Advertisement

Lectin-Carbohydrate Interactions in Model and Biological Membrane Systems

Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 14)

Abstract

Many of the diverse activities of cells are manifested at the cell surface; that is, the start of many intracellular events find their origin in a signal triggered at the cell surface. Such a response may arise from the specific attachment of macromolecules to carbohydrate-bearing molecules (glycolipids and glycoproteins), which are abundantly present at the outer surface of the plasma membrane. Typical examples include the operation of hormones and toxins (Kelly et al., 1979; Neville and Hudson, 1986; Ross and Gilman, 1980). Glycoconjugates, covalently linked to either lipids or proteins, also mediate the attachment of certain viruses, representing the initial event in the viral entry mechanism that eventually may lead to infection (Bächi et al., 1977; Hoekstra et al., 1988; White et al, 1983). Secretory processes (Ling et al., 1985), mitogenic effects (Rosoff et al., 1987), myotube production from myoblasts (Cates et al., 1984; Knudsen, 1985), and the formation of multinucleate macrophages during the inflammatory response (Papadimitriou, 1978) further illustrate the variety of cell surface mediated responses. The origin of these events can be traced back to a specific association between external macromolecules and cell surface glycolipids and/or glycoproteins that act as a specific receptor and transmitting unit for these responses. The diversity, specificity, and frequency by which these responses occur throughout the biological life of the cell also dictate that the macromolecule itself, which recognizes the specific code provided by the carbohydrate part of the receptor, displays a high degree of specificity.

Keywords

Sialic Acid Head Group Phosphatidic Acid Wheat Germ Agglutinin Phospholipid Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CL

cardiolipin

ConA

concanavalin A

CTL

Croton tiglium lectin

DPPC

dipalmitoylphosphatidylcholine

DSC

differential scanning calorimetry

EDTA

ethylenediaminetetraacetic acid

Fuc

fucose

Gal

galactose

GalCer

galactosylceramide, Galβ1-lCer

GalNAc

N-acetylgalactosamine

Gb3

trihexosylceramide, Galα1-4Galβ1-4G1cβ1-1 Cer

Gb4

globoside, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer

GDla

NeuAcα2-3Galβ1-3GalNAcβ1-4[NeuAcα2-3]Galβ1-4Glcβ1-1Cer

GD3

Neu Acα2-8NeuAcα2-3Galβ1-4Glcβ1-1Cer

Glc

Glucose

GlcNAc

N-acetylglucosamine

GluCer

glucosylceramide, Gluβ1-lCer

GM1

Galβ1-3GalNAcβ1-4[NeuAcα2-3]Galβ1-4Glcβ1-1Cer

GTlb

NeuAcα2-3Galβ1-3GalNAcβ1-4[NeuAcα2-3]Galβ1-4Glcβ1-lCer

LacCer

lactosylceramide, Galβ1-4Gluβ1-1Cer

Man

mannose

Man-6-P

mannose-6-phosphate

NANA or NeuAc

N-acetylneuraminic acid

PA

phosphatidic acid

PC

phosphatidylcholine

PHA

phytohemagglutinin

PS

phosphatidylserine

RCA

Ricinus communis agglutinin

SBA

soy bean agglutinin

WGA

wheat germ agglutinin

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashwell, G., and Harford, J., 1982, Carbohydrate-specific receptors of the liver. Annu. Rev. Biochem. 51:531–554.PubMedGoogle Scholar
  2. Bach, D., Miller, I. R., and Sela, B.-A., 1982a, Calorimetric studies on various gangliosides and ganglioside-lipid interactions. Biochim. Biophys. Acta 686:233–239.PubMedGoogle Scholar
  3. Bach, D., Sela, B., and Miller, I. R., 1982b, Compositional aspects of lipid hydration. Chem. Phys. Lipids 31:381–394.PubMedGoogle Scholar
  4. Bachi, T., Daes, J. E., and Howe, C., 1977, Virus-erythrocyte membrane interactions, in Virus Infection and the Cell Surface (G. Poste and G. L. Nicholson, eds.), pp. 83–127, Elsevier Biomedical Press, New York.Google Scholar
  5. Baenziger, J. V., and Fiete, D., 1979, Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides. J. Biol. Chem. 254:9795–9799.PubMedGoogle Scholar
  6. Baneijee, K. K., and Sen, A., 1983, Glycolipid-dependent agglutination of liposomes by Croton tiglium lectin. FEBS Lett. 162:248–251.Google Scholar
  7. Barbosa, M. L. F., and Pinto da Silva, P., 1983, Restriction of glycolipids to the outer half of a plasma membrane: Concanavalin A labeling of membrane halves in Acanthamoeba castellanii. Cell 33:959–966.PubMedGoogle Scholar
  8. Barondes, S. H., 1984, Soluble lectins: A new class of extracellular proteins. Science 223:1259–1264.PubMedGoogle Scholar
  9. Barondes, S. H., 1986, Vertebrate lectins: Properties and functions, in The Lectins. Properties, Functions and Applications in Biology and Medicine (I. E. Liener, N. Sharon, and I. J. Goldstein, eds.), pp. 437–466, Academic Press, Orlando, FL.Google Scholar
  10. Basu, S. K., Whisler, R. L., and Yates, A. J., 1987, Effects of lectin activation on sialyltransferase activities in human lymphocytes. Biochemistry 25:2577–2581.Google Scholar
  11. Bennett, J. S., Hoxie, J. A., Leitman, S. F., Vilaire, G., and Cines, D. B., 1983, Inhibition of fibrinogen binding to stimulated human platelets by a monoclonal antibody. Proc. Natl. Acad. Sci. U.S.A., 80:2417–2421.PubMedGoogle Scholar
  12. Bernard, B. A., Newton, S. A., and Olden, K., 1983, Effect of size and location of the oligosaccharide chain on protease degradation of bovine pancreatic ribonuclease. J. Biol. Chem. 258:12198–12202.PubMedGoogle Scholar
  13. Bertoli, E., Masserini, M., Sonnino, S., Ghidoni, R., Cestaro, B., and Tettamanti, G., 1981, Electron paramagnetic resonance studies on the fluidity and surface dynamics of egg phosphatidylcholine vesicles containing gangliosides. Biochim. Biophys. Acta 647:196–202.PubMedGoogle Scholar
  14. Bhattacharyya, L., Marchetti, P. S., Ellis, P. D., and Brewer, C. F., 1987, Nuclear magnetic resonance investigation of cadmium 113 substituted pea and lentil lectins. J. Biol. Chem. 262:5616–5621.PubMedGoogle Scholar
  15. Bischoff, J., and Lodish, H. F., 1987, Two asialoglycoprotein receptor polypeptides in human hepatoma cells, J. Biol. Chem. 262:11825–11832PubMedGoogle Scholar
  16. Biswas, M., Sekharudu, Y. C., and Rao, V. S. R., 1986, Complex carbohydrates: 1. Conformational studies on some oligosaccharides related to N-glycosylproteins which interact with concanavalin A. Int. J. Biol. Macromol. 8:2–8.Google Scholar
  17. Biswas, M., Sekharudu, Y. C., and Rao, V. S. R., 1987, The conformation of glycans of the oligo-D-mannosidic type, and their interaction with concanavalin A: A computer-modelling study, Carbohydr. Res. 160:151–170.PubMedGoogle Scholar
  18. Bock, K., Breimer, M. E., Brignole, A., Hansson, G. C., Karlsson, K.-A., Larson, G., Leffler, H., Samuelsson, B. E., Stromberg, N., Eden, C. S., and Thurin, J., 1985, Specificity of binding of a strain of uropathogenic Escherichia coli to Galαl-4Gal-containing glycosphingolipids. J. Biol. Chem. 260:8545–8551.PubMedGoogle Scholar
  19. Boggs, J. M., 1980, Intermolecular hydrogen bonding between lipids: Influence on organization and function of lipids in membranes. Can. J. Biochem. 58:755–770.PubMedGoogle Scholar
  20. Boon, A. M., Beresford, B. J., and Mellors, A., 1985, A tumor promoter enhances the phosphorylation of polyphosphoinositides while decreasing phosphatidylinositol labelling in lymphocytes. Biochem. Biophys. Res. Commun. 129:431–438.PubMedGoogle Scholar
  21. Borrebaeck, C. A., and Etzler, M. E., 1981, Production and characterization of a monoclonal antibody against the seed lectin of the Dolichos biflorus plant. J. Biol. Chem. 256:4723–4725.PubMedGoogle Scholar
  22. Bozzaro, S., 1985, Cell surface carbohydrates and cell recognition in Dictyostelium. Cell Differ. 17:67–82.PubMedGoogle Scholar
  23. Brennan, M. J., Joralmon, R. A., Cisar, J. O., and Sandberg, A. L., 1987, Binding of Actinomyces naeslundii to glycosphingolipids. Infect. Immun. 55:487–489.PubMedGoogle Scholar
  24. Brewer, C. F., and Brown, R. D., 1979, Mechanism of binding of mono- and oligosaccharides to Concanavalin A: A solvent proton magnetic relaxation dispersion study. Biochemistry 18:2555–2562.PubMedGoogle Scholar
  25. Brewer, C. F., Brown, R. D., and Koenig, S. H., 1983, Kinetics of transitions of demetalized concanavalin A. Biochem. Biophys. Res. Commun. 112:595–601.PubMedGoogle Scholar
  26. Brown, R. D., Brewer, C. F., and Koenig, S. H., 1977, Conformation states of Concanavalin A: kinetics of transitions induced by interaction with Mn2+ and Ca2+ ions. Biochemistry 16:3883–3896.PubMedGoogle Scholar
  27. Brown, R. E., and Thompson, T. E., 1987, Spontaneous transfer of ganglioside GM1 between phospholipid vesicles. Biochemistry 26:5454–5460.PubMedGoogle Scholar
  28. Bunow, M. R., and Bunow, B., 1979, Phase behavior of ganglioside-lecithin mixtures. Relation to dispersion of gangliosides in membranes. Biophys. J. 27:325–337.PubMedGoogle Scholar
  29. Campbell, C. D., Ross, T. E., and Sharom, F. J., 1983, Functional reassembly of lymphocyte lentil lectin receptor glycoproteins into lipid bilayer vesicles. Biochim. Biophys. Acta 730:95–103.PubMedGoogle Scholar
  30. Carrington, D. M., Auffret, A., and Hanke, D. E., 1985, Polypeptide ligation occurs during post translational modification of Concanavalin A. Nature 313:64–67.PubMedGoogle Scholar
  31. Cates, G. A., Brickendfen, A. M., and Sanwal, B.D., 1984, Possible involvement of a cell surface glycoprotein in the differentiation of skeletal myoblasts. J. Biol. Membr. 259:2646–2650.Google Scholar
  32. Chan, K. F. J., 1987, Ganglioside-modulated protein phosphorylation. J. Biol. Chem. 262:5248–5255.PubMedGoogle Scholar
  33. Charo, I. F., Bekaert, L. S., and Phillips, D. R., 1987, Platelet glycoprotein Ilb-IIIa-like proteins mediate endothelial cell attachment to adhesive proteins and the extracellular matrix. J. Biol. Chem. 262:9935–9938.PubMedGoogle Scholar
  34. Chicken, C. A., and Sharom, F. J., 1983, The Concanavalin A receptor from human erythrocytes in lipid bilayer membranes. Biochim. Biophys. Acta 729:200–208.PubMedGoogle Scholar
  35. Clegg, R. M., Lootiens, F. G., Sharon, N., and Jovin, T. M., 1983, Dynamic evidence for extended structure of the ligand combining site on wheat germ agglutinin: Temperature-jump relaxation with fluorescence detection. Biochemistry 22:4797–4804.PubMedGoogle Scholar
  36. Clevers, H. C., De Bresser, A., Kleinveld, H., Gmelig-Myeling, F. H., and Ballieux, R. E., 1986, Wheat germ agglutinin activates human T lymphocytes by stimulation of phosphoinositide hydrolysis. J. Immunol. 136:3180–3183.PubMedGoogle Scholar
  37. Cohen, S., Fava, R. A., and Sawyer, S. T., 1982, Purification and characterization of epidermal growth factor receptor/protein kinase from normal mouse liver. Proc. Natl. Acad. Sci. U.S.A. 79:6237–6241.PubMedGoogle Scholar
  38. Colley, K. J., and Baenziger, J. U., 1987, Identification of the post-translational modifications of the core-specific lectin. J. Biol. Chem. 262:10290–10295.PubMedGoogle Scholar
  39. Correa-Freire, M. C., Freire, E., Barenholz, Y., Biltonen, R. L., and Thompson, T. E., 1979, Thermotropic behavior of monoglucocerebroside-dipalmitoylphosphatidylcholine multilamellar liposomes. Biochemistry 18:442–445.PubMedGoogle Scholar
  40. Crook, S. J., Boggs, J. M., Vistines, A. I., and Koshy, K. M., 1986, Factors affecting surface expression of glycolipids: Influence of lipid environment and ceramide composition on antibody recognition of cerebroside sulfate in liposomes. Biochemistry 25:7488–7494.PubMedGoogle Scholar
  41. Cummings, R. D., and Kornfeld, S., 1984, The distribution of repeating (Galβ1,4GlcNAcβ1,3) sequences in asparagine-linked oligosaccharide of the mouse lymphoma cell lines BW 5147 and PHAR2.1. J Biol. Chem. 259:6253–6260.PubMedGoogle Scholar
  42. Cunningham, B. A., Wang, J. L., Waxdal, M. J., and Edelman, G. M., 1975, The covalent and three-dimensional structure of Concanavalin A. J. Biol. Chem. 250:1503–1512.PubMedGoogle Scholar
  43. Cunningham, B. A., Hamperly, J. J., Hopp, T. P., and Edelman, G. M., 1979, Favin versus concanavalin A: Circularly permute amino acid sequences. Proc. Natl. Acad. Sci. U.S.A. 76:3218–3222.PubMedGoogle Scholar
  44. Curatolo, W., Yau, A. O., Small, D. M., and Sears, B., 1978, Lectin-induced agglutination of phospholipid/glycolipid vesicles. Biochemistry 17:5740–5744.PubMedGoogle Scholar
  45. Curtain, C. C., Looney, F. D., and Smelstorius, J. A., 1980, Lipid domain formation and ligand induced lymphocyte membrane changes. Biochim. Biophys. Acta 596:43–56.PubMedGoogle Scholar
  46. Damjanov, I., 1987, Biology of disease: Lectin cytochemistry and histochemistry. Lab. Invest. 57:5–20.PubMedGoogle Scholar
  47. Debray, H., Decout, D., Strecker, G., Spik, G., and Montreuil, J., 1981, Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycosylproteins. Eur. J. Biochem. 117:41–55.PubMedGoogle Scholar
  48. De Kroon, A. I. P. M., Van Hoogenvest, P., Geurts, W. S. M., and De Kruijff, B., 1985, Influence of glycophorin and Ca2+-induced fusion of phosphatidylserine vesicles. Biochemistry 24:6382–6389.PubMedGoogle Scholar
  49. Delmelle, M., Dufrane, S. P., Brasseur, R., and Ruysschaert, J. M., 1980, Clustering of gangliosides in phospholipid bilayers. FEBS Lett. 121:11–14.PubMedGoogle Scholar
  50. Den, H., and Chin, J. H., 1981, Endogenous lectin from chick embryo skeletal muscle is not involved in myotube formation in vitro. J. Biol. Chem. 256:8069–8073.PubMedGoogle Scholar
  51. Den, H., Malinzak, D. A., Keating, H. J., and Rosenberg, A., 1975, Influence of Concanavalin A, wheat germ agglutinin, and soy bean agglutinin on the fusion of myoblasts in vitro. J. Cell Biol. 67:826–834.PubMedGoogle Scholar
  52. Drickamer, K., Mamon, J. F., Binns, G., and Leung, J. O., 1984, Primary structure of the rat liver asialogiyprotein receptor. J. Biol. Chem. 259:770–778.PubMedGoogle Scholar
  53. Drickamer, K., Dordal, M. S., and Reynolds, L., 1986, Mannose-binding proteins isolated from rat liver contain carbohydrate-recognition domains linked to collagenous tails. J. Biol. Chem. 261:6878–6887.PubMedGoogle Scholar
  54. Düzgünes, N., 1985, Membrane fusion, in Subcellular Biochemistry (D. B. Roodyn, ed.), Vol. 11, pp. 195–286, Plenum Press, New York.Google Scholar
  55. Düzgünes, N., and Hoekstra, D., 1986, Agglutination and fusion of glycolipid-phospholipid vesicles mediated by lectins and calcium ions. Studia Biophys. 111:5–10.Google Scholar
  56. Düzgünes, N., and Papahadjopoulos, D., 1983, Ionotropic effects of phospholipid membranes: Calcium/magnesium specificity in binding, fluidity and fusion, in Membrane Fluidity in Biology, Vol. 2, General Principles (R. C. Aloia, ed.), pp. 187–216, Academic Press, Orlando, FL.Google Scholar
  57. Düzgünes, N., Hoekstra, D., Hong, K., and Paphadjopoulos, D., 1984, Lectins facilitate calcium induced fusion of phospholipid vesicles containing glycosphingolipids. FEBS Lett. 173:80–84.PubMedGoogle Scholar
  58. Edelman, G. M., Cunningham, B. A., Reeke, G. N., Jr., Becker, J. W., Waxdal, M. J., and Wang, J. L., 1972, The covalent and three-dimensional structure of concanavalin A. Proc. Natl. Acad. Sci. U.S.A. 69:2580–2585.PubMedGoogle Scholar
  59. Ekerdt, R., and Papahadjopoulos, D., 1982, Intermembrane contact affects calcium binding to phospholipid vesicles. Proc. Natl. Acad. Sci. U.S.A. 79:2273–2277.PubMedGoogle Scholar
  60. Feigner, P. L., Barenholz, Y., and Thompson, T. E., 1981, Asymmetric incorporation of trisialoganglioside into dipalmitoylphosphatidylcholine vesicles. Biochemistry 20:2168–2172.Google Scholar
  61. Fidler, I. J., 1985, Macrophages and metastases. A biological approach to cancer therapy: Presidential address. Cancer Res. 45:4714–4726.PubMedGoogle Scholar
  62. Fitzgerald, L. A., Charo, I. F., and Phillips, D. R., 1985, Human and bovine endothelial cells synthesize membrane proteins similar to human platelet glycoproteins lib and Ilia. J. Biol. Chem. 260:10893–10896.PubMedGoogle Scholar
  63. Fitzgerald, L. A., Steiner, B., Rail, S. C., Lo, S. S., and Phillips, D. R., 1987, Protein sequence of endothelial glycoprotein Ilia derived from a cDNA clone. J. Biol. Chem. 262:3936–3939.PubMedGoogle Scholar
  64. Foriers, A., Lebrun, E., Van Rapenbusch, R., De Neve, R., and Strosberg, A. D., 1981, The structure of the lentil (Lens culinaris) lectin, J. Biol. Chem. 256:5550–5560.PubMedGoogle Scholar
  65. Fukuda, M. N., Dell, A., and Scartezzini, P., 1987, Primary defect of congenital dyserythropoietic anemia type II. J. Biol. Chem. 262:7195–7206.PubMedGoogle Scholar
  66. Gartner, T. K., and Podleski, T. R., 1976, Evidence that a membrane bound lectin mediates fusion of L6 myoblasts. Biochem. Biophys. Res. Commun. 67:972–978.Google Scholar
  67. Gething, M. J., White, J. M., and Waterfield, M. D., 1978, Purification of the fusion protein of Sendai virus: Analysis of NH2-terminal sequence generated during precursor activation. Proc. Natl. Acad. Sci. U.S.A. 75:2737–2740.PubMedGoogle Scholar
  68. Giga, Y., Sutoh, K., and Ikai, A., 1985, A new multimeric hemagglutinin from the coelomic fluid of the sea urchin Anthocidaris crassispina. Biochemistry 24:4461–4467.PubMedGoogle Scholar
  69. Giga, Y., Ikai, A., and Takahashi, K., 1987, The complete amino acid sequence of Echinoidin, a lectin from the coelomic fluid of the sea urchin, Anthocidaris crassispina. J. Biol. Chem. 262:6197–6203.PubMedGoogle Scholar
  70. Gilfix, B. M., and Sanwal, B. D., 1982, Lectin-resistant myoblasts, in Muscle Development: Molecular and Cellular Control (M. L. Pearson and H. F. Epstein, eds.), pp. 329–336, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  71. Glabe, C. G. and Lennarz, W. J., 1981, Isolation and partial characterization of a high molecular weight glycoconjugate, derived from the egg surface, which is implicated in sperm-egg adhesion, J. Supramol. Struct. Cell. Biochem. 15:387–394.PubMedGoogle Scholar
  72. Glabe, C. G., Grabel, L. B., Vacquier, V. D., and Rosen, S. D., 1982, Carbohydrate specificity of sea urchin sperm bindin: A cell surface lectin mediating sperm-egg adhesion. J. Cell Biol. 94:123–128.PubMedGoogle Scholar
  73. Goldstein, I. J., and Hayes, C. E., 1978, The lectins: Carbohydrate-binding proteins of plants and animals. Adv. Carbohydr. Chem. Biochem. 35:127–340.PubMedGoogle Scholar
  74. Goldstein, I. J., and Poretz, R. D., 1986, Isolation, physicochemical characterization, and carbohydrate-binding specificity of lectins, in The Lectins: Properties, Functions and Applications in Biology and Medicine (I. E. Liener, N. Sharon, and I. J. Goldstein, eds.), pp. 33–247, Academic Press, Orlando, FL.Google Scholar
  75. Goldstein, I. J., Reichert, C. M., Misaki, A., and Gorin, P. A. J., 1973, An extension of the carbohydrate binding specificity of concanavalin A. Biochim. Biophys. Acta 317:500–504.PubMedGoogle Scholar
  76. Goodwin, G. C., Hammond, K., Lyle, I. G., and Jones, M. N., 1982, Lectin-mediated agglutinin of liposomes containing glycophorin. Effects of acyl chain length. Biochim. Biophys. Acta 689:80–88.PubMedGoogle Scholar
  77. Grafl, R., Lang, K., Vogl, H., and Schmid, F. X., 1987, The mechanism of folding of pancreatic ribounucleases is independent of the presence of covalently linked carbohydrate. J. Biol. Chem. 262:10624–10629.PubMedGoogle Scholar
  78. Grant, C. W. M., and Peters, M. W., 1984, Lectin-membrane interactions. Information from model systems. Biochim. Biophys. Acta 779:403–422.PubMedGoogle Scholar
  79. Green, E. D., Brodbeck, R. M., and Baenziger, J. U., 1987, Lectin affinity high-performance liquid chromatography. J. Biol. Chem. 262:12030–12039.PubMedGoogle Scholar
  80. Hakomori, S.-I., 1981, Glycosphingolipids in cellular interaction, differentiation and oncogenesis. Annu. Rev. Biochem. 50:733–764.PubMedGoogle Scholar
  81. Hakomori, S.-I., 1986, Glycosphingolipids. Sci. Am. 254:32–41.Google Scholar
  82. Hakomori, S.-I., and Kannagi, R., 1983, Glycosphingolipids as tumor-associated and differentiation markers, J. Natl. Cancer Inst. 71:231–251.PubMedGoogle Scholar
  83. Halberg, D. F., Wager, R. E., Farrell, D. C., Hildreth, J., Quesenberry, M. S., Loeb, J. A., Holland, E. C., and Drickamer, K., 1987, Major and minor forms of the rat liver asialogly coprotein receptor are independent galactose-binding proteins. J. Biol. Chem. 262:9828–9838.PubMedGoogle Scholar
  84. Hammarström, S., Murphy, L. A., Goldstein, I. J., and Etzler, M. E., 1977, Carbohydrate binding specificity of four N-acetyl-D-galactosamine- specific lectins: Helix pomatia A hemagglutinin, soy bean agglutinin, lima bean lectin and Dolichos biflorus lectin. Biochemistry 16:2750–2755.PubMedGoogle Scholar
  85. Hampton, R. Y., Holz, R. W., and Goldstein, I. J., 1980, Phospholipid, glycolipid and ion dependencies of Concanavalin A- and Ricinus communis agglutinin I-induced agglutination of lipid vesicles. J. Biol. Chem. 255:6766–6771.PubMedGoogle Scholar
  86. Hardman, K. D., and Ainsworth, C. F., 1972, Structure of concanavalin A at 2.4-A resolution. Biochemistry 11:4910–4919.PubMedGoogle Scholar
  87. Harrington, P. C., Moreno, R., and Wilkins, R. G., 1981, Metal ion interactions with apo-concanavalin A and some observations on metal ion requirements and sugar binding by Bandeirea simplifolia I lectin. Isr. J. Chem. 21:48–51.Google Scholar
  88. Hay man, M. J., Skehel, J. J., and Crumpton, M. J., 1973, Purification of virus glycoproteins by affinity chromatography using Lens culinaris phytohaemagglutinin, FEBS Lett. 29:185–188.Google Scholar
  89. Hedo, J. A., Harrison, L. C., and Roth, J., 1981, Binding of insulin receptors to lectins: Evidence for common carbohydrate determination on several membrane receptors. Biochemistry 20:3385–3393.PubMedGoogle Scholar
  90. Hersey, P., Schibeci, S. D., Townsend, P., Burns, C., and Cheresh, D. A., 1986, Potentiation of lymphocyte responses by monoclonal antibodies to the ganglioside GD3. Cancer Res. 46:6083–6090.PubMedGoogle Scholar
  91. Hesketh, T. R., Moore, J. P., Morris, J. D. H., Taylor, M. V., Rogers, J., Smith, G. A., and Metcalfe, J. C., 1985, A common sequence of calcium and pH signals in the mitogenic stimulation of eukaryotic cells. Nature (London) 313:481–484.Google Scholar
  92. Higgens, T. J. V., Chandler, P. M., Zurawski, G., Button, S. C., and Spencer, D., 1983, The biosynthesis and primary structure of pea seed lectin. J. Biol. Chem. 258:9544–9549.Google Scholar
  93. Hoekstra, D., 1982, Fluorescence method for measuring the kinetics of Ca2+-induced phase separations in phosphatidylserine-containing lipid vesicles. Biochemistry 21:1055–1061.PubMedGoogle Scholar
  94. Hoekstra, D., and Duzgünes, N., 1986, Ricinus communis agglutinin-mediated agglutination and fusion of glycolipid-containing phospholipid vesicles: Effect of carbohydrate head group size, calcium ions and spermine. Biochemistry 25:1321–1330.PubMedGoogle Scholar
  95. Hoekstra, D., and Klappe, K., 1986, Sendai virus-erythrocyte membrane interaction: Quantitative and kinetic analysis of viral binding, dissociation and fusion. J. Virol. 58:87–95.PubMedGoogle Scholar
  96. Hoekstra, D., and Wilschut, J., 1988, Membrane fusion of artificial and biological membranes. Role of local membrane dehydration, in Water Transport in Biological Membranes (G. Benga, ed.) CRC Press, Boca Raton, FL.Google Scholar
  97. Hoekstra, D., Tomasini, R., and Scherphof, G., 1980, Interactions of phospholipid vesicles with rat hepatocytes in vitro. Influence of vesicle-incorporated glycolipids. Biochim. Biophys. Acta 603:336–346.PubMedGoogle Scholar
  98. Hoekstra, D., Duzgünes, N., and Wilschut, J., 1985, Agglutination and fusion of globoside GL-4 containing phospholipid vesicles mediated by lectins and calcium ions. Biochemistry 24:565–572.PubMedGoogle Scholar
  99. Hoekstra, D., Klappe, K., Stegmann, T., and Nir, S., 1988, Parameters affecting the fusion of viruses with artificial and biological membranes, in Molecular Mechanisms of Membrane Fusion (S. Ohki, ed.), pp. 399–412, Plenum Press, New York.Google Scholar
  100. Hoffman, L. M., Ma, Y., and Barker, R. F., 1982, Molecular cloning of Phaseolus vulgaris lectin mRNA and use of cDNA as a probe to estimate lectin transcript levels in various tissues. Nucleic Acids Res. 10:7819–7828.PubMedGoogle Scholar
  101. Hoflack, B., and Kornfeld, S., 1985, Purification and characterization of a cation-dependent mannose 6-phosphate receptor from murine P388D1 macrophages and bovine liver. J. Biol. Chem. 260:12008–12014.PubMedGoogle Scholar
  102. Holmgren, J., Svennerholm, L., Elwing, H., Fredman, P., and Strannegard, O., 1980, Sendai virus receptor: Proposed recognition structure based on binding to plastic-adsorbed gangliosides. Proc. Natl. Acad. Sci. U.S.A. 77:1947–1950.PubMedGoogle Scholar
  103. Hong, K., Duzgünes, N., Meers, P. R., and Paphadjopoulos, D., 1987, Protein modulation of liposome fusion in Cell Fusion (A. E. Sowers, ed.), pp. 269–284, Plenum Press, New York.Google Scholar
  104. Järnefelt, J., Rush, J., Li, Y.-T., and Laine, R. A., 1978, Erythroglycan, a high molecular weight glycopeptide with the repeating structure [galactosyl-(1–4)-2-deoxy-2-acetamido-glucosyl(1–3)] comprising more than one-third of the protein-bound carbohydrate of human erythrocyte stroma. J. Biol. Chem. 253:8006–8009.PubMedGoogle Scholar
  105. Jirgensons, B., 1980, Circular dichroism tests on the effect of alkali on conformation of lectins. Biochim. Biophys. Acta 625:193–201.PubMedGoogle Scholar
  106. Jones, G. W., and Isaacson, E., 1983, Proteinaceous bacterial adhesion and their receptors. CRC Crit. Rev. Microbiol. 10:229–260.Google Scholar
  107. Juliano, R. L., and Stamp, D., 1976, Lectin-mediated attachment of glycoprotein-bearing liposomes to cells. Nature 261:235–238.PubMedGoogle Scholar
  108. Junqua, S., Wils, P., Mishal, Z., and Le Pecq, J. B., 1987, Comparison of inhibitory effect of galactose analogs on the binding and cytotoxicity of an anti-globotriaosylceramide monoclonal antibody coupled or not coupled to pokeweed antiviral protein. Eur. J. Immunol. 17:459–464.PubMedGoogle Scholar
  109. Kabat, E. A., 1978, Dimensions and specificities of recognition sites on lectins and antibodies. J. Supramol. Struct. 8:79–88.PubMedGoogle Scholar
  110. Kahn, M. I., Sastry, M. V. K., and Surolia, A., 1986, Thermodynamic and kinetic analysis of carbohydrate binding to the basic lectin from winged bean (Phosphocarpus tetragonolobus). J. Biol. Chem. 261:3013–3019.Google Scholar
  111. Kannagi, R., Nudelman, E., and Hakomori, S.-I., 1982, Possible role of ceramide in defining structure and function of membrane glycolipids. Proc. Natl. Acad. Sci. U.S.A. 79:3470–3474.PubMedGoogle Scholar
  112. Kelly, R. B., Deutsch, J. D., Carlson, S. S. and Wagner, J. A., 1979, Biochemistry of neurotransmitter release, Ann. Rev. Neurosci. 2:399–446.PubMedGoogle Scholar
  113. Ketis, N. V., and Grant, C. W. M., 1983, Control of high affinity lectin binding to an integral membrane glycoprotein in lipid bilayers. Biochim. Biophys. Acta 685:347–354.Google Scholar
  114. Ketis, N. V., and Grant, C. W. M., 1983, Time-dependent lectin binding to isolated receptors in model membranes. Biochim. Biophys. Acta 730:359–368.PubMedGoogle Scholar
  115. Kinsey, W. H., and Lennarz, W. J., 1981, Isolation of a glycopeptide fraction from the surface of the sea urchin egg that inhibits sperm-egg binding and fertilization. J. Cell Biol. 91:325–331.PubMedGoogle Scholar
  116. Knudsen, K. A., 1985, The calcium-dependent myoblast adhesion that precedes cell fusion is mediated by glycoproteins. J. Cell Biol. 101:891–897.PubMedGoogle Scholar
  117. Koch, O., and Uhlenbruck, G., 1982, From invertebrate to in vertebrate lectins: A review, in Biotechs News, E. Y. Laboratories Inc. Mateo, CA, USA, Autumn 82–1.Google Scholar
  118. Kokourek, J., 1986, Historical background, in The Lectins. Properties, Functions and Applications in Biology and Medicine (I. E. Liener, N. Sharon, and I. J. Goldstein, eds.), pp. 1–32, Academic Press, Orlando, FL.Google Scholar
  119. Kornfeld, R., and Kornfeld, S., 1985, Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54:631–664.PubMedGoogle Scholar
  120. Kornfeld, S., 1982, Oligosaccharide processing during glycoprotein biosynthesis in The Glycoconjugates (M. I. Horowirtz, ed.) Vol. IIIA, pp. 3–23, Academic Press, Orlando, FL.Google Scholar
  121. Laferte, S., Fukuda, M. N., Fukuda, M., Dell, A., and Dennis, J. W., 1987, Glycosphingolipids of lectin-resistant mutants of the highly metastatic mouse tumor cell line MDAY-D2. Cancer Res. 47:150–159.PubMedGoogle Scholar
  122. Lee, P. M., and Grant, C. W. M., 1980, Headgroup oligosaccharide dynamics of a transmembrane glycoprotein. Can. J. Biochem. 58:1197–1205.PubMedGoogle Scholar
  123. Li, E., Gibson, R., and Kornfeld, S., 1980, Structure of an unusual complex-type oligosaccharide isolated from Chinese hamster ovary cells. Arch. Biochem. Biophys. 199:393–399.PubMedGoogle Scholar
  124. Liener, I. E., Sharon, N., and Goldstein, I. J (eds.), 1986, The Lectins: Properties, Functions and Application in Biology and Medicine, Academic Press, Orlando, FL.Google Scholar
  125. Ling, N., Zeytin, F., Bohlen, P., Esch, F., Brazeau, P., Wehrenberg, W. B., Baird, A., and Guillemin, R., 1985, Growth hormone releasing factors. Annu. Rev. Biochem. 54:403–423.PubMedGoogle Scholar
  126. Lis, H., and Sharon N., 1986, Lectins as molecules and as tools. Annu. Rev. Biochem. 55:35–67.PubMedGoogle Scholar
  127. MacDonald, R. I., and MacDonald, R. C., 1975, Assembly of phospholipid vesicles bearing sialoglycoprotein from erythrocyte membrane. J. Biol. Cherh. 250:9206–9214.Google Scholar
  128. Maggio, B., 1985, Geometric and thermodynamic restrictions for the self-assembly of glycosphingolipid-phospholipid systems. Biochim. Biophys. Acta 815:245–258.PubMedGoogle Scholar
  129. Maggio, B., Cumar, F. A., and Caputto, R., 1978, Induction of membrane fusion by polysialogangliosides. FEBS Lett. 90:149–152.PubMedGoogle Scholar
  130. Maggio, B., Cumar, F. A., and Caputto, R., 1981, Molecular behaviour of glycosphingolipids in interfaces. Possible participation in some properties of nerve membranes. Biochim. Biophys. Acta 650:69–87.PubMedGoogle Scholar
  131. Maggio, B., Ariga, T., Sturtevant, J. M., and Yu, R. K., 1985, Thermotropic behavior of binary mixtures of dipalmitoylphosphatidylcholine and glycosphingolipids in aqueous dispersions. Biochim. Biophys. Acta 818:1–12.PubMedGoogle Scholar
  132. Mansson, J., and Olofsson, S., 1983, Binding specificities of the lectins from Helix pomatia, soybean and peanut against different glycosphingolipids in liposome membranes. FEBS Lett. 156:249–252.Google Scholar
  133. Makita, A., and Taniguchi, N., 1985, Glycosphingolipids, in Glycolipids (H. Wiegandt, ed.), pp. 1–100, Elsevier Science Publishers, Amsterdam.Google Scholar
  134. Marcus, D. M., Dustira, A., Diego, i., Osovitz, S., and Lewis, D. E., 1987, Studies of the mechanism by which gangliosides inhibit the proliferative response of murine splenocytes to concanavalin A. Cell. Immunol. 104:71–78.PubMedGoogle Scholar
  135. Markwell, M. K., and Fox, C. F., 1980, Protein-protein interactions within paramyxoviruses identified by native disulfide binding or reversible chemical cross-linking. J. Virol. 33:152–166.PubMedGoogle Scholar
  136. Meehan, E. J., Jr., McDuffie, J., Einspahr, H., Bugg, C. E., and Suddath, F. L., 1982, The crystal structure of pea lectin at 6-A resolution. J. Biol. Chem. 257:13278–13282.PubMedGoogle Scholar
  137. Metcalfe, J. C., Hesketh, T. R., Smith, G. A., Morris, J. D., Corps, A. N., and Moore, J. P., 1985, Early response pattern analysis of the mitogenic parthway in lymphocytes and fibroblasts. J. Cell Sci. 3:199–228.Google Scholar
  138. Mir-Lechaire, F. J., and Barondes, S. H., 1978, Two distinct developmentally regulated lectins in chick embryo muscle. Nature (London) 272:256–258.Google Scholar
  139. Molin, K., Fredman, P., and Svennerholm, L., 1986, Binding specificities of the lectins PNA, WGA and UEAI to polyvinylchloride-adsorbed glycosphingolipids. FEBS Lett. 205:51–55.PubMedGoogle Scholar
  140. Momoi, T., Tokunaga, T., and Nagai, Y., 1982, Specific interaction of peanut agglutinin with the glycolipid asialo GM1. FEBS Lett. 141:6–10.PubMedGoogle Scholar
  141. Morell, P. (ed.), 1984, Myelin, Plenum Press, New York.Google Scholar
  142. Myers, M., Wortman, C., and Freire, E., 1984, Modulation of neuraminidase activity by the physical state of phospholipid bilayers containing gangliosides GDla and GTlb. Biochemistry 23:1442–1448.PubMedGoogle Scholar
  143. Nakajima, Y., Suzuki, H., Sakakibara, F., Kawauchi, H., Mizuno, D., and Yamazaki, M., 1986, Induction of a cytotoxin from murine macrophages by an animal lectin. Jpn. J. Exp. Med. 56:19–25.PubMedGoogle Scholar
  144. Neurohr, K. J., Mantsch, H. H., Young, N. M., and Bundle, D. R., 1982, Carbon-13 nuclear magnetic resonance studies on lectin-carbohydrate interactions: Binding of specifically carbon-13-labeled methyl (β-l)-lactoside to peanut agglutinin. Biochemistry 21:498–503.PubMedGoogle Scholar
  145. Neville, D. M., and Hudson, T. H., 1986, Transmembrane transport of diphtheria toxin related toxins and colicins. Annu. Rev. Biochem. 55:195–224.PubMedGoogle Scholar
  146. Newton, C., Pangborn, W., Nir, S., and Paphadjopoulos, D., 1978, Specificity of Ca2+ and Mg2+ binding to phosphatidylserine vesicles and resultant phase changes of bilayer membrane structure. Biochim. Biophys. Acta 506:281–287.PubMedGoogle Scholar
  147. Nowak, T. P., Haywood, P. C., and Barondes, S. H., 1976, Developmentally regulated lectin in embryonic chick muscle and a miogenic cell line. Biochem. Biophys. Res. Commun. 68:650–657.PubMedGoogle Scholar
  148. Nudelman, E., Kannagi, R., Hakomori, S., Parsons, M., Lipinski, J., Wiels, J., Fellous, M., and Tursz, T., 1983, A glycolipid antigen associated with Burkitt lymphoma defined by a monoclonal antibody, Science 220:509–511.PubMedGoogle Scholar
  149. Ollmann, M., Schwarzmann, G., Sandhoff, K., and Gallo, H.-J., 1987, Pyrene-labeled gangliosides: Micelle formation in aqueous solution, lateral diffusion and thermotropic behaviour in phosphatidylcholine bilayers. Biochemistry 26:5943–5952.PubMedGoogle Scholar
  150. Orr, G. A., Rando, R. R., and Bangerter, W. F., 1979, Synthetic glycolipids and the lectin-mediated aggregation of liposomes. J. Biol. Chem. 254:4721–4725.PubMedGoogle Scholar
  151. Parfett, C. L. J., Jamieson, J. C., and Wright, J. A., 1983, Changes in cell surface glycoproteins on non-differentiating L6 rat myoblasts selected for resistance to concanavalin A. Exp. Cell Res. 144:405–415.PubMedGoogle Scholar
  152. Parise, L. V., and Phillips, D. R., 1986, Fibronectin-binding properties of the purified platelet glycoprotein IIb-IIIA complex. J. Biol. Chem. 261:14011–14017.PubMedGoogle Scholar
  153. Papadimitriou, J. M., 1978, Macrophage fusion in vivo and in vitro: A review. Cell Surf. Rev. 5:182–218.Google Scholar
  154. Pasher, I., 1976, Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim. Biophys. Acta 455:433–451.Google Scholar
  155. Pauw, P. G., and David, J. D., 1979, Alterations in surface proteins during myogenesis of a rat myoblast cell line. Dev. Biol. 70:27–38.PubMedGoogle Scholar
  156. Pereira, M. E. A., Kabat, E. A., Lotan, R., and Sharon, N., 1976, Immunochemical studies on the specificity of the peanut (Arachis hypogaca) agglutinin. Carbohydr. Res. 51:107–118.PubMedGoogle Scholar
  157. Peters, M. W., Barber, K. R., and Grant, C. W. M., 1982, Headgroup behaviour of an uncharged complex glycolipid. Biochim. Biophys. Acta 693:417–424.PubMedGoogle Scholar
  158. Peters, M. W., and Grant, C. W. M., 1984, Freeze-etch study of an unmodified lectin interacting with its receptors in model membranes. Biochim. Biophys. Acta 775:273–282.PubMedGoogle Scholar
  159. Portis, A., Newton, C., Pangborn, W., and Paphadjopoulos, D., 1979, Studies on the mechanism of membrane fusion: Evidence for an intermembrane Ca2+-phospholipid complex, snergism with Mg2+, and inhibition by spectrin. Biochemistry 18:780–790.PubMedGoogle Scholar
  160. Pytela, R., Pierschbacher, M. D., Ginsberg, M. H., Plow, E. F., and Ruoslahti, E., 1986, Platelet membrane glycoprotein IIb/IIIa: Member of a family of Arg-Gly-Asp-specific adhesion receptors. Science 231:1559–1562.PubMedGoogle Scholar
  161. Rand, P. R., and Parsegian, V. A., 1984, Physical force considerations in model and biological membranes. Can. J. Biochem. Cell. Biol. 62:752–759.PubMedGoogle Scholar
  162. Rando, R. R., and Bangerter, F. W., 1979, Threshold effects on the lectin-mediated aggregation of synthetic glycolipid-containing liposomes. J. Supramol. Struct. 11:259–309.Google Scholar
  163. Rando, R. R., Slama, J., and Bangerter, F. W., 1980, Functional incorporation of synthetic glycolipids into cells. Proc. Natl. Acad. Sci. U.S.A. 77:2510–2513.PubMedGoogle Scholar
  164. Rao, V. S. R., and Biswas, M., 1982, The nature and size of the binding sites of blood group specific, L-fucose-binding lectins: A conformational approach, in Conformation in Biology (R. Srinivasan and R. H. Sarma, eds.), pp. 183–190, Adenine Press, New York.Google Scholar
  165. Rauvala, H., 1983, Cell surface carbohydrates and cell adhesion. Trends Biochem. Sci. 8:323–325.Google Scholar
  166. Redwood, W. R., and Polefka, T. G., 1976, Lectin-receptor interactions in liposomes. II. Interaction of wheat germ agglutinin with phosphatidylcholine liposomes containing incorporated monosialoganglioside. Biochim. Biophys. Acta 455:631–643.PubMedGoogle Scholar
  167. Redwood, W. R., Jansons, V. K., and Patel, B. C., 1975, Lectin-receptor interactions in liposomes. Biochim. Biophys. Acta 406:347–361.PubMedGoogle Scholar
  168. Rendi, R., Vatter, A. E., and Gordon, J. A., 1979, Divalent cation enhancement of the agglutin ability by soy bean lectin of liposomes prepared from total lipid of erythrocytes and of erythrocyte membranes. Biochim. Biophys. Acta 550:318–327PubMedGoogle Scholar
  169. Rintoul, D. A., Redd, M. B., and Wendelburg, B., 1986, Nfparinaroyl glycosphingolipids: Synthesis and characterization of novel fluorescent probes of membrane structure. Biochemistry 25:1574–1579.PubMedGoogle Scholar
  170. Roberson, M. M., Wolffe, A. P., Tata, J. R., and Barondes, S. H., 1985, Galactoside-binding serum lectin of Xenopus laevis. J. Biol. Chem. 260:11027–11032.PubMedGoogle Scholar
  171. Rogers, G. N., and Paulson, J. C., 1983, Receptor determinants of human and animal influenza virus isolates: Differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127:361–373.PubMedGoogle Scholar
  172. Rosoff, P. W., Burakoff, S. J., and Greenstein, J. L., 1987, The role of the L3T4 molecule in mitogen and antigen-activated signal transduction. Cell 49:845–853.PubMedGoogle Scholar
  173. Ross, E. M., and Gilman, A. G., 1980, Biochemical properties of hormone-sensitive adenylate cyclase. Annu. Rev. Biochem. 49:533–564.PubMedGoogle Scholar
  174. Rossignol, D. P., Earles, B. J., Decker, G. L., and Lennarz, W. J., 1984, Characterization of the sperm receptor on the surface of eggs of Strongylocentrotus purpuratus. Dev. Biol. 104:308–321.PubMedGoogle Scholar
  175. Rothman, J. E., and Lodish, H. F., 1977, Synchronised transmembrane insertion and glycosylation of a nascent membrane protein. Nature 269:775–780.PubMedGoogle Scholar
  176. Rugged, Z. M., De Marco, L., Gatti, L., Bader, R., and Montgomery, R. R., 1983, Platelets have more than one binding site for von Willebrand factor. J. Clin. Invest. 72:1–12.Google Scholar
  177. Ruocco, M. J., and Shipley, G. G., 1983, Hydration of N-palmitoyl-galactosylsphingosine compared to monosaccharide hydration. Biochim. Biophys. Acta 735:305–308.PubMedGoogle Scholar
  178. Schachter, H., Narasimhan, S., Gleeson, P., Vella, G. J., and Brockhausen, I., 1982, Oligosaccharide branching of glycoproteins: Biosynthetic mechanisms and possible biological functions. Philos. Trans. R. Soc. London Ser. B 300:145–159.Google Scholar
  179. Schnell, D. J., and Etzler, M. E., 1987, Primary structure of the Dolichos biflorus seed lectin. J. Biol. Chem. 262:7220–7225.PubMedGoogle Scholar
  180. Schwarz, R. T., and Datema, R., 1982, The lipid pathway of protein glycosylation and its inhibitors: The biological significance of protein-bound carbohydrates. Adv. Carbohydr. Chem. Biochem. 40:287–379.PubMedGoogle Scholar
  181. Sekharudu, Y. C., Biswas, M., and Rao, V. S. R., 1986, Complex carbohydrates: 2. The modes of binding of complex carbohydrates to Concanavalin A-a computer modelling approach. Int. J. Biol. Macromol. 8:9–19.Google Scholar
  182. Sharon, N., 1984a, Glycoproteins. Trends Biochem. Sci. 9:198–202.Google Scholar
  183. Sharon, N., 1984b, Surface carbohydrates and surface lectins are recognition determinants in phagocytosis. Immunol. Today 5:143–147.Google Scholar
  184. Sharom, F. J., Barratt, D. G., Thede, A. E., and Grant, C. W. M, 1976, Glycolipids in model membranes: Spin label and freeze-etch studies. Biochim. Biophys. Acta 455:485–492.PubMedGoogle Scholar
  185. Shimizu, T., and Hatano, M., 1983, 43Ca and 67Zn NMR spectra of Ca2+, Zn2+-Concanavalin A solutions. Biochem. Biophys. Res. Commun. 115:22–28.PubMedGoogle Scholar
  186. Slama, J. S., and Rando, R. R., 1980, Lectin-mediated aggregation of liposomes containing glycolipids with variable hydrophilic spacer arms. Biochemistry 19:4595–4600.PubMedGoogle Scholar
  187. Spohr, U., Hindsgaul, O., and Lemieux, R. U., 1985, Molecular recognition. II. The binding of the Lewis b and Y human blood group determinants by the lectin IV of Griffonia simplicifolia. Can. J. Chem. 63:2644–2652.Google Scholar
  188. Springer, W. R., Cooper, D. N. W., and Barondes, S. H., 1984, Discoidin I is implicated in cell substratum attachment and ordered cell migration of Dictostelium discoideum and resembles fibronectin. Cell 39:557–564.PubMedGoogle Scholar
  189. Strosberg, A. D., Buffard, D., Lauwereys, M., and Foriers, A., 1986, Legume lectins: A large family of homologous proteins, in The Lectins. Properties, Functions and Applications in Biology and Medicine (I. E. Liener, N. Sharon, and I. J. Goldstein, eds.), pp. 249–264, Academic Press, Orlando, FL.Google Scholar
  190. Sundler, R., 1982, Agglutination of glycolipid-phospholipid vesicles by Concanavalin. A. FEBS Lett. 141:11–13.Google Scholar
  191. Sundler, R., 1984, Studies on the effective size of phospholipid head groups in bilayer vesicles using lectin-glycolipid interaction as a steric probe. Biochim. Biophys. Acta 771:59–67.PubMedGoogle Scholar
  192. Sundler, R., and Wijkander, J., 1983, Protein-mediated intermembrane contact specifically enhances Ca2+-induced fusion of phosphatidate-containing membranes. Biochim. Biophys. Acta 730:391–394.PubMedGoogle Scholar
  193. Surolia, A., Bachhawat, B. K., and Podder, S. K., 1975, Interaction between lectin from Ricinus communis and liposomes containing gangliosides. Nature 257:802–804.PubMedGoogle Scholar
  194. Suzuki, T., Inoue, K., Nojima, S., and Wiegandt, H., 1983, Interaction of concanavalin A with spin-labeled glycolipid incorporated into liposomes. J. Biochem. 94:373–377.PubMedGoogle Scholar
  195. Symington, F. W., Bernstein, I. D., and Hakomori, S.-I., 1984, Monoclonal antibody specific for lactosylceramide. J. Biol. Chem. 259:6008–6012.PubMedGoogle Scholar
  196. Symington, F. W., Murray, W. A., Bearman, S. I., and Hakomori, S.-I., 1987, Intracellular localization of lactosylceramide, the major human neurophil glycosphingolipid. J. Biol. Chem. 262:11356–11363.PubMedGoogle Scholar
  197. Taraschi, T. F., De Kruijff, B., Verkleij, A., and Van Echteld, C. J. A., 1982a, Effect of glycophorin on lipid polymorphism. A 31P-NMR study. Biochim. Biophys. Acta 685:153–161.PubMedGoogle Scholar
  198. Taraschi, T. F., Van der Steen, A. T. M., De Kruijff, B., Tellier, C., and Verkleij, A. J., 1982b, Lectin-receptor interactions in liposomes: Evidence that binding of wheat germ agglutinin to glycoprotein-phosphatidylethanolamine vesicles induces non-bilayer structures. Biochemistry 21:5756–5764.PubMedGoogle Scholar
  199. Tillack, T. W., Allietta, M., Moran, R. E., and Young, W. W., 1983, Localization of globoside and Forssman glycolipids on erythrocyte membranes. Biochim. Biophys. Acta 733:15–24.PubMedGoogle Scholar
  200. Titani, K., Takio, K., Kuwada, M., Nitta, K., Sakakibara, F., Kawauchi, H., Takayanagi, G., and Hakomori, S.-I., 1987, Amino acid sequence of sialic acid binding lectin from frog (Rana catesheiana) eggs. Biochemistry 26:2189–2194.PubMedGoogle Scholar
  201. Tsuji, S., Nakajima, S., Sasaki, T., and Nagai, Y., 1985, Bioactive gangliosides. IV. Ganglioside GQlb/Ca2+ dependent protein kinase activity exists in the plasma membrane fraction of neuroblastoma cell line GOTO. J. Biochem. 97:969–972.PubMedGoogle Scholar
  202. Uchida, T., Nagai, Y., Kawasaki, Y., and Wakayama, N., 1981, Fluorospectroscopic studies of various gangliosides and ganglioside-lecithin dispersions. Steady-state and time resolved fluorescence measurements with 1,6 diphenyl-1,3,5-hexatriene. Biochemistry 20:161–169.Google Scholar
  203. Umeda, M., Nojima, S., and Inoue, K., 1984, Activity of human erythrocyte gangliosides as a receptor to HVJ. Virology 133:172–182.PubMedGoogle Scholar
  204. Utsumi, H., Suzuki, T., Inoue, K., and Nojima, S., 1984, Haptenic activity of galactosyl ceramide and its topographical distribution on liposomal membranes. Effects of temperature and phospholipid composition. J. Biochem. 96:97–105.PubMedGoogle Scholar
  205. Utsumi, T., Aizono, Y., and Funatsu, G., 1987, Receptor-mediated interaction of ricin with the lipid bilayer of ganglioside GM1-liposomes. FEBS Lett. 216:99–103.PubMedGoogle Scholar
  206. Vacquier, V. D., and Moy, G. W., 1977, Isolation of bindin: The protein responsible for adhesion of sperm to sea urchin eggs. Proc. Natl. Acad. Sci. U.S.A. 74:2456–2460.PubMedGoogle Scholar
  207. Van Blitterswijk, W. J., 1983, Membrane fluidity in normal and malignant lymphoid cells, in Membrane Fluidity in Biophysics, Vol. 3, Disease Processes (R. C. Aloia and J. M. Boggs, eds.), pp. 85–159, Academic Press, Orlando, FL.Google Scholar
  208. Van den Bosch, J., and McConnell, H. M., 1975, Fusion of dipalmitoylphosphatidylcholine vesicle membranes induced by Concanavalin A. Proc. Natl. Acad. Sci. U.S.A. 72:4409–4413.PubMedGoogle Scholar
  209. Verpoorte, J. A., 1975, Purification and characterization of glycoprotein from human erythrocyte membranes. Int. J. Biochem. 6:855–862.Google Scholar
  210. Villalta, F., and Kierszenbaum, F., 1983, Role of cell surface mannose residues in host cell invasion by Trypanosoma cruzi. Biochim. Biophys. Acta 736:39–44.PubMedGoogle Scholar
  211. Vodkin, L. O., Rhodes, P. R., and Goldberg, R. B., 1983, cA lectin gene insertion has the structural features of a transposable element. Cell 34:1023–1031.PubMedGoogle Scholar
  212. Von Figura, K., and Hasilik, A., 1986, Lysosomal enzymes and their receptors. Annu. Rev. Biochem. 55:167–193.Google Scholar
  213. Wakelam, M. J. O., and Pette, D., 1984, Myoblast fusion and inositol phospholipid breakdown: Causal relationship or coincidence, in Cell Fusion (D. Evered and J. Whelan, eds.), pp. 100–118, Pitman, London.Google Scholar
  214. Walsh, F. S., and Phillips, E., 1981, Specific changes in cellular glycoproteins and surface proteins during myogenesis in clonal muscle cells. Dev. Biol. 81:229–237.PubMedGoogle Scholar
  215. Wang, J. L., Cunningham, B. A., Waxdal, M. J., and Edelman, G. M., 1975, The covalent and three-dimensional structure of concanavalin A. I. Amino acid sequence of cyanogen bromide fragments F, and F2. J. Biol. Chem. 250:1490–1502.PubMedGoogle Scholar
  216. Westrick, M. A., Lee, W. M. F., Goff, B., and Macher, B. A., 1983, Gangliosides of human acute leukemia cells. Biochim. Biophys. Acta 750:141–148.PubMedGoogle Scholar
  217. White, J., Kielian, M., and Helenius, A., 1983, Membrane fusion proteins of enveloped animal viruses. Rev. Biophys. 16:151–195.Google Scholar
  218. Wiegandt, H. (ed.), 1985, New Comprehensive Biochemistry, Vol. 10, Glycolipids, Elsevier, Amsterdam.Google Scholar
  219. Williams, T. J., Plessas, N. R., Goldstein, I. J., and Lonngren, J., 1979, A new class of model glycolipids: Synthesis, characterization and interaction with lectins. Arch. Biochem. Biophys. 195:145–151.PubMedGoogle Scholar
  220. Wilschut, J., and Hoekstra, D., 1986, Membrane fusion: Lipid vesicles as a model system. Chem. Phys. Lipids 40:145–166.PubMedGoogle Scholar
  221. Wright, C. S., 1980, Crystallographic elucidation of the saccharide binding mode in wheat germ agglutinin and its biological significance. J. Mol. Biol. 141:267–291.PubMedGoogle Scholar
  222. Wright, C. S., 1981, Multi-domain structure of the dimeric lectin wheat germ agglutinin, in Bio molecular Structure, Conformation, Functions and Evolution (R. Srinivasan, E. Subramanian, and N. Yathindra, eds.), Vol. 1, pp. 9–17, Pergamon Press, Oxford.Google Scholar
  223. Wright, C. S., Gavilanes, F., and Peterson, D. L., 1984, Primary structure of wheat germ agglutinin isolectin. 2. Peptide order deduced from X-ray structure. Biochemistry 23:280–287.PubMedGoogle Scholar
  224. Young, N. M., 1983, Magnesium as a natural substitute for manganese in concanavalin A and other lectins. FEBS Lett. 161:247–250.PubMedGoogle Scholar
  225. Zeeuws, R., and Strosberg, A. D., 1978, The use of methanol in high-performance liquid chro-matography of phenylthiohydantoinamino acids. FEBS Lett. 85:68–72.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  1. 1.Laboratory of Physiological ChemistryUniversity of GroningenGroningenThe Netherlands
  2. 2.Cancer Research Institute and Department of Pharmaceutical ChemistryUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations