Skip to main content

Fluorescence Studies of Membrane Dynamics and Heterogeneity

  • Chapter
Book cover Artificial and Reconstituted Membrane Systems

Part of the book series: Subcellular Biochemistry ((SCBI,volume 14))

Abstract

The cellular morphology of lipid bilayer membranes acting as dynamic boundaries is well established. Their biological function, however, is determined at the molecular level. Thus, techniques sensitive to molecular conformation are required to understand how membranes work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

DAS:

decay-associated spectra

ADAS:

anisotropy decay-associated spectra

TRES:

time-resolved emission spectra

DPH:

1,6-diphenyl-1,3,5-hexatriene

DPO:

1,6-dipheny 1- ,3,5,7-octatetraene

DMPC:

dimyristoyl phosphatidylcholine

DPPC:

dipalmitoyl phosphatidylcholine

DOPC:

dioleoyl phosphatidylcholine

DLPC:

dilauroyl phosphatidylcholine

PMC:

l-pyrene-methyl-3β-OH-22,23-bisnor-5-cholenate

SAS:

species-associated spectra

References

  • Albrecht, O., Gruler, H., and Sackman, E., 1978, Polymorphism of phospholipid monolayers. J. Physiol. 39:301–313.

    CAS  Google Scholar 

  • Ameloot, M., Beechem, J. M., and Brand, L., 1986, Compartmental modeling of excited-state reactions: Identifiability of the rate constants from fluorescence decay surfaces. Chem. Phys. Lett. 129:211–219.

    CAS  Google Scholar 

  • Andrich, M. P., and Vanderkooi, J. M., 1976, Temperature dependence of 1,6-diphenyl-1,3,5-hexatriene fluorescence in phospholipid artificial membranes. Biochemistry 15:1257–1261.

    PubMed  CAS  Google Scholar 

  • Baldassare, J. J., Rhinehart, K. B., and Silbert, D. F., 1976, Modification of membrane lipid: Physical properties in relation to fatty acid structure. Biochemistry 15:2986–2994.

    PubMed  CAS  Google Scholar 

  • Barkley, M. D., Kowalczyk, A. A., and Brand, L., 1981, Fluorescence decay studies of anisotropic rotations of small molecules. J. Chem. Phys. 75:3581–3593.

    CAS  Google Scholar 

  • Barrow, D. A., and Lentz, B. R., 1985a, Membrane structural domains: Resolution limits using diphenylhexatriene fluorescence decay. Biophys. J. 48:221–234.

    PubMed  CAS  Google Scholar 

  • Bearer, E. L., and Friend, D. S., 1982, Modifications of anionic-lipid domains preceding mem-brane fusion in guinea pig sperm. J. Cell Biol. 92:604–615.

    PubMed  CAS  Google Scholar 

  • Beechem, J. M., Ameloot, M., and Brand, L., 1985a, Global analysis of fluorescence decay surfaces: Excited state reactions. Chem. Phys. Lett. 120:466–472.

    CAS  Google Scholar 

  • Beechem, J. M., Ameloot, M., and Brand, L., 1985b, Global and target analysis of complex decay phenomena. Anal. Instrum. 14:379–402.

    CAS  Google Scholar 

  • Betel, I., and van den Berg, K. J., 1972, Interactions of concanavalin A with rat lymphocytes. Eur. J. Biochem. 30:571–578.

    PubMed  CAS  Google Scholar 

  • Birks, J. B., 1970, Photophysics of Aromatic Molecules, Wiley-Interscience, New York.

    Google Scholar 

  • Bittman, R., 1978, Sterol-polyene antibiotic complexation: Probe of membrane structure. Lipids 13:686–691.

    PubMed  CAS  Google Scholar 

  • Bloom, J. A., and Webb, W. W., 1983, Lipid diffusibility in the intact erythrocyte membrane. Biophys. J. 42:295–305.

    PubMed  CAS  Google Scholar 

  • Brand, L., Knutson, J. R., Davenport, JL., Beechem, J. M., Dale, R. E., Walbridge, D. G., and Kowalczyk, A. A., 1985, Time-resolved fluorescence spectroscopy: Some applications of as-sociative behavior to studies of proteins and membranes. In Spectroscopy and the Dynamics of Molecular Biological Systems (P. M. Bayley and R. E. Dale, eds.), pp. 259–305, Academic Press, London.

    Google Scholar 

  • Bretscher, M. S., 1972, Asymmetrical lipid bilayer structure for biological membranes, Nature (London) New Biol. 236:11–12.

    CAS  Google Scholar 

  • Bretscher, M. S., 1976, Directed lipid flow in cell membranes. Nature (London) 260:21–23.

    CAS  Google Scholar 

  • Brulet, P., and McConnell, H. M., 1977, Structural and dynamical aspects of membrane immunochemistry using model membranes. Biochemistry 16:1209–1217.

    PubMed  CAS  Google Scholar 

  • Casper, D. L. D., and Kirshner, D. A., 1971, Myelin membrane-structure at 10A resolution. Nature (London) New Biol. 231:46–53.

    Google Scholar 

  • Chen, L. A., Dale, R. E., Roth, S., and Brand, L., 1977, Nanosecond time-dependent fluorescence depolarization of diphenylhexatriene in dimyristoyllecithin vesicles and the determination of “microviscosity.” J. Biol. Chem. 252:2163–2169.

    PubMed  CAS  Google Scholar 

  • Cherry, R. J., 1979, Rotational and lateral diffusion of membrane proteins. Biochim. Biophys. Acta 559:239–327.

    Google Scholar 

  • Cherry, R. J., Nigg, E. A., and Beddard, G. S., 1980, Oligosaccharide motion in erythrocyte membranes investigated by picosecond fluorescence polarization and microsecond dichroism of an optical probe. Proc. Natl. Acad. Sci. U.S.A. 77:5899–5903.

    PubMed  CAS  Google Scholar 

  • Chi, E. Y., Lagunoff, D., and Koehler, J. K., 1976, Freeze fracture study of mast cell secretion. Proc. Natl. Acad. Sci. U.S.A. 73:2823–2827.

    PubMed  CAS  Google Scholar 

  • Chong, L. G., and Weber, G., 1983, Pressure dependence of l,6-diphenyl-l,3,5-hexatriene fluorescence in single-component phosphatidylcholine liposomes. Biochemistry 22:5544–5550.

    CAS  Google Scholar 

  • Chuang, T. J., and Eisenthal, K. B., 1972, Theory of fluorescence depolarization by anisotropic rotational diffusion. Chem. Phys. 57:5094–5097.

    CAS  Google Scholar 

  • Clar, E., and Schmidt, W., 1976, Correlations between photoelectron and ultra-violet absorption spectra of polycyclic hydrocarbons and the number of aromatic sextets. Tetrahedron 32:2263–2271.

    Google Scholar 

  • Cronan, J. E., and Vagelos, P. R., 1972, Metabolism and function of the membrane phospholipid of Escherichia coli. Biochim. Biophys. Acta 265:25–60.

    PubMed  CAS  Google Scholar 

  • Cullis, P. R., and de Kruijff, B., 1979, Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta 559:399–420.

    PubMed  CAS  Google Scholar 

  • Cundall, R. B., Johnson, I. D., Jones, M. W., Thomes, E. W., and Munro, I. H., 1979, Photophysical properties of DPH derivatives. Chem. Phys. Lett. 64:339–342.

    Google Scholar 

  • Curatolo, W., Sakura, D. J., Small, D. M., and Schipley, D.G., 1977, Protein-lipid interactions: Recombinants of the proteolipid apoprotein of myelin with dimyristoyllecithin. Biochemistry 16:2313–2319.

    PubMed  CAS  Google Scholar 

  • Dale, R. E., Chen, L. A., and Brand, L., 1977, Rotation and relaxation of the “microviscosity” probe DPH in paraffin oil and egg lecithin vesicles. J. Biol. Chem. 252:7500–7510.

    PubMed  CAS  Google Scholar 

  • Davenport, L., and Brand, L., 1985, Fluorescence studies of excimer formation in single bilayer liposomes using a pyrene-methyl cholesterol adduct. Biophys. J. 47:367a.

    Google Scholar 

  • Davenport, L., Knutson, J. R., and Brand, L., 1982, Anisotropy-decay associated fluorescence spectra and the analysis of rotational heterogeneity. Photochem. Photobiol. 10:69a.

    Google Scholar 

  • Davenport, L., Markby, D. W., Knutson, J. R., and Brand, L., 1983, Restricted out-of-plane rotations of coronene as revealed by emission anisotropy. Photochem. Photobiol. 37: S20.

    Google Scholar 

  • Davenport, L., Dale, R. E., Bisby, R. H., and Cundall, R. B., 1985, Transverse location of the fluorescence probe l,6-diphenyl-l,3,5-hexatriene in model lipid bilayer membrane systems by resonance excitation energy transfer. Biochemistry 24:4097–4108.

    PubMed  CAS  Google Scholar 

  • Davenport, L., Knutson, J. R., and Brand, L., 1986a, Excited-state proton transfer of equilenin and dihydroequilenin: interaction with bilayer vesicles. Biochemistry 25:1186–1195.

    PubMed  CAS  Google Scholar 

  • Davenport, L., Knutson, J. R., and Brand, L., 1986b, Anisotropy-decay associated fluorescence spectra and the analysis of rotational heterogeneity. 2. 1,6-diphenyl-1,3,5-hexatriene in lipid bilayers. Biochemistry 25:1811–1816.

    PubMed  CAS  Google Scholar 

  • Davenport, L., Knutson, J. R., and Brand, L., 1986c, Studies of membrane heterogeneity using fluorescence associative techniques. Faraday Discuss. Chem. Soc. 81:81–94.

    CAS  Google Scholar 

  • Davenport, L., Knutson, J. R., and Brand, L., 1987, Coronene: A probe for structural fluctuations in phospholipid bilayers. Biophys. J. 51:537a.

    Google Scholar 

  • Davis, D. G., Inesi, G., and Gulik-Krzywicki, T., 1976, Lipid molecular motion and enzyme activity in sarcoplasmic reticulum membrane. Biochemistry 15:1271–1276.

    PubMed  CAS  Google Scholar 

  • de Kruijff, B., Van Dijck, P. W. ML, Demel, R. A., Schuijff, A., Brants, F., and Van Deenan, L. L. M., 1974, Non-random distribution of cholesterol in phosphatidylcholine bilayers. Biochim. Biophys. Acta 356:1–7.

    Google Scholar 

  • Devaux, P., and McConnell, H. M., 1972, Lateral diffusion in spin-labeled phosphatidyl choline vesicles. J. Am. Chem. Soc. 94:4475–4481.

    PubMed  CAS  Google Scholar 

  • Douce, R., Mannella, C. A., and Bonner, W. D., 1973, External NADH dehydrogenase of intact plant mitochondria. Biochim. Biophys. Acta 292:105–116.

    PubMed  CAS  Google Scholar 

  • Douglas, W. W., 1974, Mechanism of release of neurohypophyeal hormones: Stimulus secretion coupling. In Handbook of Physiology. Section 7: Endocrinology (R. O. Greep and E. B. Astwood, eds.) pp, 191–224, American Physiology Society (1972–1976), Washington D.C.

    Google Scholar 

  • Duzgunes, N., Paiement, J., Freeman, K. B., Lopez, N. G., Wilschut, J., and Paphadojopoulos, D., 1984, Modulation of membrane fusion by ionotropic and thermotropic phase transitions. Biochemistry 23:3486–3494.

    PubMed  CAS  Google Scholar 

  • Eck, V., Holzwarth, J. F., 1984, Fast dynamic phenomena in vesicles of phospholipids during phase transitions. In Surfactants in Solution (M. L. Mittal and B. Lindman, eds.), pp. 2059–2980, Plenum Press, New York.

    Google Scholar 

  • Edidin, M., and Weiss, A., 1972, Antigen-cap formation in cultured fibroblasts: A reflection of membrane fluidity and of cell motility. Proc. Natl. Acad. Sci. U.S.A. 69:2456–2459.

    PubMed  CAS  Google Scholar 

  • Elias, P. M., Friend, D. S., and Goerke, J., 1979, Membrane-stereo heterogeneity: Freeze-fracture detection with saponins and filipin. J. Histochem. Cytochem. 27:1247–1260.

    PubMed  CAS  Google Scholar 

  • Engelman, D. M., 1972, The molecular structure of the membrane of Acholeplasma Laidlawii. Chem. Phys. Lipids 8:298–302.

    PubMed  CAS  Google Scholar 

  • Engelman, D. M., and Rothman, J. E., 1972, The planar organization of lecithin-cholesterol bilayers. J. Biol. Chem. 247:3694–3697.

    PubMed  CAS  Google Scholar 

  • Fiorini, R., Valentino, M., Wang, S., Glaser, M., and Gratton, E., 1987, Fluorescence lifetime distributions of l,6-diphenyl-l,3,5-hexatriene in phospholipid vesicles. Biochemistry 26:3864–3869.

    PubMed  CAS  Google Scholar 

  • Fleming, G. R., Knight, A. E. W., Morris, J. M., Morrison, R. J. S., and Robinson, G. W., 1977, Picosecond fluorescence studies of xanthine dyes. J. Am. Chem. Soc. 99:4306–4311.

    CAS  Google Scholar 

  • Florine, K. I., and Feigenson, G. W., 1987a, Influence of calcium-induced gel phase on the behavior of small molecules in phosphatidylserine and phosphatidylserine-phosphatidylcholine multilamellar vesicles. Biochemistry 26:1757–1768.

    PubMed  CAS  Google Scholar 

  • Florine, K. I., and Feigenson, G. W., 1987b, Protein redistribution in model membranes: Clearing of M13 coat protein from calcium-induced gel-phase regions in phosphatidylserine-phosphatidyleholine multilamellar vesicles. Biochemistry 26:2978–2983.

    PubMed  CAS  Google Scholar 

  • Florine-Casteel, K. I., and Feigenson, G. W., 1988, On the use of partition coefficients to char-acterize the distribution of fluorescent membrane probes between coexisting gel and fluid phases. Biochim. Biophys. Acta 941:102–106.

    PubMed  CAS  Google Scholar 

  • Fong, B. S., and Brown, J. C., 1978, Asymmetric distribution of phosphatidylethanolamine fatty acyl chains in the membrane of vesicular stomatitis virus. Biochem. Biophys. Acta 510:230–241.

    PubMed  CAS  Google Scholar 

  • Fong, B. S., Hunt, R. C., and Brown, J. C., 1976, Asymmetric distribution of phosphatidylethan-olamine in the membrane of vesicular stomatitis virus. J. Virology 20:658–663.

    PubMed  CAS  Google Scholar 

  • Fressenden-Raden, J. M., and Racker, E., 1971, Structural and functional organization of mito-chondrial membranes, In Structure and Function of Biological Membranes (L. Rothfield, ed.), pp. 401–438, Academic Press, Orlando.

    Google Scholar 

  • Frye, L. D., and Edidin, M., 1970, The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryon. J. of Cell Sci. 7:319–335.

    CAS  Google Scholar 

  • Gaffney, B. J., and McConnell, H. M., 1974, Paramagnetic resonance spectra of spin labels in phospholipid membranes. J. Magn. Reson. 16:1–28.

    CAS  Google Scholar 

  • Galla, H. J., and Luisetti, J., 1980, Lateral and transversal diffusion and phase transitions in erythrocyte membranes. An excimer fluorescence study. Biochim. Biophys. Acta 596:108–117.

    PubMed  CAS  Google Scholar 

  • Galla, H. J., and Sackmann, E., 1974, Lateral diffusion in the hydrophobic region of membranes: Use of pyrene excimers as optical probes. Biochim. Biophys. Acta 339:103–115.

    PubMed  CAS  Google Scholar 

  • Galla, H. J., and Sackmann, E., 1975, Chemically induced lipid phase separation in model mem-branes containing charged lipids: A spin label study. Biochim. Biophys. Acta 401:509–529.

    PubMed  CAS  Google Scholar 

  • Galla, H. J., Theilen, U., and Hartmann, W., 1979, Transversal mobility in bilayer membrane vesicles: Use of pyrene lecithin as optical probe. Chem. Phys. Lipids 23:239–251.

    CAS  Google Scholar 

  • Getz, G. S., 1972, Organelle biogenesis. In Membrane Molecular Biology (C. F. Fox and A. Keith, eds.), pp 386–438, Sinauer, Sunderland, MA.

    Google Scholar 

  • Giraud, F., Claret, M., Bruckdorfer, K. R., and Chailley, B., 1981, The effects of membrane lipid order and cholesterol on the internal and external cationic sites of the Na+,K+ pump in erythrocytes. Biochim. Biophys. Acta 647:249–258.

    PubMed  CAS  Google Scholar 

  • Glatz, P., 1978, Limited rotational diffusion of DPH in human erythrocyte membranes. Anal. Biochem. 87:187–194.

    PubMed  CAS  Google Scholar 

  • Golan, D. E., and Veatch, W., 1980, Lateral mobility of band 3 in human erythrocyte membrane studied by fluorescence photobleaching recovery: Evidence for control by cytoskeletal inter-action. Proc. Natl. Acad. Sci. U.S.A. 77:2537–2541.

    PubMed  CAS  Google Scholar 

  • Graham, I., Gagne, J., and Silvius, J. R., 1985, Kinetics and thermodynamics of calcium-induced lateral phase separations in phosphatidic acid containing bilayers. Biochemistry 24:7123–7131.

    PubMed  CAS  Google Scholar 

  • Griffith, O. H., Jost, P., Capaldi, R. A., and Vanderkooi, G., 1973, Boundary lipid and fluid bilayer regions in cytochrome oxidase model membranes. Ann. N.Y. Acad. Sci. 222:561–573.

    PubMed  CAS  Google Scholar 

  • Gruenwald, B., Frisch, W., and Holzwarth, J. F., 1981, The kinetics of the formation of rotational isomers in the hydrophobic tail region of phospholipid bilayers. Biochim. Biophys. Acta 641:311–319.

    Google Scholar 

  • Haberkorn, R. A., Griffin, R. G., Meadows, M. D., and Oldfield, E., 1977, Deuterium nuclear magnetic resonance investigation of the depalmitoyl lecithin-cholesterol-water system. J. Am. Chem. Soc. 99:7353–7355.

    PubMed  CAS  Google Scholar 

  • Haest, C. W. M., Degier, J., Op den Kamp, J. A. F., Barter, P., and Van Deenen, L. L. M., 1972, Changes in permeability of Staphylococcus aureus and derived liposomes with varying lipid composition. Biochim. Biophys. Acta 255:720–733.

    PubMed  CAS  Google Scholar 

  • Hartmann, W., Galla, H. J., and Sackmann, E., 1977, Direct evidence of charge-induced lipid domain structure in model membranes. FEBS Lett. 78:169–172.

    PubMed  CAS  Google Scholar 

  • Haverstick, D. M., and Glaser, M., 1987, Visualization of Ca2+-induced phospholipid domains. Proc. Natl. Acad. Sci. U.S.A. 84:4475–4479.

    PubMed  CAS  Google Scholar 

  • Hawton, M. H., and Boane, J. W., 1987, Pretransitional phenomena in phospholipid/water mul-tilayers. Biophys. J. 52:401–404.

    PubMed  CAS  Google Scholar 

  • Heyn, M. P., 1979, Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments. FEBS Lett. 108:359–364.

    PubMed  CAS  Google Scholar 

  • Hildenbrand, K., and Nicolau, C., 1979, Nanosecond fluorescence anisotropy decays of 1,6-diphenyl-l,3,5-hexatriene in membranes. Biochim. Biophys. Acta 553:365–377.

    PubMed  CAS  Google Scholar 

  • Hoekstra, D., 1982a, Fluorescence method for measuring the kinetics of Ca2+-induced phase sep-arations in phosphatidylserine-containing lipid vesicles. Biochemistry 21:1055–1061.

    PubMed  CAS  Google Scholar 

  • Hoekstra, D., 1982b, Role of lipid phase separations and membrane hydration in phospholipid vesicle fusion. Biochemistry 21:2833–2840.

    PubMed  CAS  Google Scholar 

  • Holzwarth, J. F., Eck, V., and Genz, A., 1985, Iodine laser temperature-jump: Relaxation pro-cesses in phospholipid bilayers on the picosecond to millisecond time-scale. In Spectroscopy and the Dynamics of Molecular Biological Systems (P. M. Bayley and R. E. Dale, eds.), pp. 351–377, Academic Press, London.

    Google Scholar 

  • Honda, K., Maeda, Y., Sasakawa, S., Ohno, H., and Tsuchida, E., 1981, Activities of cell fusion and lysis of the hybrid type of chemical fusogens. I. Structure and function of the promotor of cell fusion. Biochem. Biophys. Res. Commun. 100:442–448.

    PubMed  CAS  Google Scholar 

  • Hubbell, W. L., and McConnell, H. M., 1968, Spin-label studies of the excitable membranes of nerve and muscle. Proc. Natl. Acad. Sci. U.S.A. 61:12–16.

    PubMed  CAS  Google Scholar 

  • Hubbell, W. L., and McConnell, H. M., 1971, Molecular motion in spin labeled phospholipids and membranes. J. Am. Chem. Soc. 93:383–384.

    Google Scholar 

  • Hudson, B. S., Harris, D. L., Ludescher, R. D., Ruggiero, A., Cooney-Freed, A., and Cavalier, S. A., 1986, Fluorescence probe studies of proteins and membranes. In Applications of Flu-orescence in the Biomedical Sciences (D. L. Taylor, A. S. Waggoner, R. F. Murphy, and F. Lanni, eds.), pp. 159–202, Alan R. Liss, New York.

    Google Scholar 

  • Hui, S. W., 1981, Geometry of phase-separated domains in phospholipid bilayers by diffraction contrast electron microscopy. Biophys. J. 34:383–395.

    PubMed  CAS  Google Scholar 

  • Hui, S. W., Parsons, D. F., 1975, Direct observation of domains in wet lipid bilayers. Science 190:314–326.

    Google Scholar 

  • Hui, S. W., Stewart, T. P., Boni, L. T., and Yeagle, P. L., 1981, Membrane fusion through point defects in bilayers. Science 212:921–923.

    PubMed  CAS  Google Scholar 

  • Hui, S. W., Boni, L. T., Stewart, T. P., and Isac, T., 1983, Identification of phosphatidylserine and phosphatidylcholine in calcium-induced phase separated domains. Biochemistry 22: 3511–3516.

    CAS  Google Scholar 

  • Imai, M., Inoue, K., and Nojima, S., 1975, Effect of polymyxin B on liposomal membranes derived from Escherichia coli lipids. Biochim. Biophys. Acta 375:130–137.

    PubMed  CAS  Google Scholar 

  • Jacobson, K., Elson, E., Koppel, D., and Webb, W., 1982, Fluorescence photobleaching in cell biology. Nature 295:283–284.

    PubMed  CAS  Google Scholar 

  • Jahnig, F., 1979, Structural order of lipids and proteins in membranes: Evaluation of fluorescence anisotropy data. Proc. Natl. Acad. Sci. U.S.A. 76:6361–6365.

    PubMed  CAS  Google Scholar 

  • Jahnig, F., 1981a, Critical effects from lipid-protein interactions in membranes. I. Theoretical description. Biophys. J. 36:329–345.

    PubMed  CAS  Google Scholar 

  • Jahnig, F., 1981b, Critical effects from lipid-protein interaction in membranes. II. Interpretation of experimental results. Biophys. J. 36:347–357.

    PubMed  CAS  Google Scholar 

  • Jain, M. K., 1983, Non-random lateral organization in bilayers and biomembranes. In Membrane Fluidity in Biology; Concepts of Membrane Structure, Vol. 1 (R. C. Aloia, ed.), pp. 1–37, Academic Press, Orlando.

    Google Scholar 

  • Jain, M. K., and White, H. B., 1977, Long range order in biomembranes. Adv. Lipid Res. 15:1–60.

    PubMed  CAS  Google Scholar 

  • Jost, P., Waggoner, A. S., and Griffith, O. H., 1971a, Spin labeling and membrane structure. In Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 83–144, Academic Press, New York.

    Google Scholar 

  • Jost, P. C., Griffith, O. H., Capaldi, R. A., and Vanderkooi, G., 1971b, Evidence for boundary lipid in membranes. Proc. Natl. Acad. Sci. U.S.A. 70:480–484.

    Google Scholar 

  • Kalderon, N., and Gilula, N. B., 1979, Membrane events involved in myoblast fusion. J. Cell Biol. 81:411–425.

    PubMed  CAS  Google Scholar 

  • Kanehisa, K. I., and Tsong, T. Y., 1978, Cluster model of lipid phase transitions with application to passive permeation of molecules and structure relaxations in lipid bilayers. J. Am. Chem. Soc. 100:424–432.

    CAS  Google Scholar 

  • Karnovsky, M. J., Kleinfeld, A. M., Hoover, F. L., and Klausner, R. D., 1982, The concept of lipid domains in membranes. Cell Biol. 94:1–6.

    CAS  Google Scholar 

  • Kates, M., and Wassef, M. K., 1970, Lipid chemistry. Annu. Rev. Biochem. 39:323–358.

    PubMed  CAS  Google Scholar 

  • Katraro, R., Ron, A., and Speiser, S., 1979, Photophysical stpdies of coronene and 1,12-benzperylene. Self-quenching, photo-quenching, temperature-dependent fluorescence, decay and temperature dependent electronic energy transfer to dye acceptors. Chem. Phys. 42:121–132.

    CAS  Google Scholar 

  • Kawato, S., Kinosita, J. R., and Ikegami, A., 1977, Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques. Biochemistry 16:2319–2324.

    PubMed  CAS  Google Scholar 

  • Kawato, S., Kinosita, K., and Ikegami, A., 1978, Effect of cholesterol on the molecular motion in the hydrocarbon region of lecithin bilayer studied by nanosecond fluorescence techniques. Biochemistry 17:5026–5031.

    PubMed  CAS  Google Scholar 

  • Kimelberg, H. K., and Papahadjopoulos, D., 1971, Interactions of basic proteins with phospho-lipid membranes: binding and changes in the sodium permeability of phosphatidyserine vesicles. J. Biol. Chem. 246:1142–1148.

    PubMed  CAS  Google Scholar 

  • Kimelberg, H. K., and Papahadjopoulos, D., 1972, Phospholipid requirements for (Na++K+)-ATPase activity. Head group specificity and fatty acid fluidity. Biochim. Biophys. Acta 282:277–292.

    PubMed  CAS  Google Scholar 

  • Kinosita, K., Ikegami, A., and Kawato, S., 1982, On the wobbling-in-cone analysis of fluorescence anisotropy decay. Biophys. J. 37:461–464.

    PubMed  CAS  Google Scholar 

  • Klausner, R. D., and Wolf, D. E., 1980, Selectivity of fluorescent lipid analogues for lipid do-mains. Biochemistry 19:6199–6203.

    PubMed  CAS  Google Scholar 

  • Klausner, R. D., Kleinfeld, A. M., Hoover, R. L., and Karnovsky, J. J., 1980a, Lipid domains in membranes: Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. Biol. Chem. 255:1286–1295.

    CAS  Google Scholar 

  • Klausner, R. D., Kleinfeld, A. M., Hoover, R. L., and Karnovsky, M. J., 1980b, Lipid domains in membranes: Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J. Biol. Chem. 255:1286–1295.

    PubMed  CAS  Google Scholar 

  • Knutson, J. R., Walbridge, D. G., and Brand, L., 1981, Resolution of fluorescent spectra in a mixture by means of nanosecond time resolved fluorescence spectroscopy. Am. Soc. Photobiol. 9:62.

    Google Scholar 

  • Knutson, J. R., Walbridge, D. G., and Brand, L., 1982, Decay-associated fluorescence spectra and the heterogeneous emission of alcohol dehydrogenase. Biochemistry 21:4671–4679.

    PubMed  CAS  Google Scholar 

  • Knutson, J.R., Beechem, J. M., and Brand, L., 1983, Simultaneous analysis of multiple fluores-cence decay curves: A global approach. Chem. Phys. Lett. 102:501–507.

    CAS  Google Scholar 

  • Knutson, J. R., Davenport, L., and Brand, L., 1986, Anisotropy decay associated fluorescence spectra and analysis of rotational heterogeneity. 1. Theory and application. Biochemistry 25:5026–5031.

    Google Scholar 

  • Kouaouci, R., Silvius, J. R., Graham, I., and Pezolet, M., 1985, Calcium induced lateral phase separations in phosphatidylcholine-phosphatidic-acid mixtures. A Raman spectroscopic study. Biochemistry 24:7132–7140.

    PubMed  CAS  Google Scholar 

  • Kowalczyk, A. A., Knutson, J. R., Barkley, M. D., Christy, R., and Brand, L., 1982, Anisotropic rotations of perylene in liposomes. In Conference Digest: Fourth Conference on Luminescence (A. A. Kowalczyk, ed.), pp. 187–189, Debrecin Press, Budapest.

    Google Scholar 

  • Ladbrooke, B. D., Williams, R. M., and Chapman, D., 1968, Studies of lecithin-cholesterol water interactions by differential scanning calorimetry and X-ray diffraction. Biochim. Biophys. Acta 150:333–340.

    PubMed  CAS  Google Scholar 

  • Lagunoff, D., 1973, Membrane fusion during mast cell secretion. J. Cell Biol. 57:232–250.

    Google Scholar 

  • Lai, M. Z., Vail, W. J., and Szoka, F. C., 1985, Acid- and calcium-induced structural changes in phosphatidylethanolamine membranes stabilized by cholesteryl hemisuccinate. Biochemistry 24:1654–1661.

    PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., 1983, Principles of Fluorescence Spectroscopy, Plenum Press, New York.

    Google Scholar 

  • Lakowicz, J. R., and Knutson, J. R., 1980, Hindered depolarizing rotations of perylene in lipid bilayers. Detection by lifetime resolved fluorescence anisotropy measurements. Biochemistry 19:905–911.

    PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., Prendergast, F. G., and Hogen, D., 1979, Differential polarized phase fluorometric investigations of diphenylhexatriene in lipid bilayers. Quantitation of hindered depolarizing rotations. Biochemistry 18:508–519.

    PubMed  CAS  Google Scholar 

  • Lakowicz, J., Cherek, H., and Maliwal, B., 1985, Time-resolved fluorescence anisotropics of diphenylhexatriene and perylene in solvents and lipid bilayers obtained from multifrequency phase-modulation fluorometry. Biochemistry 24:376–384.

    PubMed  CAS  Google Scholar 

  • Lamotte, M., Lesclaux, R., Merle, A. N., and Joussot-Dubien, J., 1975, Spectroscopic studies of orientational interactions between straight-chain alkanes and aromatic hydrocarbons. Faraday Discuss. Chem. Sop. 58:253–260.

    CAS  Google Scholar 

  • Laws, W. R., and Brand, L., 1979, Analysis of two-state excited-state reactions: The fluorescence decay of 2-naphthol. J. Phys. Chem. 83:795–802.

    CAS  Google Scholar 

  • Lawson, D., Raff, M. C., Camperts, B., Fewtrell, C., and Gilula, N. B., 1977, Molecular events during membrane fusion. A study of exocytosis in rat peritoneal mast cells. J. Cell. Biol. 72:242–259.

    PubMed  CAS  Google Scholar 

  • Lee, A. G., 1977, Annular events: Lipid-protein interactions. Trends Biochem. Sci. 2:231–233.

    CAS  Google Scholar 

  • Lelkes, P. I., Bach, D., and Miller, I. R., 1980, Perturbation of membrane structure by optical probes: II. Differential scanning calorimetry of dipalmitoyllecithin and its analogs interacting with merocyanine 540. J. Membr. Biol. 54:141–148.

    PubMed  CAS  Google Scholar 

  • Lentz, B. R., Barenholz, Y., and Thompson, T., 1976a, Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 1. Single component phosphatidyl choline liposomes. Biochemistry 15:4521–4528.

    PubMed  CAS  Google Scholar 

  • Lentz, B. W., Barenholz, Y., and Thompson, T., 1976b, Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2. Two component phosphatidylcholine liposomes. Biochemistry 15:4529–4536.

    PubMed  CAS  Google Scholar 

  • Levine, Y. K., and Wilkins, M. H. F., 1971, Structure of oriented lipid bilayers. Nature (London) New Biol. 230:69–72.

    CAS  Google Scholar 

  • Lianos, P., and Georghiou, S., 1979, Solute-solvent interaction and its effect on the vibronic and vibrational structure of pyrene spectra. Photochem. Photobiol. 30:355–362.

    CAS  Google Scholar 

  • Liao, M.-J., and Prestegard, J. H., 1979, Fusion of phosphatidic acid-phosphatidylcholine mixed lipid vesicles. Biochim. Biophys. Acta 550:157–173.

    PubMed  CAS  Google Scholar 

  • Liao, M.-J., and Prestegard, J. H., 1981, Structural properties of a Ca2+ phosphatidic acid com-plex: Small angle X-ray scattering and calorimetric results. Biochim. Biophys. Acta 645:147–156.

    Google Scholar 

  • Lin, H. B., and Topp, M. R., 1977, Low quantum-yield molecular fluorescence. Aromatic hydro-carbons in solution at 300 K. Chem. Phys. Lett. 48:251–255.

    CAS  Google Scholar 

  • Linden, C., Wright, K. L., McConnell, H. M., and Fox, C. F., 1973, Lateral phase separations in membrane lipids and mechanisms of sugar transport in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 70:2271–2275.

    PubMed  CAS  Google Scholar 

  • Lipari, G., and Szabo, A., 1980, Effect of vibrational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules in membranes. Biophys. J. 30:489–506.

    PubMed  CAS  Google Scholar 

  • Lucy, J. A., and Ahkong, Q. F., 1986, An osmotic model for the fusion of biological membranes. FEBS Lett. 199:1–11.

    PubMed  CAS  Google Scholar 

  • Lux, S. E., 1979, Dissecting the red cell membrane skeleton. Nature (London) 281:427–429.

    Google Scholar 

  • Luzzati, V., 1968, X-ray diffraction studies of lipid-water systems. In Biological Membranes: Physical Fact and Function (D. Chapman, ed.), pp. 71–124, Academic Press, London.

    Google Scholar 

  • Mabrey, S., and Sturtevant, J. M., 1976, Investigation of phase transitions of lipids and lipid mixtures by high sensitivity DSC. Proc. Natl. Acad. Sci U.S.A. 73:3862–3866.

    PubMed  CAS  Google Scholar 

  • Mabrey, S., Mateo, P. L., and Sturtevant, J. M., 1978, High sensitivity scanning calorimetric study of mixtures of cholesterol with dimyristoyl- and dipalmitoyl phosphatidylcholines. Bio-chemistry 17:2464–2468.

    CAS  Google Scholar 

  • Marcelja, S., 1974, Chain ordering in liquid crystals. 2. Structure of bilayer membranes. Biochim. Biophys. Acta 367:165–176.

    PubMed  CAS  Google Scholar 

  • Marsh, D., and Barrantes, F. T., 1978, Immobilized liquid in acetylcholine receptor-rich mem-branes from Torpedo marmorata. Proc. Natl. Acad. Sci. U.S.A. 75:4329–4333.

    PubMed  CAS  Google Scholar 

  • McConnell, H. M., Devaux, P., and Seandella, C. J., 1972, Lateral diffusion and phase separation in biological membranes. In Membrane Research, ICN-UCLA Symposium on Molecular Biology, Proceedings 1st (C. F. Fox, ed.), pp. 27–37, Academic Press, New York.

    Google Scholar 

  • McElhaney, R. N., and Souza, K. A., 1976, The relationship between environmental temperature, cell growth and the fluidity and physical state of the membrane lipids in Bacillus stearother mophilus. Biochim. Biophys. Acta 443:348–359.

    PubMed  CAS  Google Scholar 

  • Melchior, D. L., Scavitto, F. J., and Stein, J. M., 1980, Dilatometry of dipalmitoyllecithincholesterol bilayers. Biochemistry 19:4828–4834.

    PubMed  CAS  Google Scholar 

  • Mendelson, R., Sunder, S., and Bernstein, H. J., 1976, The effect of sonication on the hydrocar-bon chain conformation in model membrane systems: A Raman spectroscopic study. Biochim. Biophys. Acta 419:563–569.

    Google Scholar 

  • Michaelson, D. M., Horwitz, A. F., and Klein, M. P., 1973, Transbilayer asymmetry and surface homogeneity of mixed phospholipids in cosonicated vesicles. Biochemistry 12:2637–2645.

    PubMed  CAS  Google Scholar 

  • Mitaku, S., 1981, Ultrasonic studies of lipid bilayer phase transition. Mol. Cryst. Liq. Cryst. 70:1299–1306.

    CAS  Google Scholar 

  • Mitaku, S., and Date, T., 1982, Anomalies of nanosecond ultrasonic relaxation in the lipid bilayer transition. Biochim. Biophys. Acta 688:411–421.

    PubMed  CAS  Google Scholar 

  • Mitaku, S., Jippo, T., and Kataoka, R., 1983, Thermodynamic properties of the lipid bilayer transition. Biophys. J. 42:137–144.

    PubMed  CAS  Google Scholar 

  • Morrot, G., Cribier, S., Devaux, P. F., Geldwerth, D., Davoust, J., Bureau, J. F., Fellmann, P., and Herve, P., 1986, Asymmetric lateral mobility of phospholipids in the human erythrocyte membrane. Proc. Natl. Acad. Sci. U.S.A. 83:6863–6867.

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay, A. K., and Georghiou, S., 1980, Solvent-induced enhancement of weakly allowed vibronic transitions of aromatic hydrocarbons. Photochem. Photobiol. 31:407–411.

    CAS  Google Scholar 

  • Nagle, J. F., and Scott, H. L. Jr., 1978, Lateral compressibility of lipid mono- and bilayers theory of membrane permeability. Biochim. Biophys. Acta 513:236–243.

    PubMed  CAS  Google Scholar 

  • Nicolson, G. L., 1972, Concanavalin A: Modification of cell membrane site topography by proteo-lytic enzyme. Nature (London) New Biol. 239:193–197.

    CAS  Google Scholar 

  • Ohki, S., 1984, Effects of divalent cations, osmotic pressure gradient, and vesicle curvature on phosphatidylserine vesicle fusion. J. Membr. Biol. 77:265–275.

    PubMed  CAS  Google Scholar 

  • Op den Kamp, J. A. F., Redai, I., and Van Deenen, L. L. M., 1969, Phospholipid composition of Bacillus subtilis. J. Bacteriol. 99:298–303.

    CAS  Google Scholar 

  • Op den Kamp, J. A. F., Verheij, H. M., and Van Deenen, L. L. M., 1971, Two isomers of glucosaminylphosphatidylglycerol. Their occurrence in Bacillus megaterium, structural analy-sis, and chemical synthesis. Bioorg. Chem. 1:174–187.

    CAS  Google Scholar 

  • Opella, S. J., Yesinowski, J. P., and Waugh, J. S., 1976, Nuclear magnetic resonance description of molecular motion and phase separation of cholesterol in lecithin dispersions. Proc. Natl. Acad. Sci. U.S.A. 73:3812–3815.

    PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Jacobson, K., Nir, S., and Isac, T., 1973, Phase transitions in phospholipid vesicles: Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim. Biophys. Acta 311:330–348.

    PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Vail, W. J., Newton, C., Nir, S., Jacobson, K., Poste, G., and Lazo, R., 1977, Studies of membrane fusion. III. The role of calcium-induced phase changes. Biochim. Biophys. Acta 465:579–598.

    PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Portis, A., and Pangborn, W., 1978, Calcium-induced lipid phase transitions and membrane fusion. Ann. N.Y. Acad. Sci. 308:50–66.

    PubMed  CAS  Google Scholar 

  • Parasassi, T., Conti, F., Glaser, M., and Gratton, E., 1984, Detection of phospholipid phase separation. A multifrequency phase fluorometry study of 1,6-diphenyl-1,3,5-hexatriene fluorescence. J. Biol. Chem. 259:14011–14017.

    PubMed  CAS  Google Scholar 

  • Parasassi, T., De Stasio, G., Gratton, E., and Conti, F., 1987, Fluorescence lifetime distribution of parinaric acid isomers in isotropic solvents. Biophys. J. 51:538a.

    Google Scholar 

  • Parente, R. A., and Lentz, B. R., 1986, Rate and extent of poly(ethylene-glycol)-induced large vesicle fusion monitored by bilayer and internal contents mixing. Biochemistry 25:6678–6688.

    PubMed  CAS  Google Scholar 

  • Parola, A. H., Robbins, P. W., and Blout, E. R., 1979, Membrane dynamic alterations associated with viral transformation and reversion: Decay of fluorescence emission and anisotropy studies of 3T3 cells. Exp. Cell Res. 118:205–214.

    PubMed  CAS  Google Scholar 

  • Perrin, F., 1934, Mouvement Brownien D’un Ellipsoide: I. Dispersion Dielectrique des Molecules Ellipsoidales. J. Phys. Radiat. Paris 5:497–511.

    CAS  Google Scholar 

  • Perrin, F., 1936, Mouvement Brownien D’un Ellipsoide: EL Rotation libre et Depolarisation des Fluorescences Translation et Diffusion de Molecules Ellipsoidales. J. Phys. Radiat. Paris 7:1–11.

    CAS  Google Scholar 

  • Peters, R., 1981, Translation diffusion in the plasma membrane of single cells as studied by fluo-rescence microphotolysis. Cell Biol. Int. Rep. 5:733–760.

    PubMed  CAS  Google Scholar 

  • Peterson, N. O., and Chan, S. I., 1977, More on the motional state of lipid bilayer membranes: Interpretation of order parameters obtained from nuclear magnetic resonance experiments. Biochemistry 16:2657–2667.

    Google Scholar 

  • Phillips, M. C., Williams, R. M., and Chapman, D., 1969, Hydrocarbon chain motions in lipid liquid crystals. Chem. Phys. Lipids 3:234–244.

    CAS  Google Scholar 

  • Phillips, M. C., Ladbrooke, B. D., and Chapman, D., 1970, Molecular interactions in mixed lecithin systems. Biophys. Biochim. Acta 196:35–44.

    CAS  Google Scholar 

  • Portis, A., Newton, C., Pangborn, W., and Papahadjopoulos, D., 1979; Studies of the mechanism of membrane fusion: evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+, and inhibition by spectrin. Biochemistry 18:780–790.

    PubMed  CAS  Google Scholar 

  • Raison, J. K., Lyons, J. M., Melhorn, R. J., and Keith, A. D., 1971, Temperature-induced pliase changes in mitochondrial membranes detected by spin labelling. J. Biol. Chem. 246:4036–4040.

    PubMed  CAS  Google Scholar 

  • Rogers, J., Lee, A. G., and Wilton, D. C., 1979, The organization of cholesterol and ergosterol in lipid bilayers based on studies using non-perturbing fluorescent steroid probes. Biochim. Biophys. Acta 552:23–37.

    PubMed  CAS  Google Scholar 

  • Rothman, J. E., and Leonard, J., 1977, Membrane asymmetry. The nature of membrane asym-metry provides clues to the puzzle of how membranes are assembled. Science 195:743–753.

    PubMed  CAS  Google Scholar 

  • Rothman, J. E., Tsai, D. K., Davidowicz, E. A., and Lenar, J., 1976, Transbilayer phospholipid asymmetry and its maintenance in the membrane of influenza virus. Biochemistry 15:2361–2370.

    PubMed  CAS  Google Scholar 

  • Rouser, G., Nelson, G. J., Fleischer, S., and Simon, G., 1968, Lipid composition of animal cell membranes, organelles, and organs. In Biological Membranes: Physical Fact and Function (D. Chapman ed.), pp. 6–70, Academic Press, London.

    Google Scholar 

  • Scandella, C. J., Devaux, P., and McConnell, H. M., 1972, Rapid lateral diffusion of phospho-lipids in rabbit sarcoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 69:2056–2060.

    PubMed  CAS  Google Scholar 

  • Schroeder, F., 1985, Fluorescence probes unravel asymmetric structure of membranes. Subcell. Biochem. 11:51–101.

    PubMed  CAS  Google Scholar 

  • Seelig, A., and Seelig, J., 1974, Deuterium magnetic resonance studies of phospholipid bilayers. Biochem. Biophys. Res. Commun. 57:406–410.

    PubMed  CAS  Google Scholar 

  • Seiter, C. H. A., and Chan, S. I., 1973, Molecular motions in lipid bilayers. A nuclear magnetic resonance line with study. J. Am. Chem. Soc. 95:7541–7553.

    CAS  Google Scholar 

  • Sene, C., Genest, D., Obrenovitch, A., Wahl, P. H., and Monsigny, M., 1978, Pulse fluorimetry of 1,6-diphenyl-l,3,5-hexatriene incorporated into membranes of mouse leukemic L1210 cells. FEBS Lett. 88:181–186.

    PubMed  CAS  Google Scholar 

  • Shimshick, E. J., and McConnell, H. M., 1973a, Lateral phase separations in binary mixtures of cholesterol and phospholipids. Biochem. Biophys. Res. Commun. 53:446–451.

    PubMed  CAS  Google Scholar 

  • Shimshick, E. J., and McConnell, H. M., 1973b, Lateral phase separation in phospholipid mem-branes. Biochemistry 12:2351–2360.

    PubMed  CAS  Google Scholar 

  • Shinitzky, M., and Barenholz, Y., 1974, Dynamics of the hydrocarbon layer in liposomes of lecithin sphingomyelin containing dicetylphosphate. J. Biol. Chem. 249:2652–2657.

    PubMed  CAS  Google Scholar 

  • Shinitzky, M., Dianoux, A.-C., Gitler, C., and Weber, G., 1971, Microviscosity and order in the hydrocarbon region of micelles and membranes determined with fluorescent probes. 1. Syn-thetic micelles. Biochemistry 10:2106–2113.

    PubMed  CAS  Google Scholar 

  • Sieber, F., 1987, Merocyanine 540. Photochem. Photobiol. 46:1035–1042.

    PubMed  CAS  Google Scholar 

  • Siegel, D. P., 1986, Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. Biophys. J. 49:1171–1183.

    PubMed  CAS  Google Scholar 

  • Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell mem-branes. Science 175:720–731.

    PubMed  CAS  Google Scholar 

  • Sklar, L. A., Hudson, B. S., and Simoni, R. D., 1975, Conjugated polyene fatty acids as mem-brane probes: Preliminary characterization. Proc. Natl. Acad. Sci. U.S.A. 72:1649–1653.

    PubMed  CAS  Google Scholar 

  • Sklar, L. A., Hudson, B. S., and Simoni, R. D., 1977, Conjugated polyene fatty acids as fluores-cence probes: Synthetic phospholipid membrane studies. Biochemistry 16:819–828.

    PubMed  CAS  Google Scholar 

  • Steck, T. L., and Fox, C. F., 1972, Membrane proteins. In Membrane Molecular Biology (C. F. Fox and A. D. Keith, eds.), pp. 27–75, Sinauer Associates, Stamford, Connecticut.

    Google Scholar 

  • Stockton, G. W., Polnaszek, C. F., Tulloch, A. P., Hasa, F., and Smith, I. C. P., 1976, Molecular motion and order in single-bilayer vesicles and multilamellar dispersions of egg lecithin and lecithin-cholesterol mixtures. A deuterium nuclear magnetic resonance study of specifically labeled lipids. Biochemistry 15:954–966.

    PubMed  CAS  Google Scholar 

  • Stubbs, C. D., Kouyama, T., Kinosita, K., and Ikegami, A., 1981, Effect of double bonds on the dynamic properties of the hydrocarbon region of lecithin bilayers. Biochemistry 20:4257–4262.

    PubMed  CAS  Google Scholar 

  • Tanaka, K.-I., and Ohnishi, S.-I., 1976, Heterogeneity in the fluidity of intact erythrocyte mem-brane and its homogenization upon hemolysis. Biochim. Biophys. Acta 426:218–231.

    PubMed  CAS  Google Scholar 

  • Tao, T., 1969, Time-dependent fluorescence depolarization and Brownian rotational diffusion coefficients of macromolecules. Biopolymers 8:609–632.

    CAS  Google Scholar 

  • Taylor, R. B., Duffus, W. P. H., Raff, M. C., and dePetris, S., 1971, Redistribution and pinocytosis of surface immunoglobulin molecules. Nature (London) New Biol. 233:225–230.

    CAS  Google Scholar 

  • Thulborn, K. R., 1981, The use of N-[9-anthroyloxy] fatty acids as fluorescence probes for biomembranes. In Fluorescent Probes (G. S. Beddard and M. A. West, eds.), pp. 113–141, Academic Press, London.

    Google Scholar 

  • Thulborn, K. R., and Sawyer, T. W., 1978, Properties and the locations of a set of fluorescence probes sensitive to the fluidity gradient of the lipid bilayer. Biochim. Biophys. Acta 511:125–140.

    PubMed  CAS  Google Scholar 

  • Trauble, H., and Sackmann, E., 1972, Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. III. Structure of a sjeroid-lecithin system below and above the lipid-phase transition. J. Am. Chem. Soc. 94:4499–4510.

    PubMed  CAS  Google Scholar 

  • Tsong, T. Y., 1977, Effect of phase transition on the kinetics of dye transport in phospholipid bilayer structures. Biochemistry 16:2674–2684.

    PubMed  CAS  Google Scholar 

  • Vanderkooi, J. M., Fischkoff, S., Andrich, M., Podo, F., and Owen, C. S., 1975, Diffusion in two dimensions: Comparison between diffusional fluorescence quenching in phospholipid vesicles and in isostropic solution. J. Chem. Phys. 63:3661–3666.

    CAS  Google Scholar 

  • Veatch, W. R., and Stryer, L., 1977, Effect of cholesterol on the rotational mobility of DPH in liposomes: A nanosecond anisotropy study. J. Mol. Biol. 117:1109–1113.

    PubMed  CAS  Google Scholar 

  • Verkleij, A. J., Ververgaert, P. H. J., de Kruijff, B., and Van Deenen, L. L. M., 1974, Distribution of cholesterol in bilayers of phosphatidylcholine as visualized by freeze-fracture. Biochim. Biophys. Acta 373:495–501.

    PubMed  CAS  Google Scholar 

  • Vincent, M., deForester, B., Gallay, J., and Alfsen, A., 1982, Nanosecond fluorescence anisotropy decays of ZV-(9-anthroyloxy) fatty acids in dipalmitoylphosphatidylcholine vesicles with regard to isotropic solvents. Biochemistry 21:708–716.

    PubMed  CAS  Google Scholar 

  • Vo Dinh, T., Leu Yen, E., and Winefordner, J. D., 1977, Room temperature phosphorescence of several polyaromatic hydrocarbons. Talanta 24:146–148.

    PubMed  CAS  Google Scholar 

  • Volsky, D. J., and Loyter, A., 1978, Role of Ca2+ in virus-induced membrane fusion. Ca2+ accumulation and ultrastructural charges induced by Sendai virus in chicken erythrocytes. J. Cell Biol. 78:465–479.

    PubMed  CAS  Google Scholar 

  • Waggoner, A. S., 1986, Fluorescent probes for the analysis of cell structure, function, and health by flow and imaging cytometry. In Applications of Fluorescence in the Biomedical Sciences (D. L. Taylor, R. F. Waggoner, R. F. Murphy, and F. Lanni, eds.), pp. 3–28, Alan R. Liss, New York.

    Google Scholar 

  • Webb, W. W., Barak, L. S., Tank, D. W., and Wu, E.-S., 1981, Molecular mobility on the cell surface. Biochem. Soc. Symp. 46:191–205.

    PubMed  CAS  Google Scholar 

  • Williamson, P., Bateman, J., Kozarshy, K., and Mattocks, K., 1982, Involvement of spectrin in the maintenance of phase-state asymmetry in the erythrocyte membrane. cell 30:725–733.

    PubMed  CAS  Google Scholar 

  • Williamson, P., Mattock, K., and Schlegel, R. A., 1983, Merocyanine 540, a fluorescent probe sensitive to lipid packing. Biochim. Biophys. Acta 732:387–393.

    PubMed  CAS  Google Scholar 

  • Wojcieszyn, J. W., Schlegel, R. A., Lumley-Sapanski, K., and Jacobson, K. A., 1983, Studies on the mechanism of polyethylene glycol-mediated cell fusion using fluorescent membrane and cytoplasmic probes. J. Cell Biol. 96:151–159.

    PubMed  CAS  Google Scholar 

  • Wolber, P. K., and Hudson, B. S., 1981, Fluorescence lifetime and time-resolved polarization anisotropy studies of acyl chain order and dynamics in lipid bilayers. Biochemistry 20:2800–2808.

    PubMed  CAS  Google Scholar 

  • Wolber, P. K., and Hudson, B. S., 1982, Bilayer acyl chain dynamics and lipid-protein interaction: The effect of M13 bacteriophage coat protein on the decay of the fluorescence anisotropy of parinaric acid. Biophys. J. 37:253–262.

    PubMed  CAS  Google Scholar 

  • Wolf, D. E., 1984, Overcoming random diffusion in polarized cells: Corralling the drunken beggar. BioEssays 6:116–121.

    Google Scholar 

  • Wolf, D. E., 1988, Probing the lateral organization and dynamics of membranes. In Spectroscopic Membrane Probes (CRC Critical Reviews) (L. Loew, ed.), CRC Press, Boca Raton, Florida, in press.

    Google Scholar 

  • Wolf, D. E., and Edidin, M., 1981, Diffusion and mobility of molecules in surface membranes. In Techniques in Cellular Physiology: Part I (P. Baker, ed.), pp. 1–14, Elsevier/North Holland Scientific Publishers, Ireland.

    Google Scholar 

  • Wolf, D. E., Edidin, M., and Handyside, A. M., 1981a, Changes in the organization of the mouse egg plasma membrane upon fertilization and first cleavage. Indications from the lateral diffusion rates of fluorescent lipid analogs. Dev. Biol. 85:195–198.

    PubMed  CAS  Google Scholar 

  • Wolf, D. E., Kinsey, W., Lennarz, W., and Edidin, M., 1981b, Changes in the organization of the sea urchin egg plasma membrane upon fertilization: Indications from lateral diffusion rates of lipid-soluble fluorescent dyes. Dev. Biol. 81:133–138.

    PubMed  CAS  Google Scholar 

  • Worster, D. L., and Franks, N. P., 1976, Structural analysis of hydrated egg lecithin and cholesterol bilayers. 2. Neutron diffraction. J. Mol. Biol. 100:359–378.

    Google Scholar 

  • Wu, S. H. W., and McConnell, H. M., 1973, Lateral phase separations and perpendicular transport in membranes, Biochem. Biophys. Res. Commun. 55(2):484–491.

    PubMed  CAS  Google Scholar 

  • Wunderlich, F., Ronai, A., Speth, V., Seelig, J., and Blume, A., 1975, Thermotropic lipid clustering in tetrahymena membranes. Biochemistry 14:3730–3734.

    PubMed  CAS  Google Scholar 

  • Yahara, I., and Edelman, G., 1972, Restriction of the mobility of lymphocyte immunoglobulin receptors by concanavalin. Proc. Natl. Acad. Sci. U.S.A. 69:608–612.

    PubMed  CAS  Google Scholar 

  • Yang, R. D., Patel, K. M., Pownall, H. J., Knapp, R. D., Sklar, L. A., Crawford, R. B., and Morrisett, J. D., 1979, Biophysical properties of a major membrane phospholipid, dielaidoyl phosphatidylethanolamine, found in Escherichia coli fatty acid auxotroph. J. Biol. Chem. 254:8256–8262.

    PubMed  CAS  Google Scholar 

  • Yechiel, E., and Edidin, M., 1987. Micrometer-scale domains in fibroblast plasma membranes. J. Cell Biol. 105:755–760.

    PubMed  CAS  Google Scholar 

  • Yechiel, E., Barenholz, Y., and Hemis, Y. I., 1986, Lateral mobility and organization of phospholipids and proteins in rat myocyte membranes. J. Biol. Chem. 260:9132–9136.

    Google Scholar 

  • Zacharasse, K. A., Kuhnle, W., and Weiler, A., 1980, Intramolecular excimer fluorescence as a probe of fluidity changes and phase transitions in phosphatidylcholine bilayers. Chem. Phys. Lett. 73:6–11.

    Google Scholar 

  • Zannoni, C., 1979, A theory of time-dependent fluorescence depolarization in liquid crystals. Mol. Phys. 38:1813–1827.

    CAS  Google Scholar 

  • Zannoni, C., Arcioni, A., and Cavatorta, P., 1983, Fluorescence depolarization in liquid crystals and membrane bilayers. Chem. Phys. Lipids 32:179–250.

    CAS  Google Scholar 

  • Zimmermann, H. V., and Joop, N., 1961, Polarization der Elektronenbanden von Aromaten. 5. Mitteilung: Benzol, Coronen, Triphenylen, Pyren, Perylen. Z. Electrochem. 65:138–142.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Davenport, L., Knutson, J.R., Brand, L. (1989). Fluorescence Studies of Membrane Dynamics and Heterogeneity. In: Harris, J.R., Etémadi, AH. (eds) Artificial and Reconstituted Membrane Systems. Subcellular Biochemistry, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9362-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9362-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9364-1

  • Online ISBN: 978-1-4613-9362-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics