto-translocating adenosine triphosphatase. J. Membr. Biol. 30:121–134.PubMedCrossRefGoogle Scholar
  114. Sone, N., Yoshida, M., Hirata, H., and Kagawa, Y., 1977a, Reconstitution of vesicles capable of energy transformation from phospholipids and adenosine triphosphatase of a thermophilic bacterium. J. Biochem 81:519–528.PubMedGoogle Scholar
  115. Sone, N., Yoshida, M., Hirata, H., and Kagawa, Y., 1977b, Adenosine triphosphate synthesis by electrochemical proton gradient in vesicles reconstituted from purified adenosine triphosphatase and phospholipids of thermophilic bacterium. J. Biol. Chem. 252:2956–2960.PubMedGoogle Scholar
  116. Sone, N., Ohyama, T., and Kagawa, Y., 1979, Thermostable single band cytochrome oxidase. FEBS. Lett. 106:39–42.Google Scholar
  117. Sone, N., Hamamoto, T., and Kagawa, Y., 1981, pH dependence of H+ conduction through the membrane moiety of the H+-ATPase (F0 · F1) and effects of tyrosyl residue modification. J. Biol. Chem. 256:2873–2877.PubMedGoogle Scholar
  118. Sone, N., Kagawa, Y., and Orii, Y., 1983a, Carbons monoxide-binding cytochromes in the respiratory chain of the thermophilic bacterium PS3 grown with sufficient or limited aeration. J. Biochem. 93:1329–1336.PubMedGoogle Scholar
  119. Sone, N., Yanagita, Y., Hon-Nami, K., Fukumori, Y., and Yamanaka, T., 1983b, Proton-pump activity of Nitrobacter agilis and Thermus thermophilus cytochrome c oxidases. FEBS. Lett. 155:150–154.Google Scholar
  120. Sone, N., Naqui, A., Kumar, C., and Chance, B., 1984a, Reaction of caa 3-type terminal cytochrome oxidase from the thermophilic bacterium PS3 with oxygen and carbon monoxide at low temperatures. Biochem. J. 221:529–533.PubMedGoogle Scholar
  121. Sone, N., Naqui, A., Kumar, C., and Chance, B., 1984b, Pulsed cytochrome c oxidase from the thermophilic bacterium PS3. Biochem. J. 223:809–813.PubMedGoogle Scholar
  122. Sone, N., Sekimachi, M., Fukumori, Y., and Yamanaka, T., 1987a, Evidence against proton pump activity by cytochrome c oxidase of Pseudomonas AMI. J. Biochem. 102:481–486.PubMedGoogle Scholar
  123. Sone, N., Sekimachi, M., and Kutoh, E., 1987b, Identification and properties of a quinol oxidase super-complex composed of a bc 1 complex and cytochrome oxidase in the thermophilic bacterium PS3. J. Biol. Chem. 262:15386–15391.PubMedGoogle Scholar
  124. Stouthamer, A. H., 1980, Bioenergetic studies on Paracoccus denitrificans. Trends Biochem. Soc. 5:164–166.CrossRefGoogle Scholar
  125. Takamiya, S., Lindorfer, M. A., and Capaldi, R. A., 1987, Purification of all thirteen polypeptides of bovine heart cytochrome c oxidase from one aliquot of enzyme. FEBS Lett. 218:277–282.PubMedCrossRefGoogle Scholar
  126. Thauer, R. K., Jungerman, K. J., and Decker, K., 1977, Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100–180.PubMedGoogle Scholar
  127. Tokuda, H., and Unemoto, T., 1982, Isolation of Vibrio alginolyticus mutants defective in the respiration-coupled Na+ pump. J. Biol. Chem. 257:10007–10014.PubMedGoogle Scholar
  128. Tokuda, H., 1984, Solubilization and reconstitution of the Na+-motive NADH oxidase activity from the marine bacterium Vibrio alginolyticus. FEBS Lett. 176:125–128.PubMedCrossRefGoogle Scholar
  129. Tokuda, H., and Unemoto, T., 1984, Na+ is translocated at NADH: quinone oxidoreductase segment in the respiratory chain of Vibrio alginolyticus. J. Biol. Chem. 259:7785–7790.PubMedGoogle Scholar
  130. Tokuda, H., Udagawa, T., Asano, M., Yamamoto, T., and Unemoto, T., 1987, Conjugation dependent recovery of the Na+ pump in a mutant of Vibrio alginolyticus lacking three subunits of the Na+ pump. FEBS Lett. 215:335–338.PubMedCrossRefGoogle Scholar
  131. Udagawa, T., Unemomoto, T., and Tokuda, H., 1986, Generation of Na+ electrochemical potential by the Na+-motive NADH oxidase and Na+/H+ antiport system of a moderately halophilic Vibrio costicola. J. Biol. Chem. 261:2616–2622.PubMedGoogle Scholar
  132. Unden, G., and Kröger, A., 1981, The function of subunits of the fumarate reductase complex of Vibrio succinogenes. Biochim. Biophys. Acta 120:577–584.Google Scholar
  133. Unden, G., and Kröger, A., 1982, Reconstitution in liposomes of the electron transport chain catalyzing fumarate reduction by formate. Biochim. Biophys. Acta 682:258–263.CrossRefGoogle Scholar
  134. Unden, G. and Kröger, A., 1983, Low-potential cytochrome b as an essential electron-transport component of menaquinone reduction in Vibrio succinogenes, Biochim. Biophys. Acta 725:325–331.PubMedCrossRefGoogle Scholar
  135. Unden, G., and Kröger, A., 1986, Reconstitution of a functional electron transport chain from isolated enzymes in liposomes. Meth. Enzymol. 126:387–399.PubMedCrossRefGoogle Scholar
  136. Unden, G., Bocher, R., Knecht, J., and Kröger, A., 1982, Hydrogenase from Vibrio succinogenes, a nickel protein. FEBS Lett. 145:230–234.PubMedCrossRefGoogle Scholar
  137. Unden, G., Mörschel, E., Bokranx, M., and Kröger, A., 1983, Structural properties of the proteoliposomes catalyzing electron transport from formate to fumarate. Biochim. Biophys. Acta 725:41–48.PubMedCrossRefGoogle Scholar
  138. VanVerseveld, H. W., Krab, K., and Stouthamer, A. H., 1981, Proton pump coupled cytochrome c oxidase in Paracoccus denitrificans. Biochim. Biophysi Acta 635:525–534.CrossRefGoogle Scholar
  139. Weiss, H., 1987, Structure of mitochondrial ubiquinol-cytochrome c reductase. Curr. Top. Bioenerg. 15:67–90.Google Scholar
  140. Widger, W. R., Cramer, W. A., Hederrmann, R. G., and Trebst, A., 1984, Sequence homology and structural similarity between cytochrome b of mitochondrial complex III and chloroplast b6-f complex: Position of the cytochrome b hemes in the membrane. Proc. Natl. Acad. Sci. U.S.A. 81:674–678.PubMedCrossRefGoogle Scholar
  141. Wikstrdm, M., and Krab, K., 1986, The semiquinone cycle, a hypothesis of electron transfer and proton translocation in cytochrome bc 1-type complex. J. Bioenerg. Biomembr. 18:181–193.CrossRefGoogle Scholar
  142. Wikstrdm, M., and Saraste, M., 1984, The mitochondrial respiratory chain, in Bioenergetics (L. Ernster, ed.), pp. 49–94, Elsevier, New York.Google Scholar
  143. Xuemin, X., Hisae, N., Koyama, N., and Nosoh, Y., 1985, Loss of liposome binding of NADH dehydrogenase from alkalophilic bacillus on subtilisin digestion. FEBS Lett. 181:313–317.PubMedCrossRefGoogle Scholar
  144. Yagi, T., 1986, Purification and characterization of NADH dehydrogenase complex from Paracoccus denitrificans. Arch. Biochem. Biophys. 250:302–311.PubMedCrossRefGoogle Scholar
  145. Yamanaka, T., and Fujii, K., 1980, Cytochrome α-type terminal oxidase derived from Thiobacillus novellus, Biochim. Biophys. Acta 591:53–62.PubMedCrossRefGoogle Scholar
  146. Yamanaka, T., Fujii, K., and Kamita, Y., 1979, Subunits of cytochrome α-type terminal oxidases derived from Thiobacillus novellus and Nitrobacter agilis. J. Biochem. 86:821–824.PubMedGoogle Scholar
  147. Yamanaka, T., Kamita, Y., and Fukumori, Y., 1981, Molecular and enzymatic properties of cytochrome aa 3-type terminal oxidase derived from Nitrobacter agilis. J. Biochem. 89:265–273.PubMedGoogle Scholar
  148. Yanagita, Y., Sone, N., Kagawa, Y., 1983, Proton pumping and oxidase activity of thermophilic cytochrome oxidase remain after its extensive proteolysis. Biochem. Biophys. Res. Commun. 113:575–580.PubMedCrossRefGoogle Scholar
  149. Yang, X., and Trumpower, B. L., 1986, Purification of a three-subunit ubiquinol cytochrome c oxidoreductase complex from Paracoccus denitrificans. J. Biol. Chem. 261:12282–12289.PubMedGoogle Scholar
  150. Yoshida, T., and Fee, J. A., 1984, Studies on cytochrome c oxidase activity of the cytochrome c 1 aa 3 complex from Thermus thermophilus. J. Biol. Chem. 259:1031–1036.PubMedGoogle Scholar
  151. Yu, L., Mei, Q., and Yu, C. A., 1984, Characterization of purified bc 1 complex from Rhodopseudomonas sphaeroides R-26. J. Biol. Chem. 259:5752–5760.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  1. 1.Department of BiochemistryJichi Medical SchoolMinamikawachi-machi, Tochigi-kenJapan

Personalised recommendations