Fluorescence Studies of Membrane Dynamics and Heterogeneity

Part of the Subcellular Biochemistry book series (SCBI, volume 14)


The cellular morphology of lipid bilayer membranes acting as dynamic boundaries is well established. Their biological function, however, is determined at the molecular level. Thus, techniques sensitive to molecular conformation are required to understand how membranes work.


Lipid Bilayer Probe Fraction Phospholipid Bilayer Rotational Correlation Time Membrane Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



decay-associated spectra


anisotropy decay-associated spectra


time-resolved emission spectra




1,6-dipheny 1- ,3,5,7-octatetraene


dimyristoyl phosphatidylcholine


dipalmitoyl phosphatidylcholine


dioleoyl phosphatidylcholine


dilauroyl phosphatidylcholine




species-associated spectra


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht, O., Gruler, H., and Sackman, E., 1978, Polymorphism of phospholipid monolayers. J. Physiol. 39:301–313.Google Scholar
  2. Ameloot, M., Beechem, J. M., and Brand, L., 1986, Compartmental modeling of excited-state reactions: Identifiability of the rate constants from fluorescence decay surfaces. Chem. Phys. Lett. 129:211–219.Google Scholar
  3. Andrich, M. P., and Vanderkooi, J. M., 1976, Temperature dependence of 1,6-diphenyl-1,3,5-hexatriene fluorescence in phospholipid artificial membranes. Biochemistry 15:1257–1261.PubMedGoogle Scholar
  4. Baldassare, J. J., Rhinehart, K. B., and Silbert, D. F., 1976, Modification of membrane lipid: Physical properties in relation to fatty acid structure. Biochemistry 15:2986–2994.PubMedGoogle Scholar
  5. Barkley, M. D., Kowalczyk, A. A., and Brand, L., 1981, Fluorescence decay studies of anisotropic rotations of small molecules. J. Chem. Phys. 75:3581–3593.Google Scholar
  6. Barrow, D. A., and Lentz, B. R., 1985a, Membrane structural domains: Resolution limits using diphenylhexatriene fluorescence decay. Biophys. J. 48:221–234.PubMedGoogle Scholar
  7. Bearer, E. L., and Friend, D. S., 1982, Modifications of anionic-lipid domains preceding mem-brane fusion in guinea pig sperm. J. Cell Biol. 92:604–615.PubMedGoogle Scholar
  8. Beechem, J. M., Ameloot, M., and Brand, L., 1985a, Global analysis of fluorescence decay surfaces: Excited state reactions. Chem. Phys. Lett. 120:466–472.Google Scholar
  9. Beechem, J. M., Ameloot, M., and Brand, L., 1985b, Global and target analysis of complex decay phenomena. Anal. Instrum. 14:379–402.Google Scholar
  10. Betel, I., and van den Berg, K. J., 1972, Interactions of concanavalin A with rat lymphocytes. Eur. J. Biochem. 30:571–578.PubMedGoogle Scholar
  11. Birks, J. B., 1970, Photophysics of Aromatic Molecules, Wiley-Interscience, New York.Google Scholar
  12. Bittman, R., 1978, Sterol-polyene antibiotic complexation: Probe of membrane structure. Lipids 13:686–691.PubMedGoogle Scholar
  13. Bloom, J. A., and Webb, W. W., 1983, Lipid diffusibility in the intact erythrocyte membrane. Biophys. J. 42:295–305.PubMedGoogle Scholar
  14. Brand, L., Knutson, J. R., Davenport, JL., Beechem, J. M., Dale, R. E., Walbridge, D. G., and Kowalczyk, A. A., 1985, Time-resolved fluorescence spectroscopy: Some applications of as-sociative behavior to studies of proteins and membranes. In Spectroscopy and the Dynamics of Molecular Biological Systems (P. M. Bayley and R. E. Dale, eds.), pp. 259–305, Academic Press, London.Google Scholar
  15. Bretscher, M. S., 1972, Asymmetrical lipid bilayer structure for biological membranes, Nature (London) New Biol. 236:11–12.Google Scholar
  16. Bretscher, M. S., 1976, Directed lipid flow in cell membranes. Nature (London) 260:21–23.Google Scholar
  17. Brulet, P., and McConnell, H. M., 1977, Structural and dynamical aspects of membrane immunochemistry using model membranes. Biochemistry 16:1209–1217.PubMedGoogle Scholar
  18. Casper, D. L. D., and Kirshner, D. A., 1971, Myelin membrane-structure at 10A resolution. Nature (London) New Biol. 231:46–53.Google Scholar
  19. Chen, L. A., Dale, R. E., Roth, S., and Brand, L., 1977, Nanosecond time-dependent fluorescence depolarization of diphenylhexatriene in dimyristoyllecithin vesicles and the determination of “microviscosity.” J. Biol. Chem. 252:2163–2169.PubMedGoogle Scholar
  20. Cherry, R. J., 1979, Rotational and lateral diffusion of membrane proteins. Biochim. Biophys. Acta 559:239–327.Google Scholar
  21. Cherry, R. J., Nigg, E. A., and Beddard, G. S., 1980, Oligosaccharide motion in erythrocyte membranes investigated by picosecond fluorescence polarization and microsecond dichroism of an optical probe. Proc. Natl. Acad. Sci. U.S.A. 77:5899–5903.PubMedGoogle Scholar
  22. Chi, E. Y., Lagunoff, D., and Koehler, J. K., 1976, Freeze fracture study of mast cell secretion. Proc. Natl. Acad. Sci. U.S.A. 73:2823–2827.PubMedGoogle Scholar
  23. Chong, L. G., and Weber, G., 1983, Pressure dependence of l,6-diphenyl-l,3,5-hexatriene fluorescence in single-component phosphatidylcholine liposomes. Biochemistry 22:5544–5550.Google Scholar
  24. Chuang, T. J., and Eisenthal, K. B., 1972, Theory of fluorescence depolarization by anisotropic rotational diffusion. Chem. Phys. 57:5094–5097.Google Scholar
  25. Clar, E., and Schmidt, W., 1976, Correlations between photoelectron and ultra-violet absorption spectra of polycyclic hydrocarbons and the number of aromatic sextets. Tetrahedron 32:2263–2271.Google Scholar
  26. Cronan, J. E., and Vagelos, P. R., 1972, Metabolism and function of the membrane phospholipid of Escherichia coli. Biochim. Biophys. Acta 265:25–60.PubMedGoogle Scholar
  27. Cullis, P. R., and de Kruijff, B., 1979, Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta 559:399–420.PubMedGoogle Scholar
  28. Cundall, R. B., Johnson, I. D., Jones, M. W., Thomes, E. W., and Munro, I. H., 1979, Photophysical properties of DPH derivatives. Chem. Phys. Lett. 64:339–342.Google Scholar
  29. Curatolo, W., Sakura, D. J., Small, D. M., and Schipley, D.G., 1977, Protein-lipid interactions: Recombinants of the proteolipid apoprotein of myelin with dimyristoyllecithin. Biochemistry 16:2313–2319.PubMedGoogle Scholar
  30. Dale, R. E., Chen, L. A., and Brand, L., 1977, Rotation and relaxation of the “microviscosity” probe DPH in paraffin oil and egg lecithin vesicles. J. Biol. Chem. 252:7500–7510.PubMedGoogle Scholar
  31. Davenport, L., and Brand, L., 1985, Fluorescence studies of excimer formation in single bilayer liposomes using a pyrene-methyl cholesterol adduct. Biophys. J. 47:367a.Google Scholar
  32. Davenport, L., Knutson, J. R., and Brand, L., 1982, Anisotropy-decay associated fluorescence spectra and the analysis of rotational heterogeneity. Photochem. Photobiol. 10:69a.Google Scholar
  33. Davenport, L., Markby, D. W., Knutson, J. R., and Brand, L., 1983, Restricted out-of-plane rotations of coronene as revealed by emission anisotropy. Photochem. Photobiol. 37: S20.Google Scholar
  34. Davenport, L., Dale, R. E., Bisby, R. H., and Cundall, R. B., 1985, Transverse location of the fluorescence probe l,6-diphenyl-l,3,5-hexatriene in model lipid bilayer membrane systems by resonance excitation energy transfer. Biochemistry 24:4097–4108.PubMedGoogle Scholar
  35. Davenport, L., Knutson, J. R., and Brand, L., 1986a, Excited-state proton transfer of equilenin and dihydroequilenin: interaction with bilayer vesicles. Biochemistry 25:1186–1195.PubMedGoogle Scholar
  36. Davenport, L., Knutson, J. R., and Brand, L., 1986b, Anisotropy-decay associated fluorescence spectra and the analysis of rotational heterogeneity. 2. 1,6-diphenyl-1,3,5-hexatriene in lipid bilayers. Biochemistry 25:1811–1816.PubMedGoogle Scholar
  37. Davenport, L., Knutson, J. R., and Brand, L., 1986c, Studies of membrane heterogeneity using fluorescence associative techniques. Faraday Discuss. Chem. Soc. 81:81–94.Google Scholar
  38. Davenport, L., Knutson, J. R., and Brand, L., 1987, Coronene: A probe for structural fluctuations in phospholipid bilayers. Biophys. J. 51:537a.Google Scholar
  39. Davis, D. G., Inesi, G., and Gulik-Krzywicki, T., 1976, Lipid molecular motion and enzyme activity in sarcoplasmic reticulum membrane. Biochemistry 15:1271–1276.PubMedGoogle Scholar
  40. de Kruijff, B., Van Dijck, P. W. ML, Demel, R. A., Schuijff, A., Brants, F., and Van Deenan, L. L. M., 1974, Non-random distribution of cholesterol in phosphatidylcholine bilayers. Biochim. Biophys. Acta 356:1–7.Google Scholar
  41. Devaux, P., and McConnell, H. M., 1972, Lateral diffusion in spin-labeled phosphatidyl choline vesicles. J. Am. Chem. Soc. 94:4475–4481.PubMedGoogle Scholar
  42. Douce, R., Mannella, C. A., and Bonner, W. D., 1973, External NADH dehydrogenase of intact plant mitochondria. Biochim. Biophys. Acta 292:105–116.PubMedGoogle Scholar
  43. Douglas, W. W., 1974, Mechanism of release of neurohypophyeal hormones: Stimulus secretion coupling. In Handbook of Physiology. Section 7: Endocrinology (R. O. Greep and E. B. Astwood, eds.) pp, 191–224, American Physiology Society (1972–1976), Washington D.C.Google Scholar
  44. Duzgunes, N., Paiement, J., Freeman, K. B., Lopez, N. G., Wilschut, J., and Paphadojopoulos, D., 1984, Modulation of membrane fusion by ionotropic and thermotropic phase transitions. Biochemistry 23:3486–3494.PubMedGoogle Scholar
  45. Eck, V., Holzwarth, J. F., 1984, Fast dynamic phenomena in vesicles of phospholipids during phase transitions. In Surfactants in Solution (M. L. Mittal and B. Lindman, eds.), pp. 2059–2980, Plenum Press, New York.Google Scholar
  46. Edidin, M., and Weiss, A., 1972, Antigen-cap formation in cultured fibroblasts: A reflection of membrane fluidity and of cell motility. Proc. Natl. Acad. Sci. U.S.A. 69:2456–2459.PubMedGoogle Scholar
  47. Elias, P. M., Friend, D. S., and Goerke, J., 1979, Membrane-stereo heterogeneity: Freeze-fracture detection with saponins and filipin. J. Histochem. Cytochem. 27:1247–1260.PubMedGoogle Scholar
  48. Engelman, D. M., 1972, The molecular structure of the membrane of Acholeplasma Laidlawii. Chem. Phys. Lipids 8:298–302.PubMedGoogle Scholar
  49. Engelman, D. M., and Rothman, J. E., 1972, The planar organization of lecithin-cholesterol bilayers. J. Biol. Chem. 247:3694–3697.PubMedGoogle Scholar
  50. Fiorini, R., Valentino, M., Wang, S., Glaser, M., and Gratton, E., 1987, Fluorescence lifetime distributions of l,6-diphenyl-l,3,5-hexatriene in phospholipid vesicles. Biochemistry 26:3864–3869.PubMedGoogle Scholar
  51. Fleming, G. R., Knight, A. E. W., Morris, J. M., Morrison, R. J. S., and Robinson, G. W., 1977, Picosecond fluorescence studies of xanthine dyes. J. Am. Chem. Soc. 99:4306–4311.Google Scholar
  52. Florine, K. I., and Feigenson, G. W., 1987a, Influence of calcium-induced gel phase on the behavior of small molecules in phosphatidylserine and phosphatidylserine-phosphatidylcholine multilamellar vesicles. Biochemistry 26:1757–1768.PubMedGoogle Scholar
  53. Florine, K. I., and Feigenson, G. W., 1987b, Protein redistribution in model membranes: Clearing of M13 coat protein from calcium-induced gel-phase regions in phosphatidylserine-phosphatidyleholine multilamellar vesicles. Biochemistry 26:2978–2983.PubMedGoogle Scholar
  54. Florine-Casteel, K. I., and Feigenson, G. W., 1988, On the use of partition coefficients to char-acterize the distribution of fluorescent membrane probes between coexisting gel and fluid phases. Biochim. Biophys. Acta 941:102–106.PubMedGoogle Scholar
  55. Fong, B. S., and Brown, J. C., 1978, Asymmetric distribution of phosphatidylethanolamine fatty acyl chains in the membrane of vesicular stomatitis virus. Biochem. Biophys. Acta 510:230–241.PubMedGoogle Scholar
  56. Fong, B. S., Hunt, R. C., and Brown, J. C., 1976, Asymmetric distribution of phosphatidylethan-olamine in the membrane of vesicular stomatitis virus. J. Virology 20:658–663.PubMedGoogle Scholar
  57. Fressenden-Raden, J. M., and Racker, E., 1971, Structural and functional organization of mito-chondrial membranes, In Structure and Function of Biological Membranes (L. Rothfield, ed.), pp. 401–438, Academic Press, Orlando.Google Scholar
  58. Frye, L. D., and Edidin, M., 1970, The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryon. J. of Cell Sci. 7:319–335.Google Scholar
  59. Gaffney, B. J., and McConnell, H. M., 1974, Paramagnetic resonance spectra of spin labels in phospholipid membranes. J. Magn. Reson. 16:1–28.Google Scholar
  60. Galla, H. J., and Luisetti, J., 1980, Lateral and transversal diffusion and phase transitions in erythrocyte membranes. An excimer fluorescence study. Biochim. Biophys. Acta 596:108–117.PubMedGoogle Scholar
  61. Galla, H. J., and Sackmann, E., 1974, Lateral diffusion in the hydrophobic region of membranes: Use of pyrene excimers as optical probes. Biochim. Biophys. Acta 339:103–115.PubMedGoogle Scholar
  62. Galla, H. J., and Sackmann, E., 1975, Chemically induced lipid phase separation in model mem-branes containing charged lipids: A spin label study. Biochim. Biophys. Acta 401:509–529.PubMedGoogle Scholar
  63. Galla, H. J., Theilen, U., and Hartmann, W., 1979, Transversal mobility in bilayer membrane vesicles: Use of pyrene lecithin as optical probe. Chem. Phys. Lipids 23:239–251.Google Scholar
  64. Getz, G. S., 1972, Organelle biogenesis. In Membrane Molecular Biology (C. F. Fox and A. Keith, eds.), pp 386–438, Sinauer, Sunderland, MA.Google Scholar
  65. Giraud, F., Claret, M., Bruckdorfer, K. R., and Chailley, B., 1981, The effects of membrane lipid order and cholesterol on the internal and external cationic sites of the Na+,K+ pump in erythrocytes. Biochim. Biophys. Acta 647:249–258.PubMedGoogle Scholar
  66. Glatz, P., 1978, Limited rotational diffusion of DPH in human erythrocyte membranes. Anal. Biochem. 87:187–194.PubMedGoogle Scholar
  67. Golan, D. E., and Veatch, W., 1980, Lateral mobility of band 3 in human erythrocyte membrane studied by fluorescence photobleaching recovery: Evidence for control by cytoskeletal inter-action. Proc. Natl. Acad. Sci. U.S.A. 77:2537–2541.PubMedGoogle Scholar
  68. Graham, I., Gagne, J., and Silvius, J. R., 1985, Kinetics and thermodynamics of calcium-induced lateral phase separations in phosphatidic acid containing bilayers. Biochemistry 24:7123–7131.PubMedGoogle Scholar
  69. Griffith, O. H., Jost, P., Capaldi, R. A., and Vanderkooi, G., 1973, Boundary lipid and fluid bilayer regions in cytochrome oxidase model membranes. Ann. N.Y. Acad. Sci. 222:561–573.PubMedGoogle Scholar
  70. Gruenwald, B., Frisch, W., and Holzwarth, J. F., 1981, The kinetics of the formation of rotational isomers in the hydrophobic tail region of phospholipid bilayers. Biochim. Biophys. Acta 641:311–319.Google Scholar
  71. Haberkorn, R. A., Griffin, R. G., Meadows, M. D., and Oldfield, E., 1977, Deuterium nuclear magnetic resonance investigation of the depalmitoyl lecithin-cholesterol-water system. J. Am. Chem. Soc. 99:7353–7355.PubMedGoogle Scholar
  72. Haest, C. W. M., Degier, J., Op den Kamp, J. A. F., Barter, P., and Van Deenen, L. L. M., 1972, Changes in permeability of Staphylococcus aureus and derived liposomes with varying lipid composition. Biochim. Biophys. Acta 255:720–733.PubMedGoogle Scholar
  73. Hartmann, W., Galla, H. J., and Sackmann, E., 1977, Direct evidence of charge-induced lipid domain structure in model membranes. FEBS Lett. 78:169–172.PubMedGoogle Scholar
  74. Haverstick, D. M., and Glaser, M., 1987, Visualization of Ca2+-induced phospholipid domains. Proc. Natl. Acad. Sci. U.S.A. 84:4475–4479.PubMedGoogle Scholar
  75. Hawton, M. H., and Boane, J. W., 1987, Pretransitional phenomena in phospholipid/water mul-tilayers. Biophys. J. 52:401–404.PubMedGoogle Scholar
  76. Heyn, M. P., 1979, Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments. FEBS Lett. 108:359–364.PubMedGoogle Scholar
  77. Hildenbrand, K., and Nicolau, C., 1979, Nanosecond fluorescence anisotropy decays of 1,6-diphenyl-l,3,5-hexatriene in membranes. Biochim. Biophys. Acta 553:365–377.PubMedGoogle Scholar
  78. Hoekstra, D., 1982a, Fluorescence method for measuring the kinetics of Ca2+-induced phase sep-arations in phosphatidylserine-containing lipid vesicles. Biochemistry 21:1055–1061.PubMedGoogle Scholar
  79. Hoekstra, D., 1982b, Role of lipid phase separations and membrane hydration in phospholipid vesicle fusion. Biochemistry 21:2833–2840.PubMedGoogle Scholar
  80. Holzwarth, J. F., Eck, V., and Genz, A., 1985, Iodine laser temperature-jump: Relaxation pro-cesses in phospholipid bilayers on the picosecond to millisecond time-scale. In Spectroscopy and the Dynamics of Molecular Biological Systems (P. M. Bayley and R. E. Dale, eds.), pp. 351–377, Academic Press, London.Google Scholar
  81. Honda, K., Maeda, Y., Sasakawa, S., Ohno, H., and Tsuchida, E., 1981, Activities of cell fusion and lysis of the hybrid type of chemical fusogens. I. Structure and function of the promotor of cell fusion. Biochem. Biophys. Res. Commun. 100:442–448.PubMedGoogle Scholar
  82. Hubbell, W. L., and McConnell, H. M., 1968, Spin-label studies of the excitable membranes of nerve and muscle. Proc. Natl. Acad. Sci. U.S.A. 61:12–16.PubMedGoogle Scholar
  83. Hubbell, W. L., and McConnell, H. M., 1971, Molecular motion in spin labeled phospholipids and membranes. J. Am. Chem. Soc. 93:383–384.Google Scholar
  84. Hudson, B. S., Harris, D. L., Ludescher, R. D., Ruggiero, A., Cooney-Freed, A., and Cavalier, S. A., 1986, Fluorescence probe studies of proteins and membranes. In Applications of Flu-orescence in the Biomedical Sciences (D. L. Taylor, A. S. Waggoner, R. F. Murphy, and F. Lanni, eds.), pp. 159–202, Alan R. Liss, New York.Google Scholar
  85. Hui, S. W., 1981, Geometry of phase-separated domains in phospholipid bilayers by diffraction contrast electron microscopy. Biophys. J. 34:383–395.PubMedGoogle Scholar
  86. Hui, S. W., Parsons, D. F., 1975, Direct observation of domains in wet lipid bilayers. Science 190:314–326.Google Scholar
  87. Hui, S. W., Stewart, T. P., Boni, L. T., and Yeagle, P. L., 1981, Membrane fusion through point defects in bilayers. Science 212:921–923.PubMedGoogle Scholar
  88. Hui, S. W., Boni, L. T., Stewart, T. P., and Isac, T., 1983, Identification of phosphatidylserine and phosphatidylcholine in calcium-induced phase separated domains. Biochemistry 22: 3511–3516.Google Scholar
  89. Imai, M., Inoue, K., and Nojima, S., 1975, Effect of polymyxin B on liposomal membranes derived from Escherichia coli lipids. Biochim. Biophys. Acta 375:130–137.PubMedGoogle Scholar
  90. Jacobson, K., Elson, E., Koppel, D., and Webb, W., 1982, Fluorescence photobleaching in cell biology. Nature 295:283–284.PubMedGoogle Scholar
  91. Jahnig, F., 1979, Structural order of lipids and proteins in membranes: Evaluation of fluorescence anisotropy data. Proc. Natl. Acad. Sci. U.S.A. 76:6361–6365.PubMedGoogle Scholar
  92. Jahnig, F., 1981a, Critical effects from lipid-protein interactions in membranes. I. Theoretical description. Biophys. J. 36:329–345.PubMedGoogle Scholar
  93. Jahnig, F., 1981b, Critical effects from lipid-protein interaction in membranes. II. Interpretation of experimental results. Biophys. J. 36:347–357.PubMedGoogle Scholar
  94. Jain, M. K., 1983, Non-random lateral organization in bilayers and biomembranes. In Membrane Fluidity in Biology; Concepts of Membrane Structure, Vol. 1 (R. C. Aloia, ed.), pp. 1–37, Academic Press, Orlando.Google Scholar
  95. Jain, M. K., and White, H. B., 1977, Long range order in biomembranes. Adv. Lipid Res. 15:1–60.PubMedGoogle Scholar
  96. Jost, P., Waggoner, A. S., and Griffith, O. H., 1971a, Spin labeling and membrane structure. In Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 83–144, Academic Press, New York.Google Scholar
  97. Jost, P. C., Griffith, O. H., Capaldi, R. A., and Vanderkooi, G., 1971b, Evidence for boundary lipid in membranes. Proc. Natl. Acad. Sci. U.S.A. 70:480–484.Google Scholar
  98. Kalderon, N., and Gilula, N. B., 1979, Membrane events involved in myoblast fusion. J. Cell Biol. 81:411–425.PubMedGoogle Scholar
  99. Kanehisa, K. I., and Tsong, T. Y., 1978, Cluster model of lipid phase transitions with application to passive permeation of molecules and structure relaxations in lipid bilayers. J. Am. Chem. Soc. 100:424–432.Google Scholar
  100. Karnovsky, M. J., Kleinfeld, A. M., Hoover, F. L., and Klausner, R. D., 1982, The concept of lipid domains in membranes. Cell Biol. 94:1–6.Google Scholar
  101. Kates, M., and Wassef, M. K., 1970, Lipid chemistry. Annu. Rev. Biochem. 39:323–358.PubMedGoogle Scholar
  102. Katraro, R., Ron, A., and Speiser, S., 1979, Photophysical stpdies of coronene and 1,12-benzperylene. Self-quenching, photo-quenching, temperature-dependent fluorescence, decay and temperature dependent electronic energy transfer to dye acceptors. Chem. Phys. 42:121–132.Google Scholar
  103. Kawato, S., Kinosita, J. R., and Ikegami, A., 1977, Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques. Biochemistry 16:2319–2324.PubMedGoogle Scholar
  104. Kawato, S., Kinosita, K., and Ikegami, A., 1978, Effect of cholesterol on the molecular motion in the hydrocarbon region of lecithin bilayer studied by nanosecond fluorescence techniques. Biochemistry 17:5026–5031.PubMedGoogle Scholar
  105. Kimelberg, H. K., and Papahadjopoulos, D., 1971, Interactions of basic proteins with phospho-lipid membranes: binding and changes in the sodium permeability of phosphatidyserine vesicles. J. Biol. Chem. 246:1142–1148.PubMedGoogle Scholar
  106. Kimelberg, H. K., and Papahadjopoulos, D., 1972, Phospholipid requirements for (Na++K+)-ATPase activity. Head group specificity and fatty acid fluidity. Biochim. Biophys. Acta 282:277–292.PubMedGoogle Scholar
  107. Kinosita, K., Ikegami, A., and Kawato, S., 1982, On the wobbling-in-cone analysis of fluorescence anisotropy decay. Biophys. J. 37:461–464.PubMedGoogle Scholar
  108. Klausner, R. D., and Wolf, D. E., 1980, Selectivity of fluorescent lipid analogues for lipid do-mains. Biochemistry 19:6199–6203.PubMedGoogle Scholar
  109. Klausner, R. D., Kleinfeld, A. M., Hoover, R. L., and Karnovsky, J. J., 1980a, Lipid domains in membranes: Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. Biol. Chem. 255:1286–1295.Google Scholar
  110. Klausner, R. D., Kleinfeld, A. M., Hoover, R. L., and Karnovsky, M. J., 1980b, Lipid domains in membranes: Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J. Biol. Chem. 255:1286–1295.PubMedGoogle Scholar
  111. Knutson, J. R., Walbridge, D. G., and Brand, L., 1981, Resolution of fluorescent spectra in a mixture by means of nanosecond time resolved fluorescence spectroscopy. Am. Soc. Photobiol. 9:62.Google Scholar
  112. Knutson, J. R., Walbridge, D. G., and Brand, L., 1982, Decay-associated fluorescence spectra and the heterogeneous emission of alcohol dehydrogenase. Biochemistry 21:4671–4679.PubMedGoogle Scholar
  113. Knutson, J.R., Beechem, J. M., and Brand, L., 1983, Simultaneous analysis of multiple fluores-cence decay curves: A global approach. Chem. Phys. Lett. 102:501–507.Google Scholar
  114. Knutson, J. R., Davenport, L., and Brand, L., 1986, Anisotropy decay associated fluorescence spectra and analysis of rotational heterogeneity. 1. Theory and application. Biochemistry 25:5026–5031.Google Scholar
  115. Kouaouci, R., Silvius, J. R., Graham, I., and Pezolet, M., 1985, Calcium induced lateral phase separations in phosphatidylcholine-phosphatidic-acid mixtures. A Raman spectroscopic study. Biochemistry 24:7132–7140.PubMedGoogle Scholar
  116. Kowalczyk, A. A., Knutson, J. R., Barkley, M. D., Christy, R., and Brand, L., 1982, Anisotropic rotations of perylene in liposomes. In Conference Digest: Fourth Conference on Luminescence (A. A. Kowalczyk, ed.), pp. 187–189, Debrecin Press, Budapest.Google Scholar
  117. Ladbrooke, B. D., Williams, R. M., and Chapman, D., 1968, Studies of lecithin-cholesterol water interactions by differential scanning calorimetry and X-ray diffraction. Biochim. Biophys. Acta 150:333–340.PubMedGoogle Scholar
  118. Lagunoff, D., 1973, Membrane fusion during mast cell secretion. J. Cell Biol. 57:232–250.Google Scholar
  119. Lai, M. Z., Vail, W. J., and Szoka, F. C., 1985, Acid- and calcium-induced structural changes in phosphatidylethanolamine membranes stabilized by cholesteryl hemisuccinate. Biochemistry 24:1654–1661.PubMedGoogle Scholar
  120. Lakowicz, J. R., 1983, Principles of Fluorescence Spectroscopy, Plenum Press, New York.Google Scholar
  121. Lakowicz, J. R., and Knutson, J. R., 1980, Hindered depolarizing rotations of perylene in lipid bilayers. Detection by lifetime resolved fluorescence anisotropy measurements. Biochemistry 19:905–911.PubMedGoogle Scholar
  122. Lakowicz, J. R., Prendergast, F. G., and Hogen, D., 1979, Differential polarized phase fluorometric investigations of diphenylhexatriene in lipid bilayers. Quantitation of hindered depolarizing rotations. Biochemistry 18:508–519.PubMedGoogle Scholar
  123. Lakowicz, J., Cherek, H., and Maliwal, B., 1985, Time-resolved fluorescence anisotropics of diphenylhexatriene and perylene in solvents and lipid bilayers obtained from multifrequency phase-modulation fluorometry. Biochemistry 24:376–384.PubMedGoogle Scholar
  124. Lamotte, M., Lesclaux, R., Merle, A. N., and Joussot-Dubien, J., 1975, Spectroscopic studies of orientational interactions between straight-chain alkanes and aromatic hydrocarbons. Faraday Discuss. Chem. Sop. 58:253–260.Google Scholar
  125. Laws, W. R., and Brand, L., 1979, Analysis of two-state excited-state reactions: The fluorescence decay of 2-naphthol. J. Phys. Chem. 83:795–802.Google Scholar
  126. Lawson, D., Raff, M. C., Camperts, B., Fewtrell, C., and Gilula, N. B., 1977, Molecular events during membrane fusion. A study of exocytosis in rat peritoneal mast cells. J. Cell. Biol. 72:242–259.PubMedGoogle Scholar
  127. Lee, A. G., 1977, Annular events: Lipid-protein interactions. Trends Biochem. Sci. 2:231–233.Google Scholar
  128. Lelkes, P. I., Bach, D., and Miller, I. R., 1980, Perturbation of membrane structure by optical probes: II. Differential scanning calorimetry of dipalmitoyllecithin and its analogs interacting with merocyanine 540. J. Membr. Biol. 54:141–148.PubMedGoogle Scholar
  129. Lentz, B. R., Barenholz, Y., and Thompson, T., 1976a, Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 1. Single component phosphatidyl choline liposomes. Biochemistry 15:4521–4528.PubMedGoogle Scholar
  130. Lentz, B. W., Barenholz, Y., and Thompson, T., 1976b, Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2. Two component phosphatidylcholine liposomes. Biochemistry 15:4529–4536.PubMedGoogle Scholar
  131. Levine, Y. K., and Wilkins, M. H. F., 1971, Structure of oriented lipid bilayers. Nature (London) New Biol. 230:69–72.Google Scholar
  132. Lianos, P., and Georghiou, S., 1979, Solute-solvent interaction and its effect on the vibronic and vibrational structure of pyrene spectra. Photochem. Photobiol. 30:355–362.Google Scholar
  133. Liao, M.-J., and Prestegard, J. H., 1979, Fusion of phosphatidic acid-phosphatidylcholine mixed lipid vesicles. Biochim. Biophys. Acta 550:157–173.PubMedGoogle Scholar
  134. Liao, M.-J., and Prestegard, J. H., 1981, Structural properties of a Ca2+ phosphatidic acid com-plex: Small angle X-ray scattering and calorimetric results. Biochim. Biophys. Acta 645:147–156.Google Scholar
  135. Lin, H. B., and Topp, M. R., 1977, Low quantum-yield molecular fluorescence. Aromatic hydro-carbons in solution at 300 K. Chem. Phys. Lett. 48:251–255.Google Scholar
  136. Linden, C., Wright, K. L., McConnell, H. M., and Fox, C. F., 1973, Lateral phase separations in membrane lipids and mechanisms of sugar transport in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 70:2271–2275.PubMedGoogle Scholar
  137. Lipari, G., and Szabo, A., 1980, Effect of vibrational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules in membranes. Biophys. J. 30:489–506.PubMedGoogle Scholar
  138. Lucy, J. A., and Ahkong, Q. F., 1986, An osmotic model for the fusion of biological membranes. FEBS Lett. 199:1–11.PubMedGoogle Scholar
  139. Lux, S. E., 1979, Dissecting the red cell membrane skeleton. Nature (London) 281:427–429.Google Scholar
  140. Luzzati, V., 1968, X-ray diffraction studies of lipid-water systems. In Biological Membranes: Physical Fact and Function (D. Chapman, ed.), pp. 71–124, Academic Press, London.Google Scholar
  141. Mabrey, S., and Sturtevant, J. M., 1976, Investigation of phase transitions of lipids and lipid mixtures by high sensitivity DSC. Proc. Natl. Acad. Sci U.S.A. 73:3862–3866.PubMedGoogle Scholar
  142. Mabrey, S., Mateo, P. L., and Sturtevant, J. M., 1978, High sensitivity scanning calorimetric study of mixtures of cholesterol with dimyristoyl- and dipalmitoyl phosphatidylcholines. Bio-chemistry 17:2464–2468.Google Scholar
  143. Marcelja, S., 1974, Chain ordering in liquid crystals. 2. Structure of bilayer membranes. Biochim. Biophys. Acta 367:165–176.PubMedGoogle Scholar
  144. Marsh, D., and Barrantes, F. T., 1978, Immobilized liquid in acetylcholine receptor-rich mem-branes from Torpedo marmorata. Proc. Natl. Acad. Sci. U.S.A. 75:4329–4333.PubMedGoogle Scholar
  145. McConnell, H. M., Devaux, P., and Seandella, C. J., 1972, Lateral diffusion and phase separation in biological membranes. In Membrane Research, ICN-UCLA Symposium on Molecular Biology, Proceedings 1st (C. F. Fox, ed.), pp. 27–37, Academic Press, New York.Google Scholar
  146. McElhaney, R. N., and Souza, K. A., 1976, The relationship between environmental temperature, cell growth and the fluidity and physical state of the membrane lipids in Bacillus stearother mophilus. Biochim. Biophys. Acta 443:348–359.PubMedGoogle Scholar
  147. Melchior, D. L., Scavitto, F. J., and Stein, J. M., 1980, Dilatometry of dipalmitoyllecithincholesterol bilayers. Biochemistry 19:4828–4834.PubMedGoogle Scholar
  148. Mendelson, R., Sunder, S., and Bernstein, H. J., 1976, The effect of sonication on the hydrocar-bon chain conformation in model membrane systems: A Raman spectroscopic study. Biochim. Biophys. Acta 419:563–569.Google Scholar
  149. Michaelson, D. M., Horwitz, A. F., and Klein, M. P., 1973, Transbilayer asymmetry and surface homogeneity of mixed phospholipids in cosonicated vesicles. Biochemistry 12:2637–2645.PubMedGoogle Scholar
  150. Mitaku, S., 1981, Ultrasonic studies of lipid bilayer phase transition. Mol. Cryst. Liq. Cryst. 70:1299–1306.Google Scholar
  151. Mitaku, S., and Date, T., 1982, Anomalies of nanosecond ultrasonic relaxation in the lipid bilayer transition. Biochim. Biophys. Acta 688:411–421.PubMedGoogle Scholar
  152. Mitaku, S., Jippo, T., and Kataoka, R., 1983, Thermodynamic properties of the lipid bilayer transition. Biophys. J. 42:137–144.PubMedGoogle Scholar
  153. Morrot, G., Cribier, S., Devaux, P. F., Geldwerth, D., Davoust, J., Bureau, J. F., Fellmann, P., and Herve, P., 1986, Asymmetric lateral mobility of phospholipids in the human erythrocyte membrane. Proc. Natl. Acad. Sci. U.S.A. 83:6863–6867.PubMedGoogle Scholar
  154. Mukhopadhyay, A. K., and Georghiou, S., 1980, Solvent-induced enhancement of weakly allowed vibronic transitions of aromatic hydrocarbons. Photochem. Photobiol. 31:407–411.Google Scholar
  155. Nagle, J. F., and Scott, H. L. Jr., 1978, Lateral compressibility of lipid mono- and bilayers theory of membrane permeability. Biochim. Biophys. Acta 513:236–243.PubMedGoogle Scholar
  156. Nicolson, G. L., 1972, Concanavalin A: Modification of cell membrane site topography by proteo-lytic enzyme. Nature (London) New Biol. 239:193–197.Google Scholar
  157. Ohki, S., 1984, Effects of divalent cations, osmotic pressure gradient, and vesicle curvature on phosphatidylserine vesicle fusion. J. Membr. Biol. 77:265–275.PubMedGoogle Scholar
  158. Op den Kamp, J. A. F., Redai, I., and Van Deenen, L. L. M., 1969, Phospholipid composition of Bacillus subtilis. J. Bacteriol. 99:298–303.Google Scholar
  159. Op den Kamp, J. A. F., Verheij, H. M., and Van Deenen, L. L. M., 1971, Two isomers of glucosaminylphosphatidylglycerol. Their occurrence in Bacillus megaterium, structural analy-sis, and chemical synthesis. Bioorg. Chem. 1:174–187.Google Scholar
  160. Opella, S. J., Yesinowski, J. P., and Waugh, J. S., 1976, Nuclear magnetic resonance description of molecular motion and phase separation of cholesterol in lecithin dispersions. Proc. Natl. Acad. Sci. U.S.A. 73:3812–3815.PubMedGoogle Scholar
  161. Papahadjopoulos, D., Jacobson, K., Nir, S., and Isac, T., 1973, Phase transitions in phospholipid vesicles: Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim. Biophys. Acta 311:330–348.PubMedGoogle Scholar
  162. Papahadjopoulos, D., Vail, W. J., Newton, C., Nir, S., Jacobson, K., Poste, G., and Lazo, R., 1977, Studies of membrane fusion. III. The role of calcium-induced phase changes. Biochim. Biophys. Acta 465:579–598.PubMedGoogle Scholar
  163. Papahadjopoulos, D., Portis, A., and Pangborn, W., 1978, Calcium-induced lipid phase transitions and membrane fusion. Ann. N.Y. Acad. Sci. 308:50–66.PubMedGoogle Scholar
  164. Parasassi, T., Conti, F., Glaser, M., and Gratton, E., 1984, Detection of phospholipid phase separation. A multifrequency phase fluorometry study of 1,6-diphenyl-1,3,5-hexatriene fluorescence. J. Biol. Chem. 259:14011–14017.PubMedGoogle Scholar
  165. Parasassi, T., De Stasio, G., Gratton, E., and Conti, F., 1987, Fluorescence lifetime distribution of parinaric acid isomers in isotropic solvents. Biophys. J. 51:538a.Google Scholar
  166. Parente, R. A., and Lentz, B. R., 1986, Rate and extent of poly(ethylene-glycol)-induced large vesicle fusion monitored by bilayer and internal contents mixing. Biochemistry 25:6678–6688.PubMedGoogle Scholar
  167. Parola, A. H., Robbins, P. W., and Blout, E. R., 1979, Membrane dynamic alterations associated with viral transformation and reversion: Decay of fluorescence emission and anisotropy studies of 3T3 cells. Exp. Cell Res. 118:205–214.PubMedGoogle Scholar
  168. Perrin, F., 1934, Mouvement Brownien D’un Ellipsoide: I. Dispersion Dielectrique des Molecules Ellipsoidales. J. Phys. Radiat. Paris 5:497–511.Google Scholar
  169. Perrin, F., 1936, Mouvement Brownien D’un Ellipsoide: EL Rotation libre et Depolarisation des Fluorescences Translation et Diffusion de Molecules Ellipsoidales. J. Phys. Radiat. Paris 7:1–11.Google Scholar
  170. Peters, R., 1981, Translation diffusion in the plasma membrane of single cells as studied by fluo-rescence microphotolysis. Cell Biol. Int. Rep. 5:733–760.PubMedGoogle Scholar
  171. Peterson, N. O., and Chan, S. I., 1977, More on the motional state of lipid bilayer membranes: Interpretation of order parameters obtained from nuclear magnetic resonance experiments. Biochemistry 16:2657–2667.Google Scholar
  172. Phillips, M. C., Williams, R. M., and Chapman, D., 1969, Hydrocarbon chain motions in lipid liquid crystals. Chem. Phys. Lipids 3:234–244.Google Scholar
  173. Phillips, M. C., Ladbrooke, B. D., and Chapman, D., 1970, Molecular interactions in mixed lecithin systems. Biophys. Biochim. Acta 196:35–44.Google Scholar
  174. Portis, A., Newton, C., Pangborn, W., and Papahadjopoulos, D., 1979; Studies of the mechanism of membrane fusion: evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+, and inhibition by spectrin. Biochemistry 18:780–790.PubMedGoogle Scholar
  175. Raison, J. K., Lyons, J. M., Melhorn, R. J., and Keith, A. D., 1971, Temperature-induced pliase changes in mitochondrial membranes detected by spin labelling. J. Biol. Chem. 246:4036–4040.PubMedGoogle Scholar
  176. Rogers, J., Lee, A. G., and Wilton, D. C., 1979, The organization of cholesterol and ergosterol in lipid bilayers based on studies using non-perturbing fluorescent steroid probes. Biochim. Biophys. Acta 552:23–37.PubMedGoogle Scholar
  177. Rothman, J. E., and Leonard, J., 1977, Membrane asymmetry. The nature of membrane asym-metry provides clues to the puzzle of how membranes are assembled. Science 195:743–753.PubMedGoogle Scholar
  178. Rothman, J. E., Tsai, D. K., Davidowicz, E. A., and Lenar, J., 1976, Transbilayer phospholipid asymmetry and its maintenance in the membrane of influenza virus. Biochemistry 15:2361–2370.PubMedGoogle Scholar
  179. Rouser, G., Nelson, G. J., Fleischer, S., and Simon, G., 1968, Lipid composition of animal cell membranes, organelles, and organs. In Biological Membranes: Physical Fact and Function (D. Chapman ed.), pp. 6–70, Academic Press, London.Google Scholar
  180. Scandella, C. J., Devaux, P., and McConnell, H. M., 1972, Rapid lateral diffusion of phospho-lipids in rabbit sarcoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 69:2056–2060.PubMedGoogle Scholar
  181. Schroeder, F., 1985, Fluorescence probes unravel asymmetric structure of membranes. Subcell. Biochem. 11:51–101.PubMedGoogle Scholar
  182. Seelig, A., and Seelig, J., 1974, Deuterium magnetic resonance studies of phospholipid bilayers. Biochem. Biophys. Res. Commun. 57:406–410.PubMedGoogle Scholar
  183. Seiter, C. H. A., and Chan, S. I., 1973, Molecular motions in lipid bilayers. A nuclear magnetic resonance line with study. J. Am. Chem. Soc. 95:7541–7553.Google Scholar
  184. Sene, C., Genest, D., Obrenovitch, A., Wahl, P. H., and Monsigny, M., 1978, Pulse fluorimetry of 1,6-diphenyl-l,3,5-hexatriene incorporated into membranes of mouse leukemic L1210 cells. FEBS Lett. 88:181–186.PubMedGoogle Scholar
  185. Shimshick, E. J., and McConnell, H. M., 1973a, Lateral phase separations in binary mixtures of cholesterol and phospholipids. Biochem. Biophys. Res. Commun. 53:446–451.PubMedGoogle Scholar
  186. Shimshick, E. J., and McConnell, H. M., 1973b, Lateral phase separation in phospholipid mem-branes. Biochemistry 12:2351–2360.PubMedGoogle Scholar
  187. Shinitzky, M., and Barenholz, Y., 1974, Dynamics of the hydrocarbon layer in liposomes of lecithin sphingomyelin containing dicetylphosphate. J. Biol. Chem. 249:2652–2657.PubMedGoogle Scholar
  188. Shinitzky, M., Dianoux, A.-C., Gitler, C., and Weber, G., 1971, Microviscosity and order in the hydrocarbon region of micelles and membranes determined with fluorescent probes. 1. Syn-thetic micelles. Biochemistry 10:2106–2113.PubMedGoogle Scholar
  189. Sieber, F., 1987, Merocyanine 540. Photochem. Photobiol. 46:1035–1042.PubMedGoogle Scholar
  190. Siegel, D. P., 1986, Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. Biophys. J. 49:1171–1183.PubMedGoogle Scholar
  191. Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell mem-branes. Science 175:720–731.PubMedGoogle Scholar
  192. Sklar, L. A., Hudson, B. S., and Simoni, R. D., 1975, Conjugated polyene fatty acids as mem-brane probes: Preliminary characterization. Proc. Natl. Acad. Sci. U.S.A. 72:1649–1653.PubMedGoogle Scholar
  193. Sklar, L. A., Hudson, B. S., and Simoni, R. D., 1977, Conjugated polyene fatty acids as fluores-cence probes: Synthetic phospholipid membrane studies. Biochemistry 16:819–828.PubMedGoogle Scholar
  194. Steck, T. L., and Fox, C. F., 1972, Membrane proteins. In Membrane Molecular Biology (C. F. Fox and A. D. Keith, eds.), pp. 27–75, Sinauer Associates, Stamford, Connecticut.Google Scholar
  195. Stockton, G. W., Polnaszek, C. F., Tulloch, A. P., Hasa, F., and Smith, I. C. P., 1976, Molecular motion and order in single-bilayer vesicles and multilamellar dispersions of egg lecithin and lecithin-cholesterol mixtures. A deuterium nuclear magnetic resonance study of specifically labeled lipids. Biochemistry 15:954–966.PubMedGoogle Scholar
  196. Stubbs, C. D., Kouyama, T., Kinosita, K., and Ikegami, A., 1981, Effect of double bonds on the dynamic properties of the hydrocarbon region of lecithin bilayers. Biochemistry 20:4257–4262.PubMedGoogle Scholar
  197. Tanaka, K.-I., and Ohnishi, S.-I., 1976, Heterogeneity in the fluidity of intact erythrocyte mem-brane and its homogenization upon hemolysis. Biochim. Biophys. Acta 426:218–231.PubMedGoogle Scholar
  198. Tao, T., 1969, Time-dependent fluorescence depolarization and Brownian rotational diffusion coefficients of macromolecules. Biopolymers 8:609–632.Google Scholar
  199. Taylor, R. B., Duffus, W. P. H., Raff, M. C., and dePetris, S., 1971, Redistribution and pinocytosis of surface immunoglobulin molecules. Nature (London) New Biol. 233:225–230.Google Scholar
  200. Thulborn, K. R., 1981, The use of N-[9-anthroyloxy] fatty acids as fluorescence probes for biomembranes. In Fluorescent Probes (G. S. Beddard and M. A. West, eds.), pp. 113–141, Academic Press, London.Google Scholar
  201. Thulborn, K. R., and Sawyer, T. W., 1978, Properties and the locations of a set of fluorescence probes sensitive to the fluidity gradient of the lipid bilayer. Biochim. Biophys. Acta 511:125–140.PubMedGoogle Scholar
  202. Trauble, H., and Sackmann, E., 1972, Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. III. Structure of a sjeroid-lecithin system below and above the lipid-phase transition. J. Am. Chem. Soc. 94:4499–4510.PubMedGoogle Scholar
  203. Tsong, T. Y., 1977, Effect of phase transition on the kinetics of dye transport in phospholipid bilayer structures. Biochemistry 16:2674–2684.PubMedGoogle Scholar
  204. Vanderkooi, J. M., Fischkoff, S., Andrich, M., Podo, F., and Owen, C. S., 1975, Diffusion in two dimensions: Comparison between diffusional fluorescence quenching in phospholipid vesicles and in isostropic solution. J. Chem. Phys. 63:3661–3666.Google Scholar
  205. Veatch, W. R., and Stryer, L., 1977, Effect of cholesterol on the rotational mobility of DPH in liposomes: A nanosecond anisotropy study. J. Mol. Biol. 117:1109–1113.PubMedGoogle Scholar
  206. Verkleij, A. J., Ververgaert, P. H. J., de Kruijff, B., and Van Deenen, L. L. M., 1974, Distribution of cholesterol in bilayers of phosphatidylcholine as visualized by freeze-fracture. Biochim. Biophys. Acta 373:495–501.PubMedGoogle Scholar
  207. Vincent, M., deForester, B., Gallay, J., and Alfsen, A., 1982, Nanosecond fluorescence anisotropy decays of ZV-(9-anthroyloxy) fatty acids in dipalmitoylphosphatidylcholine vesicles with regard to isotropic solvents. Biochemistry 21:708–716.PubMedGoogle Scholar
  208. Vo Dinh, T., Leu Yen, E., and Winefordner, J. D., 1977, Room temperature phosphorescence of several polyaromatic hydrocarbons. Talanta 24:146–148.PubMedGoogle Scholar
  209. Volsky, D. J., and Loyter, A., 1978, Role of Ca2+ in virus-induced membrane fusion. Ca2+ accumulation and ultrastructural charges induced by Sendai virus in chicken erythrocytes. J. Cell Biol. 78:465–479.PubMedGoogle Scholar
  210. Waggoner, A. S., 1986, Fluorescent probes for the analysis of cell structure, function, and health by flow and imaging cytometry. In Applications of Fluorescence in the Biomedical Sciences (D. L. Taylor, R. F. Waggoner, R. F. Murphy, and F. Lanni, eds.), pp. 3–28, Alan R. Liss, New York.Google Scholar
  211. Webb, W. W., Barak, L. S., Tank, D. W., and Wu, E.-S., 1981, Molecular mobility on the cell surface. Biochem. Soc. Symp. 46:191–205.PubMedGoogle Scholar
  212. Williamson, P., Bateman, J., Kozarshy, K., and Mattocks, K., 1982, Involvement of spectrin in the maintenance of phase-state asymmetry in the erythrocyte membrane. cell 30:725–733.PubMedGoogle Scholar
  213. Williamson, P., Mattock, K., and Schlegel, R. A., 1983, Merocyanine 540, a fluorescent probe sensitive to lipid packing. Biochim. Biophys. Acta 732:387–393.PubMedGoogle Scholar
  214. Wojcieszyn, J. W., Schlegel, R. A., Lumley-Sapanski, K., and Jacobson, K. A., 1983, Studies on the mechanism of polyethylene glycol-mediated cell fusion using fluorescent membrane and cytoplasmic probes. J. Cell Biol. 96:151–159.PubMedGoogle Scholar
  215. Wolber, P. K., and Hudson, B. S., 1981, Fluorescence lifetime and time-resolved polarization anisotropy studies of acyl chain order and dynamics in lipid bilayers. Biochemistry 20:2800–2808.PubMedGoogle Scholar
  216. Wolber, P. K., and Hudson, B. S., 1982, Bilayer acyl chain dynamics and lipid-protein interaction: The effect of M13 bacteriophage coat protein on the decay of the fluorescence anisotropy of parinaric acid. Biophys. J. 37:253–262.PubMedGoogle Scholar
  217. Wolf, D. E., 1984, Overcoming random diffusion in polarized cells: Corralling the drunken beggar. BioEssays 6:116–121.Google Scholar
  218. Wolf, D. E., 1988, Probing the lateral organization and dynamics of membranes. In Spectroscopic Membrane Probes (CRC Critical Reviews) (L. Loew, ed.), CRC Press, Boca Raton, Florida, in press.Google Scholar
  219. Wolf, D. E., and Edidin, M., 1981, Diffusion and mobility of molecules in surface membranes. In Techniques in Cellular Physiology: Part I (P. Baker, ed.), pp. 1–14, Elsevier/North Holland Scientific Publishers, Ireland.Google Scholar
  220. Wolf, D. E., Edidin, M., and Handyside, A. M., 1981a, Changes in the organization of the mouse egg plasma membrane upon fertilization and first cleavage. Indications from the lateral diffusion rates of fluorescent lipid analogs. Dev. Biol. 85:195–198.PubMedGoogle Scholar
  221. Wolf, D. E., Kinsey, W., Lennarz, W., and Edidin, M., 1981b, Changes in the organization of the sea urchin egg plasma membrane upon fertilization: Indications from lateral diffusion rates of lipid-soluble fluorescent dyes. Dev. Biol. 81:133–138.PubMedGoogle Scholar
  222. Worster, D. L., and Franks, N. P., 1976, Structural analysis of hydrated egg lecithin and cholesterol bilayers. 2. Neutron diffraction. J. Mol. Biol. 100:359–378.Google Scholar
  223. Wu, S. H. W., and McConnell, H. M., 1973, Lateral phase separations and perpendicular transport in membranes, Biochem. Biophys. Res. Commun. 55(2):484–491.PubMedGoogle Scholar
  224. Wunderlich, F., Ronai, A., Speth, V., Seelig, J., and Blume, A., 1975, Thermotropic lipid clustering in tetrahymena membranes. Biochemistry 14:3730–3734.PubMedGoogle Scholar
  225. Yahara, I., and Edelman, G., 1972, Restriction of the mobility of lymphocyte immunoglobulin receptors by concanavalin. Proc. Natl. Acad. Sci. U.S.A. 69:608–612.PubMedGoogle Scholar
  226. Yang, R. D., Patel, K. M., Pownall, H. J., Knapp, R. D., Sklar, L. A., Crawford, R. B., and Morrisett, J. D., 1979, Biophysical properties of a major membrane phospholipid, dielaidoyl phosphatidylethanolamine, found in Escherichia coli fatty acid auxotroph. J. Biol. Chem. 254:8256–8262.PubMedGoogle Scholar
  227. Yechiel, E., and Edidin, M., 1987. Micrometer-scale domains in fibroblast plasma membranes. J. Cell Biol. 105:755–760.PubMedGoogle Scholar
  228. Yechiel, E., Barenholz, Y., and Hemis, Y. I., 1986, Lateral mobility and organization of phospholipids and proteins in rat myocyte membranes. J. Biol. Chem. 260:9132–9136.Google Scholar
  229. Zacharasse, K. A., Kuhnle, W., and Weiler, A., 1980, Intramolecular excimer fluorescence as a probe of fluidity changes and phase transitions in phosphatidylcholine bilayers. Chem. Phys. Lett. 73:6–11.Google Scholar
  230. Zannoni, C., 1979, A theory of time-dependent fluorescence depolarization in liquid crystals. Mol. Phys. 38:1813–1827.Google Scholar
  231. Zannoni, C., Arcioni, A., and Cavatorta, P., 1983, Fluorescence depolarization in liquid crystals and membrane bilayers. Chem. Phys. Lipids 32:179–250.Google Scholar
  232. Zimmermann, H. V., and Joop, N., 1961, Polarization der Elektronenbanden von Aromaten. 5. Mitteilung: Benzol, Coronen, Triphenylen, Pyren, Perylen. Z. Electrochem. 65:138–142.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  1. 1.Laboratory of Technical DevelopmentNational Institutes of HealthBethesdaUSA
  2. 2.Department of ChemistryBrooklyn College of the City University of New YorkBrooklynUSA
  3. 3.Biology Department and McCollum-Pratt InstituteJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations