Advertisement

Membrane Fusion

Fusogenic Agents and Osmotic Forces
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 14)

Abstract

Many of the dynamic features of the behavior of biological membranes, at cellular and subcellular levels, depend on the phenomenon of membrane fusion.

Keywords

Secretory Granule Polyethylene Glycol Human Erythrocyte Cell Fusion Membrane Fusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahkong, Q. F., and Lucy, J. A., 1986, Osmotic forces in artificially induced cell fusion. Biochim. Biophys. Acta 858:206–216.PubMedGoogle Scholar
  2. Ahkong, Q. F., and Lucy, J. A., 1989, Localised osmotic forces and membrane fusion. Biochem. Soc. Trans., in press.Google Scholar
  3. Ahkong, Q. F., Fisher, D., Tampion, W., and Lucy, J. A., 1973a, The fusion of erythrocytes by fatty acids, esters, retinol and alpha-tocopherol. Biochem. J. 136:147–155.PubMedGoogle Scholar
  4. Ahkong, Q. F., Cramp, F. C., Fisher, D., Howell, J. I., Tampion, W., Verrinder, M., and Lucy, J. A., 1973b, Chemically-induced and thermally-induced cell fusion: Lipid-lipid interactions. Nature New Biol. 242:215–217.PubMedGoogle Scholar
  5. Ahkong, Q. F., Fisher, D., Tampion, W., and Lucy, J. A., 1975a, Mechanisms of cell fusion. Nature (London) 253:194–195.Google Scholar
  6. Ahkong, Q. F., Howell, J. I., Lucy, J. A., Safwat, F., Davey, M. R., and Cocking, E. C., 1975b, Fusion of hen erythrocytes with yeast protoplasts induced by polyethylene glycol. Nature (London) 255:66–67.Google Scholar
  7. Ahkong, Q. F., Tampion, W., and Lucy, J. A., 1975c, Promotion of cell fusion by divalent cation ionophores. Nature (London) 256:208–209.Google Scholar
  8. Ahkong, Q. F., Botham, G. M., Woodward, A. W., and Lucy, J. A., 1980, Calcium-activated thiol-proteinase activity in the fusion of rat erythrocytes induced by benzyl alcohol. Biochem. J. 192:829–836.PubMedGoogle Scholar
  9. Ahkong, Q. F., Desmazes, J.-P., Georgescauld, D., and Lucy, J. A., 1987, Movements of flu-orescent probes in the mechanism of cell fusion induced by poly(ethylene glycol). J. Cell Sci. 88:389–398.PubMedGoogle Scholar
  10. Akabas, M. H., Cohen, F. S., and Finkelstein, A., 1984, Separation of the osmotically driven fusion event from vesicle-planar membrane attachment in a model system for exocytosis. J. Cell Biol 98:1063–1071.PubMedGoogle Scholar
  11. Aldwinckle, T. J., Ahkong, Q. F., Bangham, A. D., Fisher, D., and Lucy, J. A., 1982, Effects of poly(ethylene glycol) on liposomes and erythrocyte permeability changes and fusion. Biochim. Biophys. Acta 689:548–560.PubMedGoogle Scholar
  12. Allan, D., and Michell, R. H., 1978, A calcium-activated polyphosphoinositide phosphodiesterase in the plasma membrane of human and rabbit erythrocytes. Biochim. Biophys. Acta 508:277–286.PubMedGoogle Scholar
  13. Arnold, K., Herrmann, A., Pratsch, L., and Gawrisch, K., 1985, The dielectric properties of aqueous solutions of poly(ethylene glycol) and their influence on membrane structure. Biochim. Biophys. Acta 815:515–518.PubMedGoogle Scholar
  14. Arnold, K., Herrmann, A., Gawrisch, K., and Pratsch, L., 1988, Water-mediated effects of PEG on membrane properties and fusion, in Molecular Mechanisms of Membrane Fusion (S. Ohki, D. Doyle, T. D. Flanagan, S. W. Hui, and E. May hew, eds.), Plenum Press, New York.Google Scholar
  15. Arnold, W. M., and Zimmermann, U., 1984, Electric field-induced fusion and rotation of cells, in Biological Membranes, Vol. 5 (D. Chapman, ed.), pp. 389–454, Academic Press, London.Google Scholar
  16. Bachi, M., Aguet, M., and Howe, C., 1973, Fusion of erythrocytes by Sendai virus studied by immuno-freeze etching. J. Virol 11:1004–1012.PubMedGoogle Scholar
  17. Baker, P. F., and Knight, D. E., 1981, Calcium control of exocytosis and endocytosis in bovine adrenal medullary cells. Philos. Trans. R. Soc. London (Biol) 296:83–103.Google Scholar
  18. Baker, P. F., and Knight, D. E., 1984, Chemiosmotic hypotheses of exocytosis: A critique. Biosci. Rep. 4:285–298.PubMedGoogle Scholar
  19. Bates, G. W., Saunders, J. A., and Sowers, A. E., 1987, Electrofusion. Principles and applica-tions, in Cell Fusion (A. E. Sowers, ed.), pp. 367–395, Plenum Press, New York.Google Scholar
  20. Baxter, D. A., Johnston, D., and Strittmatter, W. J., 1983, Protease inhibitors implicate metal-loendoprotease in synaptic transmission at the mammalian neuro-muscular junction. Proc. Natl Acad. Sci. U.S.A. 80:4174–4178.PubMedGoogle Scholar
  21. Bentz, J., Alford, D., Cohen, J., and Duzgünegs, N., 1989, La3+ induced fusion of phosphatidyl serine liposomes: Close approach, intermembrane intermediates and the electrostatic surface potential. Biophys. J., in press.Google Scholar
  22. Blow, A. M. J., Botham, G. M., Fisher, D., Goodall, A. H., Tilcok, C. P. S., and Lucy, J. A., 1978, Water and calcium ions in cell fusion induced by poly(ethylene glycol). FEBS Lett. 94:305–310.PubMedGoogle Scholar
  23. Blow, A. M. J., Botham, G. M., and Lucy, J. A., 1979, Calcium ions and cell fusion. Effects of chemical fusogens on the permeability of erythrocytes to calcium and other ions. Biochem. J. 182:555–563.PubMedGoogle Scholar
  24. Blumenthal, R., 1987, Membrane fusion, in Current Topics in Membranes and Transport, Vol. 29 (R. D. Klausner, C. Kempf, and J. van Renswoude, eds.), pp. 203–254, Academic Press, New York.Google Scholar
  25. Blumenthal, R., Bali-Puri, A., Walter, A., Covell, D., and Eidelman, O., 1987, pH-dependent fusion of vesicular stomatitis virus with Vero cells. J. Biol. Chem. 262:13614–13619.PubMedGoogle Scholar
  26. Boni, L. T., and Hui, S. W., 1987, The mechanism of polyethylene glycol-induced fusion in model membranes, in Cell Fusion (A. E. Sowers, ed.), pp 301–330, Plenum Press, New York.Google Scholar
  27. Boni, L. T., Stewart, T. P., Alderfer, J. L., and Hui, S. W., 1981, Lipid-polyethylene glycol interactions: I. Induction of fusion between liposomes. J. Membr. Biol. 62:65–70.PubMedGoogle Scholar
  28. Boni, L. T., Stewart, T. P., and Hui, S. W., 1984, Alterations in phospholipid polymorphism by polyethylene glycol. J. Membr. Biol. 80:91–104.PubMedGoogle Scholar
  29. Boss, W. F., 1983, Poly(ethylene glycol)-induced fusion of plant protoplasts. A spin-label study. Biochim. Biophys. Acta 730:111–118.Google Scholar
  30. Breckenridge, L. J., and Aimers, W., 1987a, Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature (London) 328:814–817.Google Scholar
  31. Breckenridge, L. F., and Aimers, W., 1987b, Final steps in exocytosis observed in a cell with giant secretory granules. Proc. Natl. Acad. Sci. U.S.A. 84:1945–1949.PubMedGoogle Scholar
  32. Breslow, E., 1984, Neurophysin: Biology and chemistry of its interactions, in Cell Biology of the Secretory Process (M. Cantin, ed.), pp. 276–308, Karger, Basel.Google Scholar
  33. Brown, S. M., Ahkong, Q. F., and Lucy, J. A., 1986, Osmotic pressure and the electrofusion of myeloma cells. Biochem. Soc. Trans. 14:1129–1130.Google Scholar
  34. Brown, E. M., Pazoles, C. J., Creutz, C. E., Aurbach, G. D., and Pollard, H. B., 1978, Role of anions in parathyroid hormone release from dispersed bovine parathyroid cells. Proc. Natl. Acad. Sci. U.S.A. 75:876–880.PubMedGoogle Scholar
  35. Bruckdorfer, K. R., Cramp, F. C., Goodall, A. H., Verrinder, M., and Lucy, J. A., 1974, Fusion of mouse fibroblasts with oleylamine. J. Cell Sci. 15:185–199.PubMedGoogle Scholar
  36. Burgoyne, R. D., and Cheek, T. R., 1987a, Role of fodrin in secretion. Nature (London) 326:448.Google Scholar
  37. Burgoyne, R. D., and Cheek, T. R., 1987b, Reorganisation of peripheral actin filaments as a prelude to exocytosis. Biosci. Rep. 7:281–288.PubMedGoogle Scholar
  38. Caulfield, J. P., Lewis, R. A., Hein, A., and Austen, K. F., 1980, Secretion in dissociated human pulmonary mast cells. J. Cell Biol 85:299–311.PubMedGoogle Scholar
  39. Chand, P., Davey, M. R., Power, J. B., and Cocking, E. C., 1988, An improved procedure for plant protoplast fusion using polyethylene glycol. J. Plant Physiol, in press.Google Scholar
  40. Chernomordik, L. V., Melikyan, G. B., and Chizmadzhev, Y. A., 1987, Biomembrane fusion: A new concept derived from model studies using two interacting planar lipid bilayers. Biochim. Biophys. Acta 906:309–352.PubMedGoogle Scholar
  41. Citovsky, V., Laster, Y., Schuldiner, S., and Loyter, A., 1987, Osmotic swelling allows fusion of Sendai virions with membranes of desialized erythrocytes and chromaffin granules. Bio-chemistry 26:3856–3864.Google Scholar
  42. Coakley, W. T., and Deeley, J. O. T., 1980, Effects of ionic strength, serum protein and surface charge on membrane movements and vesicle production in heated erythrocytes. Biochim. Bio-phys. Acta 602:355–375.Google Scholar
  43. Coakley, W. T., Nwafor, A., and Deeley, J. O. T., 1983, Tetracaine modifies the fragmentation mode of heated human erythrocytes and can induce heated cell fusion. Biochim. Biophys. Acta 727:303–312.PubMedGoogle Scholar
  44. Cohen, F. S., Zimmerberg, J., and Finkelstein, A., 1980, Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane. J. Gen. Physiol 75:251–270.PubMedGoogle Scholar
  45. Cohen, F. S., Akabas, M. H., and Finkelstein, A., 1982, Osmotic swelling of phospholipid vesicles causes them to fuse with a planar phospholipid bilayer membrane. Science 217:458–460.PubMedGoogle Scholar
  46. Cohen, F. S., Akabas, M. H., Zimmerberg, J., and Finkelstein, A., 1984, Parameters affecting the fusion of unilamellar phospholipid vesicles with planar bilayer membranes. J. Cell Biol. 98:1054–1062.PubMedGoogle Scholar
  47. Couch, C. B., and Strittmatter, W. J., 1983, Rat myoblast fusion requires metalloendoprotease activity. cell 32:257–265.PubMedGoogle Scholar
  48. Cullis, P. R., and Hope, M. J., 1978, Effects of fusogenic agent on membrane structure of eryth-rocyte ghosts and the mechanism of membrane fusion. Nature (London) 271:672–674.Google Scholar
  49. Donath, E., and Arndt, R., 1984, Electric-field-induced fusion of enzyme-treated human red cells: Kinetics of intermembrane protein exchange. Gen. Physiol. Biophys. 3:239–249.PubMedGoogle Scholar
  50. Düzgünes, N., 1985, Membrane fusion, in Subcellular Biochemistry, Vol. 11 (D. B. Roodyn, ed.), pp. 195–286, Plenum Press, New York.Google Scholar
  51. Düzgünes, N., Paiement, J., Freeman, K. B., Lopez, N. G., Wilschut, J., and Papahadjopoulos, D., 1984, Modulation of membrane fusion by ionotropic and thermotropic phase transitions. Biochemistry 23:3486–3494.PubMedGoogle Scholar
  52. Düzgünes, N., Allen, T. M., Fedor, J., and Papahadjopoulos, D., 1987, Lipid mixing during membrane aggregation and fusion: Why fusion assays disagree. Biochemistry 26:8435–8442.PubMedGoogle Scholar
  53. Edwards, W., Phillips, J. H., and Morris, S. J., 1974, Structural changes in chromaffin granules induced by divalent cations. Biochim. Biophys. Acta 356:164–173.PubMedGoogle Scholar
  54. Evered, D., and Whelan, J., 1984, Cell Fusion, Ciba Foundation Symposium 103, Pitman, London.Google Scholar
  55. Farach, H. A., Mundy, D. I., Strittmatter, W. J., and Lennarz, W. J., 1987, Evidence for the involvement of metalloendoproteases in the acrosome reaction in sea urchin sperm. J. Biol. Chem. 262:5483–5487.PubMedGoogle Scholar
  56. Fawcett, D. W., 1986, A Textbook of Histology, 11th ed., W. B. Saunders, Philadelphia.Google Scholar
  57. Finkelstein, A., Zimmerberg, J., and Cohen, F. S., 1986, Osmotic swelling of vesicles: Its role in the fusion of vesicles with planar phospholipid bilayer membranes and its possible role in exocytosis. Annu. Rev. Physiol. 48:163–174.PubMedGoogle Scholar
  58. Fisher, L. R., and Parker, N. S., 1984, Osmotic control of bilayer fusion. Biophys. J. 46:253–258.PubMedGoogle Scholar
  59. Frederick, J. M., Hollyfield, J. G., and Strittmatter, W. J., 1984, Inhibitors of metalloendopro-tease activity prevent K+-stimulated neurotransmitter release from the retina of Xenopus laevis. J. Neurosci. 4:3112–3119.PubMedGoogle Scholar
  60. Fulton, A. B., Prives, J., Farmer, S. R., and Penman, S., 1981, Developmental reorganization of the skeletal framework and its surface lamina in fusing muscle cells. J. Cell Biol. 91:103–112.PubMedGoogle Scholar
  61. Gallez, D., and Coakley, W. T., 1986, Interfacial instability at cell membranes. Prog. Biophys. Mol. Biol. 48:155–199.PubMedGoogle Scholar
  62. Gawrisch, K., 1986, Molekulare mechanismen und membranveranderungen bei der durch polyetlylenglykol induzierten zellfusion, Thesis B, Karl Marx Universität, Leipzig.Google Scholar
  63. Geisow, M., and Burgoyne, R. D., 1982a, Cation-dependent lysis of chromaffin granules-an alternative hypothesis for osmotically-driven exocytosis. Cell Biol. Int. Rep. 6:353–359.PubMedGoogle Scholar
  64. Geisow, M., and Burgoyne, R. D., 1982b, Effect of monensin on chromaffin cells and the mech-anism of organelle swelling. Cell Biol. Int. Rep. 6:933–939.PubMedGoogle Scholar
  65. Gilligan, D. M., and Satir, B. H., 1983, Stimulation and inhibition of secretion in Paramecium: Role of divalent cations. J. Cell Biol 97:224–234.PubMedGoogle Scholar
  66. Glaser, R. W., and Donath, E., 1987, Hindrance of red cell electrofusion by the cytoskeleton. Studia Biophys. 121:37–43.Google Scholar
  67. Glaser, T., and Kosower, N. S., 1986, Calpain-calpastatin and fusion. Fusibility of erythrocytes is determined by a protease-protease inhibitor [calpain-calpastatin] balance. FEBS Lett. 206:115–120.PubMedGoogle Scholar
  68. Gold, G., and Grodsky, G. M., 1984, The secretory process in B cells of the pancreas, in Cell Biology of the Secretory Process (M. Cantin, ed.), pp. 359–388, Karger, Basel.Google Scholar
  69. Goodall, H., and Johnson, M. H., 1982, Use of carboxyfluorescein diacetate to study formation of permeable channels between mouse blastomers. Nature (London) 295:524–526.Google Scholar
  70. Grinstein, S., Meulen, J. V., and Furuya, W., 1982, Possible role of H+-alkali cation counter transport in secretory granule swelling during exocytosis. FEBS Lett. 148:1–4.PubMedGoogle Scholar
  71. Hammoudah, M. M., Nir, S., Bentz, J., Mayhew, E., Stewart, T. P., Hui, S. W., and Kurland, R. J., 1981, Interactions of La3+ with phosphatidylserine vesicles. Binding, phase transition, leakage, 31P-NMR and fusion. Biochim. Biophys. Acta 645:102–114.PubMedGoogle Scholar
  72. Hampton, R. Y., and Holz, R. W., 1983, Effects of changes in osmolality on the stability and function of cultured chromaffin cells and the possible role of osmotic forces in exocytosis. J. Cell Biol. 96:1082–1088.PubMedGoogle Scholar
  73. Hart, C. A., Fisher, D., Hallinan, T., and Lucy, J. A., 1976, Effects of calcium ions and the bivalent cation ionophore A23187 on the agglutination and fusion of chicken erythrocytes by Sendai virus. Biochem. J. 158:141–145.PubMedGoogle Scholar
  74. Hartmann, J. X., Galla, J. D., Emma, D. A., Kao, K. N., and Gamborg, O. L., 1976, The fusion of erythrocytes by treatment with proteolytic enzymes and polyethylene glycol. Can. J. Genet. Cytol. 18:503–512.PubMedGoogle Scholar
  75. Hauser, H., Phillips, M. C., Levine, B. A., and Williams, R. J. P., 1975, Ion-binding to phos-pholipids. Interaction of calcium and lanthanide ions with phosphatidylcholine (lecithin). Eur. J. Biochem. 58:133–144.PubMedGoogle Scholar
  76. Helenius, A., and Marsh, M., 1982, Endocytosis of enveloped animal viruses, in Membrane Re-cycling (D. Evered and G. M. Collins, eds.), pp. 59–76, Pitman, London.Google Scholar
  77. Hermans, M. P., and Henquin, J. C., 1986, Is there a role for osmotic events in exocytotic release of insulin? Endocrinology 119:105–111.PubMedGoogle Scholar
  78. Herrmann, A., Pratsch, L., Arnold, K., and Lassmann, G., 1983, Effect of poly(ethylene glycol) on the polarity of aqueous solutions and the structure of vesicle membranes. Biochim. Biophys. Acts 733:87–94.Google Scholar
  79. Herrmann, A., Arnold, K., and Pratsch, L., 1985, The effect of osmotic pressure of aqueous PEG solutions on red blood cells. Biosci. Rep. 5:689–696.PubMedGoogle Scholar
  80. Heubusch, P., Jung, C. Y., and Green, F. A., 1985, The osmotic response of human erythrocytes and the membrane skeleton. J. Cell Physiol. 122:266–272.PubMedGoogle Scholar
  81. Hoekstra, D., de Boer, T., Klappe, K., and Wilschut, J., 1984, Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry 23:5675–5681.PubMedGoogle Scholar
  82. Hoekstra, D., Klappe, K., de Boer, T., and Wilschut, J., 1985, Characterisation of the fusogenic properties of Sendai virus: Kinetics of fusion with erythrocyte membranes. Biochemistry 24:4739–4745.PubMedGoogle Scholar
  83. Holz, R. W., 1986, The role of osmotic forces in exocytosis from adrenal chromaffin cells. Annu. Rev. Physiol. 48:175–189.PubMedGoogle Scholar
  84. Holz, R. W., and Senter, R. A., 1986, Effects of osmolality and ionic strength on secretion from adrenal chromaffin cells permeabilized with digitonin. J. Neurochem. 46:1835–1842.PubMedGoogle Scholar
  85. Honda, K., Maeda, Y., Sasakawa, S., Ohno, H., and Tsuchida, E., 1981, The components contained in polyethylene glycol of commercial grade (PEG-6000) as cell fusogen. Biochim. Biophys. Acta 101:165–171.Google Scholar
  86. Horn, R. G., 1984, Direct measurement of the force between two lipid bilayers and observation of their fusion. Biochim. Biophys. Acta 778:224–228.Google Scholar
  87. Hosaka, Y., and Shimizu, K., 1977, Cell fusion by Sendai virus, in Virus Infection and the Cell Surface (G. Poste and G. L. Nicolson, eds.), pp. 129–155, North-Holland, Amsterdam.Google Scholar
  88. Huang, S. K., and Hui, S. W., 1986, Chemical co-treatments and intramembrane particle patching in the poly(ethylene glycol)-induced fusion of turkey and human erythrocytes. Biochim. Bio-phys. Acta 860:539–548.Google Scholar
  89. Hui, S. W., Stewart, T. P., and Yeagle, P. L., 1981, Membrane fusion through point defects in bilayers. Science 212:921–923.PubMedGoogle Scholar
  90. Hui, S. W., Isac, T., Boni, L. T., and Sen, A., 1985, Action of polyethylene glycol on the fusion of human erythrocyte membranes. J. Membr. Biol. 84:137–146.PubMedGoogle Scholar
  91. Impraim, C. C., Foster, K. A., Micklem, K. J., and Pasternak, C. A., 1980, Nature of virally mediated changes in membrane permeability to small molecules. Biochem. J. 186:847–860.PubMedGoogle Scholar
  92. Israel, S., Ginsberg, D., Laster, Y., Zakai, N., Milner, Y., and Loyter, A., 1983, A possible involvement of virus-associated protease in the fusion of Sendai virus envelopes with human erythrocytes. Biochim. Biophys. Acta 732:337–346.PubMedGoogle Scholar
  93. Kachadorian, W. A., Muller, J., and Finlekstein, A., 1981, Role of osmotic forces in exocytosis: Studies of ADH-induced fusion in toad urinary bladder. J. Cell Biol. 91:584–588.PubMedGoogle Scholar
  94. Kadish, J. L., and Wenc, K. M., 1983, Contamination of polyethylene glycol with aldehydes: Implications for hybridoma fusion. Hybridoma 2:87–89.PubMedGoogle Scholar
  95. Kalderon, N., 1980, Muscle cell fusion, in Membrane-Membrane Interactions (N. B. Gilula, ed.), pp. 99–118, Raven Press, New York.Google Scholar
  96. Kalderon, N., and Gilula, N. B., 1979, Membrane events involved in myoblast fusion. J. Cell Biol. 81:411–425.PubMedGoogle Scholar
  97. Kanchanapoom, K., and Boss, W. F., 1986, Osmoregulation of fusogenic protoplast fusion. Biochim. Biophys. Acta 861:429–439.Google Scholar
  98. Kao, K. N., and Michayluk, M. R., 1974, A method for high-frequency intergeneric fusion of plant protoplasts. Planta (Berlin) 115:355–367.Google Scholar
  99. Kao, K. N., and Saleem, M., 1986, Improved fusion of mesophyll and cotyledon protoplasts with PEG and high pH-Ca2+ solution. J. Plant Physiol. 122:217–225.Google Scholar
  100. Kaur, H., and Sanwal, B. D., 1981, Regulation of the activity of a calcium-activated neutral protease during differentiation of skeletal myoblasts. Can. J. Biochem. 59:743–747.PubMedGoogle Scholar
  101. Kim, J., and Okada, Y., 1987, Differences in capacities for virion-to-virion fusion of young and aged HJV (Sendai virus): A model of membrane fusion. J. Membr. Biol 97:241–249.PubMedGoogle Scholar
  102. Kim, J., Hama, K., Miyake, Y., and Okada, Y., 1979, Transformation of intramembrane particles of HJV (Sendai vims) envelopes from an invisible to visible form on aging of virions. Virology 95:523–535.PubMedGoogle Scholar
  103. Kinosita, K., and Tsong, T. Y., 1977, Formation and resealing of pores of controlled sizes in human erythrocytes by electrical breakdown. Nature (London) 268:438–441.Google Scholar
  104. Knutton, S., 1977, Studies of membrane fusion. II. Fusion of human erythrocytes by Sendai virus. J. Cell Sci. 28:189–219.PubMedGoogle Scholar
  105. Knutton, S., 1979, Studies of membrane fusion. III. Fusion of erythrocytes with polyethylene glycol. J. Cell Sci. 36:61–72.PubMedGoogle Scholar
  106. Knutton, S., and Bachi, T., 1980, The role of cell swelling and hemolysis in Sendai virus-induced cell fusion and in the diffusion of incorporated viral antigens. J. Cell Sci. 42:153–167.PubMedGoogle Scholar
  107. Knutton, S., and Pasternak, C. A., 1979, The mechanisms of cell-cell fusion. Trends Biochem. Sci. 4:220–223.Google Scholar
  108. Kosower, E. M., Kosower, N. S., and Wegman, P., 1977, Membrane mobility agents. IV. The mechanism of particle-cell and cell-cell fusion. Biochim. Biophys. Acta 471:311–329.PubMedGoogle Scholar
  109. Kosower, N. S., Wegmaan, P. O., Neiman, T., and Kosower, E. M., 1978, Membrane mobility agents. V. Genetic variability in the fusibility of hen red cells. Exp. Cell Res. 116:454–456.PubMedGoogle Scholar
  110. Kowoser, N. S., Glaser, T., and Kosower, E. M., 1983, Membrane-mobility agent-promoted fusion of eryhrocytes: Fusibility is correlated with attack by calcium-activated cytoplasmic proteases on membrane proteins. Proc. Natl. Acad. Sci. U.S.A. 80:7542–7546.Google Scholar
  111. Kovac, L., Bohmerova, E., and Necas, O., 1987, The plasma membrane of yeast protoplasts exposed to hypotonicity becomes porous but does not disintegrate in the presence of protons or polyvalent cations. Biochim. Biophys. Acta 899:265–275.PubMedGoogle Scholar
  112. Krähling, H., 1981, Investigations on polyethylene glycol-induced cell fusion: Freeze-fracture observations. Acta Histochem. Suppl. 23: S219-S223.Google Scholar
  113. Lang, R. D. A., Wickenden, C., Wynne, J., and Lucy, J. A., 1984, Proteolysis of ankyrin and of band 3 protein in chemically induced cell fusion. Biochem. J. 218:295–305.PubMedGoogle Scholar
  114. Lieber, M. R., and Steck, T. L., 1982, Dynamics of the holes in human erythrocyte membrane ghosts. J. Biol. Chem 257:11660–11666.PubMedGoogle Scholar
  115. Linstedt, A. D., and Kelly, R. B., 1987, Overcoming barriers to exocytosis. Trends Neurochem. Sci. 10:446–448.Google Scholar
  116. Lubbock, R., Gupta, B. L., and Hall, T. A., 1981, Novel role of calcium in exocytosis: Mechanism of nematocyst discharge as shown by X-ray microanalysis. Proc. Natl. Acad. Sci. U.S.A. 78:3624–3628.PubMedGoogle Scholar
  117. Lucy, J. A., 1970, The fusion of biological membranes. Nature (London) 227:814–817.Google Scholar
  118. Lucy, J. A., 1973, The chemically-induced fusion of cells, in Membrane-Mediated Information (P. W. Kent, ed.), Vol. 2, pp. 117–128, Medical and Technical Publishing, Lancaster, United Kingdom.Google Scholar
  119. Lucy, J. A., 1978, Mechanisms of chemically induced cell fusion, in Membrane Fusion (G. Poste and G. L. Nicolson, eds.), pp. 267–304, North-Holland, Amsterdam.Google Scholar
  120. Lucy, J. A., 1984, Do hydrophobic sequences cleaved from cellular polypeptides induce membrane fusion reactions in vivo? FEBS Lett. 166:223–231.PubMedGoogle Scholar
  121. Lucy, J. A., 1986, Salient features of artificially induced cell fusion. Biochem. Soc. Trans. 14:250–251.PubMedGoogle Scholar
  122. Lucy, J. A., and Ahkong, Q. F., 1986, An osmotic model for the fusion of biological membranes. FEBS lett. 199:1–11.PubMedGoogle Scholar
  123. Lucy, J. A., and Ahkong, Q. F., 1988, Osmotic forces and the fusion of biomembranes, in Molecular Mechanisms of Membrane Fusion (S. Ohki, D. Doyle, T. D. Flanagan, S. W. Hui, and E. Mayhew, eds.), pp. 163–179, Plenum Press, New York.Google Scholar
  124. MacDonald, R. I., 1985, Membrane fusion due to dehydration by polyethylene glycol, dextran, or sucrose. Biochemistry 24:4058–4066.PubMedGoogle Scholar
  125. Maggio, B., Ahkong, Q. F., and Lucy, J. A., 1976, Poly(ethylene glycol), surface potential and cell fusion. Biochem. J. 158:647–650.PubMedGoogle Scholar
  126. Maggio, B., Cumar, F. A., and Caputto, R., 1978, Induction of membrane fusion by polysialogangliosides. FEBS Lett. 90:149–152.PubMedGoogle Scholar
  127. Majumdar, S., Baker, R. F., and Kalra, V. K., 1980, Fusion of human erythrocytes induced by uranyl acetate and rare earth metals. Biochim. Biophys. Acta 598:411–416.PubMedGoogle Scholar
  128. Matt, H., and Plattner, H., 1983, Decoupling of exocytotic membrane fusion from protein dis-charge in Paramecium cells. Cell Biol. Int. Rep. 7:1025–1031.PubMedGoogle Scholar
  129. Melikyan, G. B., Abidor, I. G., Chernomordik, L. V., and Chailakhyan, L. M., 1983, Electro stimulated fusion and fission of bilayer lipid membranes. Biochim. Biophys. Acta 730:395–398.Google Scholar
  130. Micklem, K. J., Nyaruwe, A., and Pasternak, C. A., 1985, Permeability changes resulting from virus-cell fusion: Temperature dependence of the contributing processes. Mol. Cell. Biochem. 66:163–173.PubMedGoogle Scholar
  131. Miller, C., Arvan, P., Telford, J. N., and Racker, E., 1976, Ca2+-induced fusion of proteolipo somes: Dependence on transmembrane osmotic gradient. J. Membr. Biol. 30:271–282.PubMedGoogle Scholar
  132. Mundy, D. I., and Strittmatter, W. J., 1985, Requirement for metalloendoprotease in exocytosis: Evidence in mast cells and adrenal chromaffin cells. Cell 41:645–656.Google Scholar
  133. Murachi, T., Tanaka, K., Hatanaka, M., and Murakami, Y., 1981, Intracellular Ca2+-dependent protease (calpain) and its high-molecular-weight endogenous inhibitor (calpastatin). Adv. En-zyme Regul. 19:407–424.Google Scholar
  134. Nakornchai, S., Sathitudsahakron, C., Chongchirasiri, S., and Yuthavong, Y., 1983, Mechanism of enhanced fusion capacity of mouse red cells infected with Plasmodium berghei. J. Cell Sci. 63:147–154.PubMedGoogle Scholar
  135. Nelson, W. J., and Lazarides, E., 1984, Goblin (ankyrin) in striated muscle: Identification of the potential membrane receptor for erythroid species in muscle cells. Proc. Natl. Acad. Sci. U.S.A. 81:3292–3296.PubMedGoogle Scholar
  136. Niles, W. D., and Cohen, F. S., 1987, Video fluorescence microscopy studies of phospholipid vesicle fusion with a planar phospholipid membrane. J. Gen. Physiol. 90:703–735.PubMedGoogle Scholar
  137. Ohki, S., 1984, Effects of divalent cations, temperature, osmotic pressure gradient, and vesicle curvature on phosphatidylserine vesicle fusion. J. Membr. Biol. 77:265–275.PubMedGoogle Scholar
  138. Ohki, S., Doyle, D., Flanagan, T. D., Hui, S. E., and Mayhew, E., 1988, Molecular Mechanisms of Membrane Fusion, Plenum Press, New York.Google Scholar
  139. Ohno, H., Maeda, Y., and Tsuchida, E., 1981, 1H-NMR study of the effect of synthetic polymers on the fluidity, transition temperature and fusion of dipalmitoyl phosphatidylcholine small vesicles. Biochim. Biophys. Acta 642:27–36.PubMedGoogle Scholar
  140. Ohno-Shosaku, T., and Okada, T., 1985, Electric pulse-induced fusion of mouse lymphoma cells: Roles of divalent cations and membrane lipid domains. J. Membr. Biol. 85:269–280.PubMedGoogle Scholar
  141. Orci, L., and Malaisse, W., 1980, Single and chain release of insulin secretory granules is related to anionic transport at exocytotic sites. Diabetes 29:943–944.PubMedGoogle Scholar
  142. Ornberg, R. L., and Reese, T. S., 1981, Beginning of exocytosis captured by rapid-freezing of Limulus amebocytes. J. Cell Biol. 90:40–54.PubMedGoogle Scholar
  143. Palade, G. E., 1975, Intracellular aspects of protein synthesis. Science 189:347–358.PubMedGoogle Scholar
  144. Palade, G. E., and Bruns, R. R., 1968, Structural modifications of plasmalemmal vesicles. J. Cell Biol. 37:633–649.PubMedGoogle Scholar
  145. Papahadjopoulos, D., 1978, Calcium-induced phase changes and fusion in natural and model membranes. In Membrane Fusion (G. Poste and G. L. Nicolson, eds.), pp. 765–790, North-Holland, Amsterdam.Google Scholar
  146. Parente, R. A., and Lentz, B. R., 1986, Rate and extent of poly (ethylene glycol)-induced large vesicle fusion monitored by bilayer and internal contents mixing. Biochemistry 25:6678–6688.PubMedGoogle Scholar
  147. Parsegian, V. A., Rand, R. P., and Gingell, D., 1984, Lessons for the study of membrane fusion from membrane interactions in phospholipid systems, in Cell Fusion (D. Evered and J. Whelan, eds.), pp. 9–27, Pitman, London.Google Scholar
  148. Pasternak, C. A., 1984, Virally mediated changes in cellular permeability, in Membrane Processes (G. Benga, H. Baum, and F. A. Kummerow, eds.),. pp. 140–166, Springer-Verlag, New York.Google Scholar
  149. Pearl, M., and Taylor, A., 1985, Role of the cystoskeleton in the control of transcellular water flow by vasopressin in amphibian urinary bladder. Biol. Cell 55:163–172.PubMedGoogle Scholar
  150. Peretz, H., Toister, Z., Laster, Y., and Loyter, A., 1974, Fusion of intact human erythrocytes and erythrocyte ghosts. J. Cell Biol. 63:1–11.PubMedGoogle Scholar
  151. Pinto da Silva, P., and Nogueira, M. L., 1977, Membrane fusion during secretion. A hypothesis based on electron microscope observation of Phytophthora palmivora zoospores during encystment. J. Cell Biol 73:171–181.Google Scholar
  152. Pollard, H. B., Tack-Goldman, K., Pazoles, C. J., Creutz, C. E., and Shulman, N. R., 1977, Evidence for control of serotonin secretion from human platelets by hydroxyl ion transport and osmotic lysis. Proc. Natl Acad. Sci. U.S.A. 74:5295–5299.PubMedGoogle Scholar
  153. Pollard, H. B., Pazoles, C. J., Creutz, C. E., and Zinder, O., 1979, The chromaffin granule and possible mechanisms of exocytosis. Int. Rev. Cytol 58:159–197.PubMedGoogle Scholar
  154. Pollard, H. B., Pazoles, C. J., Creutz, C. E., Scott, J. H., Zinder, O., and Hotchkiss, A., 1984, An osmotic mechanism for exocytosis from dissociated chromaffin cells. J. Biol Chem. 259:1114–1121.PubMedGoogle Scholar
  155. Pontecorvo, G., 1975, Production of mammalian somatic hybrids by means of polyethylene glycol treatment. Somat. Cell Genet. 1:397–400.PubMedGoogle Scholar
  156. Poste, G., and Nicolson, G. L. (eds.), 1978, Membrane Fusion, North-Holland, Amsterdam.Google Scholar
  157. Quirk, S. J., Ahkong, Q. F., Botham, G. M., Vos, J., and Lucy, J. A., 1978, Membrane proteins in human erythrocytes during cell fusion induced by oleoylglycerol. Biochem. J. 176:159–167.PubMedGoogle Scholar
  158. Robinson, J. M., Roos, D. S., Davidson, R. L., and Karnovsky, M. J., 1979, Membrane alterations and other morphological features associated with polyethylene glycol-induced cell fusion. J. Cell Sci. 40:63–75.PubMedGoogle Scholar
  159. Roos, D. S., and Choppin, P. W., 1985, Biochemical studies on cell fusion. II. Control of fusion response by lipid alteration. J. Cell Biol 101:1591–1598.PubMedGoogle Scholar
  160. Rosenberg, J., Dlizgünes, N., and Kayalar, C., 1983, Comparison of two liposome fusion assays monitoring the intermixing of aqueous contents and of membrane components. Biochim. Biophys. Acta 735:173–180.PubMedGoogle Scholar
  161. Satir, B., Shooley, C., and Satir, P., 1973, Membrane fusion in a model system: Mucocyst secretion in Tetrahymena. J. Cell Biol 56:153–176.PubMedGoogle Scholar
  162. Schindler, M., Koppel, D. E., and Sheetz, M. P., 1980, Modulation of membrane protein lateral mobility by polyphosphates and polyamines. Proc. Natl Acad. Sci. U.S.A. 77:1457–1461.PubMedGoogle Scholar
  163. Schlegel, R. A., and Lieber, M. R., 1987, Microinjection of cultured cells via fusion with loaded erythrocytes. In Cell Fusion (A. E. Sowers, ed.), pp. 457–478, Plenum Press, New York.Google Scholar
  164. Schmauder-Chock, E. A., and Chock, S. P., 1987, Mechanism of secretory granule exocytosis: Can granule enlargement precede pore formation? Histochem. J. 19:413–418.PubMedGoogle Scholar
  165. Schuel, H., 1978, Secretory functions of egg cortical granules in fertilization and development. Gamete Res. 1:299–382.Google Scholar
  166. Schwister, K., and Deuticke, B., 1985, Formation and properties of aqueous leaks induced in human erythrocytes by electrical breakdown. Biochim. Biophys. Acta 816:332–348.PubMedGoogle Scholar
  167. Serpersu, E. H., Kinosita, K., and Tsong, T. Y., 1985, Reversible and irreversible modification of erythrocyte membrane permeability by electric field. Biochim. Biophys. Acta 812:779–785.PubMedGoogle Scholar
  168. Siegel, D. P., 1984, Inverted micellar structures in bilayer membranes. Biophys. J. 45:399–420.PubMedGoogle Scholar
  169. Siegel, D. P., 1986, Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion. Biophys. J. 49:1171–1183.PubMedGoogle Scholar
  170. Siegel, D. P., 1987, Membrane-membrane interactions via intermediates in lamellar-to-inverted hexagonal phase transitions, in Cell Fusion (A. E.’Sowers, ed.), pp. 181–207, Plenum Press, New York.Google Scholar
  171. Smith, C. L., Ahkong, Q. F., Fisher, D., and Lucy, J. A., 1982, Is purified poly(ethylene glycol) able to induce cell fusion? Biochim. Biophys. Acta 692:109–114.PubMedGoogle Scholar
  172. Smith, D. K., and Palek, J., 1982, Modulation of lateral mobility of band 3 in the red cell mem-brane by oxidative cross-linking of spectrin. Nature (London) 297:424–425.Google Scholar
  173. Sowers, A. E., 1984, Characterization of electric field-induced fusion of erythrocyte ghost membranes. J. Cell Biol. 99:1989–1996.PubMedGoogle Scholar
  174. Sowers, A. E., 1986, A long-lived fusogenic state is induced in erythrocyte ghosts by electric pulses. J. Cell Biol. 102:1358–1362.PubMedGoogle Scholar
  175. Sowers, A. E. (ed.), 1987a, Cell Fusion, Plenum Press, New York.Google Scholar
  176. Sowers, A. E., 1987b, The long-lived fusogenic state induced in erythrocyte ghosts by electric pulses is not laterally mobile. Biophys. J. 52:1015–1020.PubMedGoogle Scholar
  177. Spear, P. G., 1987, Virus-induced cell fusion, in Cell Fusion (A. E. Sowers, ed.), pp. 3–32, Plenum Press, New York.Google Scholar
  178. Stanley, E. F., and Ehrenstein, G., 1985, A model for exocytosis based on the opening of calcium activated potassium channels in vesicles. Life Sci. 37:1985–1995.PubMedGoogle Scholar
  179. Stenger, D. A., and Hui, S. W., 1986, Kinetics of ultrastructural changes during electrically induced fusion of human erythrocytes. J. Membr. Biol. 93:43–53.PubMedGoogle Scholar
  180. Strittmatter, W. J., Couch, C. B., and Mundy, D. I., 1987, Role of metalloendoprotease in the fusion of biological membranes, in Cell Fusion (A. E. Sowers, ed.), pp. 99–121, Plenum Press, New York.Google Scholar
  181. Struck, D. K., Hoekstra, D., and Pagano, R. E., 1981, Use of resonance energy transfer to monitor membrane fusion. Biochemistry 20:4093–4099.PubMedGoogle Scholar
  182. Teissie, J., and Blangero, C., 1984, Direct experimental evidence of the vectorial character of the interaction between electric pulses and cells in cell electrofusion. Biochim. Biophys. Acta 775:446–448.PubMedGoogle Scholar
  183. Teissie, J., and Rols, M. P., 1986, Fusion of mammalian cells in culture is obtained by creating the contact between cells after their electropermeabilization. Biochem. Biophys. Res. Commun. 140:258–266.PubMedGoogle Scholar
  184. Thomas, P., Limbrick, A. R., and Allan, D., 1983, Limited breakdown of cytoskeletal proteins by an endogenous protease controls Ca2+-induced membrane fusion events in chicken erythrocytes. Biochim. Biophys. Acta 730:351–358.PubMedGoogle Scholar
  185. Tilcock, C. P. S., and Fisher, D., 1979, Interaction of phospholipid membranes with poly(ethylene glycol)s. Biochim. Biophys. Acta 577:53–61.Google Scholar
  186. Tilcock, C. P. S., and Fisher, D., 1982, The interaction of phospholipid membranes with poly(ethylene glycol). Vesicle aggregation and lipid exchange. Biochim. Biophys. Acta 688:645–652.PubMedGoogle Scholar
  187. Toister, Z., and Loyter, A., 1973, The mechanism of cell fusion. II. Formation of chicken erythrocyte polykaryons. J. Biol. Chem. 248:422–432.PubMedGoogle Scholar
  188. Verkleij, A. J., van Echteld, C. J. A., Gerritsen, W. J., Cullis, P. R., and de Kruijff, B., 1980, The lipidic particle as an intermediate structure in membrane fusion processes and bilayer to hexagonal hll transitions. Biochim. Biophys. Acta 600:620–624.PubMedGoogle Scholar
  189. Vienken, J., and Zimmermann, U., 1985, An improved electrofusion technique for production of mouse hybridoma cells. FEBS Lett. 182:278–280.PubMedGoogle Scholar
  190. Vos, J., Ahkong, Q. F., Botham, G. M., Quirk, S. J., and Lucy, J. A., 1976, Changes in the distribution of intramembranous particles in hen erythrocytes during cell fusion induced by the bivalent-cation ionophore A23187. Biochem. J. 158:651–653.PubMedGoogle Scholar
  191. Wakelam, M. J. O., 1985, The fusion of myoblasts. Biochem. J. 228:1–12.PubMedGoogle Scholar
  192. Wallin, A., Glimelius K., and Erikkson, T., 1974, The induction of aggregation and fusion of Daucus carota protoplasts by polyethylene glycol. Z. Pflanzenphysiol. 74:64–80.Google Scholar
  193. Ward, M., Davey, M. R., Mathias, R. J., Cocking, E. C., Clothier, R. H., Balls, M., and Lucy, J. A., 1979, Effects of pH, Ca2+, temperature, and protease pretreatment of interkingdom fusion. Somat. Cell Genet. 5:529–536.PubMedGoogle Scholar
  194. Whitaker, M., and Zimmerberg, J., 1987, Inhibition of secretory granule discharge during exocytosis in sea urchin eggs by polymer solutions. J. Physiol. 389:527–539.PubMedGoogle Scholar
  195. White, J., Kielian, M., and Helenius, A., 1983, Membrane fusion proteins of enveloped animal viruses. Q. Rev. Biophys. 16:151–195.PubMedGoogle Scholar
  196. Wilschut, J., and Hoekstra, D., 1984, Membrane fusion: From liposomes to biological membranes. Trends Biochem. Sci. 9:479–483.Google Scholar
  197. Wojcieszyn, J. W., Schlegel, R. A., Lumley-Sapanski, K., and Jacobson, K. A., 1983, Studies on the mechanism of polyethylene glycol-mediated cell fusion using fluorescent membrane and cytoplasmic probes. J. Cell Biol. 96:151–159.PubMedGoogle Scholar
  198. Wyke, A. M., Impraim, C. C., Knutton, S., and Pasternak, C. A., 1980, Components involved in virally medicated membrane fusion and permeability changes. Biochem. J. 190:625–638.PubMedGoogle Scholar
  199. Zimmerberg, J., 1987, Molecular mechanisms of membrane fusion: Steps during phospholipid and exocytotic membrane fusion. Biosci. Rep. 7:251–268.PubMedGoogle Scholar
  200. Zimmerberg, J., and Whitaker, M. 1985, Irreversible swelling of secretory granules during exocytosis caused by calcium. Nature (London) 315:581–584.Google Scholar
  201. Zimmerberg, J., Cohen, F. S., and Finkelstein, A., 1980a, Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. I. Discharge of vesicular contents across the planar membrane. J. Gen. Physiol. 75:241–250.PubMedGoogle Scholar
  202. Zimmerberg, J., Cohen, F. S., and Finkelstein, A., 1980b, Micromolar Ca2+ stimulates fusion of lipid vesicles with planar bilayers containing a calcium-binding protein. Science 210:906–908.PubMedGoogle Scholar
  203. Zimmerberg, J., Sardet, C., and Epel, D., 1985, Exocytosis of sea urchin egg cortical vesicles in vitro is retarded by hyperosmotic sucrose: Kinetics of fusion monitored by quantitative light scattering microscopy. J. Cell Biol. 101:2398–2410.PubMedGoogle Scholar
  204. Zimmerberg, J., Curran, M., Cohen, F. S., and Brodwick, M., 1987, Simultaneous electrical and optical measurements show that membrane fusion precedes secretory granule swelling during exocytosis of beige mouse mast cells. Proc. Natl. Acad. Sci. U.S.A. 84:1585–1589.PubMedGoogle Scholar
  205. Zimmermann, U., 1982, Electric field-mediated fusion and related electrical phenomena. Biochim. Biophys. Acta 694:227–277.PubMedGoogle Scholar
  206. Zimmermann, U., 1986, Electrical breakdown, electropermeabilization and electrofusion. Rev. Physiol. Biochem. Pharmacol. 105:175–256.Google Scholar
  207. Zimmermann, U., Pilwat, G., Holzapfel, C., and Rosenheck, K., 1976, Electrical hemolysis of human and bovine red blood cells. J. Membr. Biol. 30:135–152.PubMedGoogle Scholar
  208. Zimmermann, U., Beckers F., and Coster, H. G. L., 1977, The effect of pressure on the electrical breakdown in the membranes of Valonia utricularis. Biochim. Biophys. Acta 464:399–416.PubMedGoogle Scholar
  209. Zimmermann, U., Pilwat, G., Pequeux, A., and Gilles, R., 1980, Electromechanical properties of human erythrocyte membranes: The pressure-dependence of potassium permeability. J. Membr. Biol. 54:103–113.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  1. 1.Department of Biochemistry and Chemistry, Royal Free Hospital School of MedicineUniversity of LondonLondonUK

Personalised recommendations