Advertisement

Reconstitution of Membrane Molecular Mechanisms in Bilayer Lipid Membranes and Patch-Clamp Bilayers

Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 14)

Abstract

A variety of important cellular processes such as excitability, ion transport, and neurohormonal regulation depend on the operation of macromolecular complexes in biomembranes. In view of these diverse and intricate processes, it is not surprising that biomembranes are very complex functionally. The molecular organization of biomembranes, as revealed by physical chemical studies, includes a lipid bilayer core, associated proteins, glycolipids, and other nonlipid materials. The bilayer is about 50 Å thick in a relatively liquid state with proteins and nonlipid materials arranged on each side as well as transversely across the lipid bilayer. Because of this delicate structure and its dimensions, direct experimental investigation of the biomembrane is exceedingly difficult at the membrane level. Thus, to overcome constraints imposed by the complexity of biomembrane, a number of artificial membrane systems have been developed. In this survey we are concerned with the experimental bilayer lipid membrane (BLM) of planar configuration as well as with patch-clamp bilayers. The review on BLM is in no sense complete; it is not possible to cite a great number of excellent papers in this expanding field of BLM research owing to space limitation. References may be consulted on the topics not covered here (Blumenthal and Klausner, 1982; Etemadi, 1983; Miller, 1986; Shamoo and Tivol, 1980; Tien, 1974).

Keywords

Sodium Channel Sarcoplasmic Reticulum Channel Activity Bilayer Lipid Membrane Native Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, P. R., Constanti, A., Brown, D. A., and Clark, R. B., 1982, Intracellular Ca2+ activates a fast voltage-sensitive K+ current in vertebrate sympathetic neurons. Nature (London) 296:746–479.Google Scholar
  2. Affolter, H., and Coronado, R., 1986, Sidedness of reconstituted calcium channels from muscle transverse tubules as determined by D600 and D890 blockade. Biophys. J. 49:767–771.PubMedGoogle Scholar
  3. Andersen, O. S., 1978, Permeability properties of unmodified bilayer lipid membranes. In Membrane Transport in Biology (D. C. Tosteson, ed.), Springer-Verlag, New York.Google Scholar
  4. Andersen, O. S., 1984, Gramicidin channels. Annu. Rev. Physiol. 46:531–548.PubMedGoogle Scholar
  5. Anholt, R., Lindstrom, J., and Montal, M., 1984, The molecular basis of neurotransmission: Structure and function of the nicotinic acetylcholine receptor. In The Enzymes of Biological Membranes (A Martonosi, ed.), Plenum Press, New York.Google Scholar
  6. Bach, D., and Miller, I. R., 1974, Interaction of vasopressin with phosphatidylserine bilayers. Biochim. Biophys. Acta 339:367–373.PubMedGoogle Scholar
  7. Baer, M., Best, P. M., and Reuter, H., 1976, Voltage-dependent action of tetrodotoxin in mammalian cardiac muscle. Nature (London) 263:344–345.Google Scholar
  8. Barret, J. N., Magleby, K. L., and Pallota, B. S., 1982, Properties of single calcium-activated potassium channels in cultured rat muscle. J. Physiol. (London) 331:211–230.Google Scholar
  9. Bean, R. C., Shepherd, W. C., Chan, H., and Eichner, J., 1969, Discrete conductance fluctuations in lipid bilayer protein membranes. J. Gen. Physiol. 53:741.PubMedGoogle Scholar
  10. Bell, J., 1985, Protons decrease the single channel conductance of the sarcoplasmic reticulum K+ channel in neutral and negatively charged bilayers. Biophys. J. 48:349–353.PubMedGoogle Scholar
  11. Bell, J. E., and Miller, C., 1984, Effects of phospholipid surface charge on ion conduction in the K+ channel of sarcoplasmic reticulum. Biophys. J. 45:279–287.PubMedGoogle Scholar
  12. Benz, R., Tosteson, M. T., and Schubert, D., 1984, Formation and properties of tetramers of band 3 protein from human erythrocyte membranes in planar lipid bilayers. Biochim. Biophys. Acta 775:347–355.PubMedGoogle Scholar
  13. Bleuel, H., Wiedner, G., and Schubert, D., 1977, Variability of conductivity changes in black phosphatidylserine membranes induced by proteins from erythrocyte membranes. Z. Natur-forsch. 32:375–378.Google Scholar
  14. Blumenthal, R., and Klausner, R. D., 1982, The interaction of proteins with black lipid membranes. In Membrane Reconstitution (G. Poste and G. L. Nicolson, eds.), pp. 43–82, Elsevier, Amsterdam.Google Scholar
  15. Boheim, G., Hanke, W., Barrantes, F. J., Eibl, H., Sakmann, B., Fels, G., and Maelicke, A., 1981, Agonist-activated ionic channels in acetylcholine receptor reconstituted into planar lipid bilayers. Proc. Natl. Acad. ScL U.S.A. 78:3586–3590.Google Scholar
  16. Busath, D., and Szabo, G., 1981, Gramicidin forms multistate rectifying channels. Nature (London) 294:371–373.Google Scholar
  17. Cala, P. M., Norby, J. G., and Tosteson, D. C., 1982, Effects of the plant alkaloid sanguinarine on cation transport by human red blood cells and lipid bilayer membranes. J. Memb. Biol. 64:23–31.Google Scholar
  18. Cohen, I. S., and Strichartz, G. R., 1977, On the voltage-dependent action of tetrodotoxin. Biophys. J. 17:275–279.PubMedGoogle Scholar
  19. Cohen, F. S., Zimmerberg, J., and Finkelstein, A., 1980, Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. J. Gen. Physiol. 75:251–270.PubMedGoogle Scholar
  20. Cohen, C. J., Bean, B. P., Colatsky, T. J., and Tsien, R. W., 1981, Tetrodotoxin block of sodium channels in rabbit Purkinje fibers: Interactions between toxin binding and channel gating. J. Gen. Physiol. 78:383–411.PubMedGoogle Scholar
  21. Cohen, F. S., Akabas, M. M., and Finkelstein, A., 1982, Osmotic swelling of phsopholipid vesicles causes them to fuse with planar phospholipid bilayer membrane. Science 217:458–460.PubMedGoogle Scholar
  22. Colombini, M., 1979, A candidate for the permeability pathway of the outer mitrochondrial membrane. Nature (London) 279:643–645.Google Scholar
  23. Coronado, R., 1985, Effect of divalent cations on the assembly of neutral and charged phosopholipid bilayers in patch-recording pipettes. Biophys. J. 47:851–857.PubMedGoogle Scholar
  24. Coronado, R., and Latorre, R., 1983, Phospholipid bilayers made from monolayers on patch-clamp pipettes. Biophys. J. 43:231–236.PubMedGoogle Scholar
  25. Coronado, R., and Miller, C., 1979, Voltage-dependent caesium blockade of a cation channel from fragmented sarcoplasmic reticulum. Nature (London) 280:807–810.Google Scholar
  26. Coronado, R., and Miller, C., 1980, Decamethonium and hexamethonium block K+ channels of sarcoplasmic reticulum. Nature (London) 288:495–497.Google Scholar
  27. Coronado, R., and Miller, C., 1982, Conduction and block by organic cations in a K+-selective channel from sarcoplasmic reticulum incorporated into planar phospholipid bilayers. J. Gen. Physiol. 79:529–547.PubMedGoogle Scholar
  28. Coronado, R., Rosenberg, R. L., and Miller, C., 1980, Ionic activity, saturation, and block in a K+-selective channel from sarcoplasmic reticulum. J. Gen. Physiol. 76:425–446.PubMedGoogle Scholar
  29. Coronado, R., Latorre, R., and Mautner, H. G., 1984, Single potassium channels with delayed rectifier behavior from lobster axon membranes. Biophys. J. 45:289–299.PubMedGoogle Scholar
  30. Cukierman, S., Yellen, G., and Miller, C., 1985, The K+ channel of sarcoplasmic reticulum. A new look at Cs+ block. Biophys. J. 48:477–484.PubMedGoogle Scholar
  31. Disalvo, E. A., Siddiqi, F. A., and Tien, H. T., 1988, Membrane transport with emphasis on water and non-electrolytes in experimental BLMs and biomembranes. In Water Transport in Biological Membranes (G. Benga, ed.), CRC Press, Boca Raton, FL.Google Scholar
  32. Eisenman, G., and Horn, R., 1983, Ionic selectivity revisited: The role of kinetic and equilibrium processes in ion permeation through channels. J. Membr. Biol. 76:197–225.PubMedGoogle Scholar
  33. Ehrlich, B. E., Finkelstein, A., Forte, M., and Kung, C., 1984, Voltage-dependent calcium channels from Paramecium cilia incorporated into planar lipid bilayers. Science 225:427–428.PubMedGoogle Scholar
  34. Ehrlich, B. E., Schen, C. R., Garcia, M. L., and Kaczorowski, G. J., 1986, Incorporation of calcium channels from cardiac sarcolemmal membrane vesicles into planar lipid bilayers. Proc. Natl. Acad. Sci. U.S.A. 83:193–197.PubMedGoogle Scholar
  35. Etemadi, A.-H., 1983, Functional and orientational features of protein molecules in reconstituted lipid membranes. Adv. Lipid Res. 21:281–428.Google Scholar
  36. Feit, H., and Shay, J. W., 1980. The assembly of tubulin into membranes. Biochem. Biophys. Res. Commun. 94:324–331.PubMedGoogle Scholar
  37. Fettiplace, R., Haydon, D. A., and Knowles, C. D., 1972, The action of vasopressin on artificial lipid bilayers. J. Physiol. (London) 221:18P-20P.Google Scholar
  38. French, R. J., Worley, J. F. III, and Krueger, B. K., 1984, Voltage-dependent block by saxitoxin of sodium channels incorporated into planar lipid bilayers. Biophys. J. 45:301–310.PubMedGoogle Scholar
  39. Garcia, A. M., and Miller, C., 1984, Channel mediated monovalent cation-fluxes in isolated sarcoplasmic reticulum vesicles. J. Gen. Physiol. 83:819–839.PubMedGoogle Scholar
  40. Gordon, L. G. M., and Haydon, D. A., 1975, Potential dependent conductance in lipid membranes containing alamethicin. Philos. Trans. R. Soc. (London) Sect. B 270:433.Google Scholar
  41. Gray, M. A., Montgomery, R. A. P., and Williams, A. J., 1985, Asymmetric block of a monovalent cation-selective channel of rabbit cardiac sarcoplasmic reticulum by succinyl choline. J. Membr. Biol. 88:85–95.PubMedGoogle Scholar
  42. Hagiwara, S., and Byerly, L., 1981, Calcium channel. Annu. Rev. Neurosci. 4:69–125.PubMedGoogle Scholar
  43. Hamill, O. P., and Sakmann, B., 1981, Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells. Nature (London) 294:462–464.Google Scholar
  44. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. Y., 1981, Improved patchclamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391:85–100.PubMedGoogle Scholar
  45. Hanke, W., and Kaupp, U. B, 1984, Incorporation of ion channels from bovine rod outer segments into planar lipid bilayers. Biophys. J. 46:587–595.PubMedGoogle Scholar
  46. Hanke, W., and Miller, C., 1983, Single chloride channels from Torpedo electroplax. Activation by protons. J. Gen. Physiol. 82:25–45.PubMedGoogle Scholar
  47. Hartshorne, R. P., and Caterall, W. A., 1981, Purification of the saxitoxin receptor of the sodium channel from rat brain. Proc. Natl. Acad. Sci. U.S.A. 78:4620–4624.PubMedGoogle Scholar
  48. Hartshorne, R. P., and Caterall, W. A., 1984, The sodium channel from rat brain. Purification and subunit composition. J. Biol. Chem. 259:1667–1675.PubMedGoogle Scholar
  49. Hartshorne, R. P., Keller, B. U., Talvenheimo, J. A., Caterall, W. A., and Montal, M., 1985, Functional reconstitution of the purified brain sodium channel in planar lipid bilayers. Proc. Natl. Acad. Sci. U.S.A. 82:240–244.PubMedGoogle Scholar
  50. Heggeness, S. T., and Starkus, J. G., 1986, Saxitoxin and tetrodotoxin: Electrostatic effects on gating current in crayfish axons. Biophys. J. 49:629–644.PubMedGoogle Scholar
  51. Hescheler, J., Pelzer, D., Trube, G., and Trautwein, W., 1982, Does the organic calcium channel blocker D600 act from inside or outside on the cardiac cell membrane? Pflugers Arch. 393:287–291.PubMedGoogle Scholar
  52. Higashi, K-L, Suzuki, S., Fujii, H., and Kirino, Y., 1987, Preparation and some properties of giant liposomes and proteoliposomes. J. Biochem. 101:433–440.PubMedGoogle Scholar
  53. Hille, B., 1984, Ionic Channels of Excitable Membranes, Sinauer, Sunderland, MA.Google Scholar
  54. Hodgkin, A. L., and Huxley, A. F., 1952, The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (London) 116:497–506.Google Scholar
  55. Horn, R., Vandenberg, C. A., and Lange, K., 1984, Statistical analysis of single sodium channels: Effects of N-bromoacetamide. Biophys. J. 45:323–336.PubMedGoogle Scholar
  56. Krueger, B. K., Worley, J. F., and French, R. J., 1983, Single sodium channels from rat brain incorporated into planar lipid bilayer membranes. Nature (London) 303:172–175.Google Scholar
  57. Labarca, P., and Miller, C., 1981, A K+-selective, three-state channel from fragmented sarcoplasmic reticulum of frog leg muscle. J. Membr. Biol. 61:31–38.PubMedGoogle Scholar
  58. Labarca, P., Coronado, R., and Miller, C., 1980, Thermodynamic and kinetic studies of the gating behavior of a K+-selective channel from the sarcoplasmic reticulum membrane. J. Gen. Physiol. 76:397–424.PubMedGoogle Scholar
  59. Labarca, P., Lindstrom, J., and Montal, M., 1984, Acetylcholine receptor in planar lipid bilayers. Characterization of the channel properties of the purified nicotinic acetylcholine receptor from Torpedo californica reconstituted in planar lipid bilayers. J. Gen. Physiol. 83:473–496.PubMedGoogle Scholar
  60. Labarca, P., Rice, J. A., Fredkin, D. R., and Montal, M., 1985, Kinetic analysis of channel gating. Application to the cholinergic receptor channel and the chloride channel from Torpedo californica. Biophys. J. 47:469–478.PubMedGoogle Scholar
  61. Laeuger, R., 1982, Kinetic properties of ion carriers, channels, and pumps. In Transport in Biomembranes: Model Systems and Reconstitution (R. Antolini, A. Gliozzi, and A. Gorio, eds.), pp. 1–11, Raven Press, New York.Google Scholar
  62. Last, T. A., Gantzer, M. L., and Tyler, C. D., 1983, Ion-gated channel induced in planar bilayers by incorporation of (Na+,K+)-ATPase. J. Biol. Chem. 258:2399–2404.PubMedGoogle Scholar
  63. Latorre, R., Vergara, C., and Hidalgo, C., 1982, Reconstitution in planar lipid bilayers of a Ca2+-dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle. Proc. Natl. Acad. Sci. U.S.A. 79:805–809.PubMedGoogle Scholar
  64. Latorre, R., Coronado, R., and Vergara, C., 1984, K+ channels gated by voltage and ions. Annu. Rev. Physiol. 46:485–495.PubMedGoogle Scholar
  65. Liebovitch, L. S., and Fishbarg, J., 1985, Determining the kinetics of membrane pores from patch clamp data without measuring the open and closed times. Biochim. Biophys. Acta 813:132–136.PubMedGoogle Scholar
  66. Lindstrom, J., Merlie, J., and Yogesewaran, G., 1979, Biochemical properties of acetylcholine receptor subunits form Torpedo californica. Biochemistry 18:4465–4470.PubMedGoogle Scholar
  67. Mannela, C. A., Colombini, M., and Frank, J., 1983, Structural and functional evidence for multiple channel complexes in the outer membrane of Neurospora crassa mitochondria. Proc. Natl. Acad. Sci. U.S.A. 80:2243–2247.Google Scholar
  68. Margolis, R. L., 1983, Calcium and microtubules. In Calcium and Cell Function, Vol IV (W. Y. Cheung, ed.), p. 313, Academic Press, Orlando.Google Scholar
  69. Marty, A., 1981, Ca2+-dependent K+ channels with large unitary conductance in chromaffin cell membranes. Nature (London) 291:500.Google Scholar
  70. Methfessel, C., and Boheim, C., 1982, The gating of single calcium-dependent potassium channels is described by an activation-blockage mechanism. Biophys. Struct. Mech. 9:35–60.PubMedGoogle Scholar
  71. Miller, C., 1978. Voltage gated cation conductance channel from fragmented sarcoplasmic reticulum: steady state electrical properties. J. Membr. Biol. 40:1–23.PubMedGoogle Scholar
  72. Miller, C. (ed.), 1986, Ion Channel Reconstitution, Plenum Press, New York.Google Scholar
  73. Miller, C., 1982a, Bis-quarternary ammonium blockers as structural probes of the sarcoplasmic reticulum K+ channel. J. Gen. Physiol. 79:869–892.PubMedGoogle Scholar
  74. Miller, C., 1982b, Feeling around inside a channel in the dark. In Transport in Biomembranes: Model Systems and Reconstitution (R. Antolini, A. Gliozzi, and A. Gorio, eds.), pp. 99–108, Raven Press, New York.Google Scholar
  75. Miller, C., and Racker, E., 1976, Ca2+-induced fusion of fragmented sarcoplasmic reticulum with artificial planar bilayers. J. Membr. Biol. 30:283–300.PubMedGoogle Scholar
  76. Miller, C., and Rosenberg, R. L., 1979, Modification of a voltage-gated K+ channel from sarcoplasmic reticulum. J. Gen. Physiol. 74:457–478.PubMedGoogle Scholar
  77. Miller, C., and White, M. M., 1984, Dimeric structure of single chloride channels from Torpedo electroplax. Proc. Natl. Acad. Sci. U.S.A. 81:2772–2775.PubMedGoogle Scholar
  78. Miller, C., Bell, J. E., and Garcia, A. M., 1984, The K+ channel of sarcoplasmic reticulum. Curr. Top. Membr. Transport 21:99–132.Google Scholar
  79. Moczydlowski, E., and Latorre, R., 1983, Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca2+ binding reactions. J. Gen. Physiol. 82:511–542.PubMedGoogle Scholar
  80. Moczydlowski, E., Garber, S. S., and Miller, C., 1984a, Batrachotoxin-activated Na+ channels in planar lipid bilayers. Competition of tetrodotoxin block by Na+. J. Gen. Physiol. 84:665–686.PubMedGoogle Scholar
  81. Moczydlowski, E., Hall, S., Garber, S. S., Strichartz, G. S., and Miller, C., 1984b, Voltage dependent blockade of muscle Na+ channels by guanidinium toxins. Effect of toxin charge. J. Gen. Physiol. 84:687–704.PubMedGoogle Scholar
  82. Montal, M., and Mueller, P., 1972, Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. U.S.A. 69:3561–3566.PubMedGoogle Scholar
  83. Montal, M., Labarca, P., Fredkin, D. R., Suarez-Isla, B. A., and Lindstrom, J., 1984, Channel properties of the purified acetylcholine receptors from Torpedo californica reconstituted in planar lipid bilayer membranes. Biophys. J. 45:165–174.PubMedGoogle Scholar
  84. Mountz, J. D., and Tien, H. T., 1976, Protein-lipid interactions in bilayer lipid membranes (BLM). In The Enzymes of Biological Membranes (A. Martonosi, ed.), pp. 139–170, Plenum Press, New York.Google Scholar
  85. Mueller, P., Rudin, D. O., Tien, H. T., and Wescott, W. C., 1962, Reconstitute of cell membrane in vitro and its transformation in an excitable system. Nature (London) 194:979.Google Scholar
  86. Mueller, P., and Rudin, D. O., 1968, Resting and action potentials in experimental bimolecular lipid membranes. J. Theor. Biol. 18:222.PubMedGoogle Scholar
  87. Muller, R. U., and Peskin, C. S., 1981, The kinetics of monazomycin-induced voltage-dependent conductance. II. Theory and a demonstration of a form of memory. J. Gen. Physiol. 78:201.PubMedGoogle Scholar
  88. Murphy, R. B., and Vodyanoy, V., 1984, Functional reconstitution of rat striatal dopamine agonist receptors into artificial lipid bimolecular membranes. Biophys. J. 45:22–23.PubMedGoogle Scholar
  89. Neher, E., and Sakmann, B., 1976, Single channel currents recorded from membrane of denervated frog muscle fibres. Nature (London) 260:799–802.Google Scholar
  90. Neher, E., Sakmann, B., and Steinbach, J. H., 1978, The extracellular patch clamp: A method for resolving currents through individual open channels in biological membranes. Pflugers Arch. 375:219–228.PubMedGoogle Scholar
  91. Nelson, M. T., 1986, Interactions of divalent cations with single calcium channels from rat brain synaptosomes. J. Gen. Physiol. 87:201–222.PubMedGoogle Scholar
  92. Nelson, M. T., and Reinhardt, R., 1984, Single ion-channel current measurements from rat brain synaptosomes in planar lipid bilayers. Biophys. J. 45:60–62.PubMedGoogle Scholar
  93. Nelson, N., Anholt, R., Lindstrom, I., and Montal, M., 1980, Reconstitution of purified acetylcholine receptors with functional ion channels in planar lipid bilayers. Proc. Natl. Acad. Sci. U.S.A. 77:3057–3061.PubMedGoogle Scholar
  94. Nelson, M. T., French, R. J., and Krueger, B. K., 1984, Voltage-dependent calcium channels from brain incorporated into planar lipid bilayers. Nature (London) 308:77–80.Google Scholar
  95. Nilius, B., Hess, P., Lansman, J. B., and Tsien, R. W., 1985, A novel type of cardiac calcium channel in ventricular cells. Nature (London) 316:443–446.Google Scholar
  96. Nowycky, M., Fox, A., and Tsien, R. W., 1985, Three types of neuronal calcium channels with different calcium agonist sensitivity. Nature (London). 316:440–443.Google Scholar
  97. Olans, L., Sariban-Sohraby, S., and Benos, D. J., 1984, Saturation behavior of single, amiloridesensitive Na+ channels in planar lipid bilayers. Biophys. J. 46:831–835.PubMedGoogle Scholar
  98. Oosting, P. H., 1979, Signal transmission in the nervous system. Rep. Prog. Phys. 42:1479–1532.Google Scholar
  99. Orozco, C. B., Suarez-Isla, B. A., Froelich, J. P., and Heller, P. F., 1985, Calcium channels in sarcoplasmic reticulum (SR) membranes. Biophys. J. 47:57a.Google Scholar
  100. Pallota, B. S., Magleby, K. L., and Barret, J. N., 1981, Single channel recordings of a Ca2+-activated K+ current in rat muscle cell culture. Nature (London) 293:471–474.Google Scholar
  101. Patlak, J., and Horn, R., 1982, Effect of iV-bromoacetamide on single sodium channel currents in excised membrane patches. J. Gen. Physiol. 79:333–351.PubMedGoogle Scholar
  102. Raftery, M. A., Hunkapiller, M. W., Strader, C. D., and Hood, L. E., 1980, Acetylcholine receptor: Complex of homologous subunit. Science 208:1454–1457.PubMedGoogle Scholar
  103. Reinhardt, R., Lindemann, B., and Anner, B. M., 1984, Leakage-channel conductance of single (Na+,K+)-ATPase molecules incorporated into planar bilayers by fusion of liposomes. Biochim. Biophys. Acta. 779:147–150.Google Scholar
  104. Reuter, H., 1983, Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature (London). 301:569–574.Google Scholar
  105. Rosenberg, R. L., Hess, P., Reeves, J. P., Smilowitz, M., and Tsien, R. W., 1986, Calcium channels in planar lipid bilayers: Insights into mechanisms of ion permeation and gating. Science 231:1564–1566.PubMedGoogle Scholar
  106. Sakmann, B., Patlak, J., and Neher, E., 1980, Single acetylcholine-activated channels show burst kinetics in presence of desensitizing concentrations of agonist, Nature (London) 286:71–73.Google Scholar
  107. Sariban-Sohraby, S., Latorre, R., Burg, M., Olans, L., and Benos, D., 1984, Amiloride-sensitive epithelial Na+ channels reconstituted into planar lipid bilayer membranes. Nature (London) 308:80–82.Google Scholar
  108. Schein, S. J., Colombini, M., and Finkelstein, A., 1976, Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from Paramecium mitochondria. J. Membr. Biol. 30:99–120.PubMedGoogle Scholar
  109. Schindler, M., and Quast, U., 1980, Functional acetylcholine receptor from Torpedo marmorata in planar membranes. Proc. Natl. Acad. Sci. U.S.A. 77:3052–3056.PubMedGoogle Scholar
  110. Schubert, D., Bleuel, H., Domning, B., and Wiedner, G., 1977, Protein-induced conductivity changes in black lipid membranes and protein aggregation. FEBS Lett. 74:47–49.PubMedGoogle Scholar
  111. Schuerholz, T., and Schindler, H., 1983, Formation of lipid-protein bilayers by micropipette guided contact of two monolayers. FEBS Lett. 152:187–190.Google Scholar
  112. Schulman, H., 1984, Phosphorylation of microtubule-associated proteins by a Ca2+/calmodulin dependent protein kinase. J. Cell Biol. 99:11–19.PubMedGoogle Scholar
  113. Shamoo, A. E., and Tivol, W. F., 1980, Criteria for the reconstitution of ion transport systems. Curr. Top. Membr. Transport 14:57.Google Scholar
  114. Sigworth, F. J., and Neher, E., 1980, Single Na+ channel currents observed in cultured rat muscle cells. Nature (London) 287:447–449.Google Scholar
  115. Skou, J. C., 1957, The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta 23:394–401.PubMedGoogle Scholar
  116. Smith, J. S., Coronado, R., and Meissner, G., 1985, Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels. Nature (London) 316:446–449.Google Scholar
  117. Soifer, D., and Czosnek, H., 1980, The possible origin of neuronal plasma membrane tubulin. In Microtubules and Microtubule Inhibitors (M. DeBrabander and J. DeMey, eds.), pp. 429–447, Janssen Research Foundation, Elsevier/North-Holland Biomedical Press, Amsterdam.Google Scholar
  118. Suarez-Isla, A., Wan, K., Lindstrom, J., and Montaf, M., 1983, Single-channel recordings from purified acetylcholine receptors reconstituted in bilayers formed at the tip of patch pipets. Biochemistry 22:2319–2323.PubMedGoogle Scholar
  119. Tancrede, P., Paquin, P., Houle, A., and Leblanc, R. M., 1983, Formation of asymmetrical planar BLM from characterized monolayers. J. Biochem. Biophys. Methods 7:299–310.PubMedGoogle Scholar
  120. Tank, D. W., Miller, C., and Webb, W. W., 1982, Isolated patch recording from liposomes containing functionally reconstituted chloride channels from Torpedo electroplax. Proc. Natl. Acad. Sci. U.S.A. 79:7749–7753.PubMedGoogle Scholar
  121. Tank, D. W., Huganir, R. L., Greengard, P., and Webb, W. W., 1983, Patch-recorded single channel currents of the purified and reconstituted Torpedo acetylcholine receptor. Proc. Natl. Acad. Sci. U.S.A. 80:5129–5133.PubMedGoogle Scholar
  122. Tien, H. T., 1974, Bilayer Lipid Membranes (BLM): Theory and Practice, Marcel Dekker, New York.Google Scholar
  123. Tien, H. T., 1988a, Bilayer lipid membrane in aqueous media. In Thin Liquid Films (I. Ivanov, ed.), Marcel Dekker, New Work.Google Scholar
  124. Tien, H. T., 1988b, Membrane bioenergetics as viewed from reconstitution experiments. In Redox Chemistry and Interjacial Behavior of Biological Molecules (G. Dry hurst, ed.), Plenum Press, New York.Google Scholar
  125. Tomlins, B., Williams, A. J., and Montgomery, R. A. P., 1984, The characterization of a monovalent cation-selective channel of mammalian cardiac muscle sarcoplasmic reticulum. J. Membr. Biol. 80:191–199.PubMedGoogle Scholar
  126. Tosteson, M. T., and Sapirstein, V. S., 1981, Protein interactions with lipid bilayers: The channels of kidney plasma membrane proteolipids. J. Membr. Biol. 63:77–84PubMedGoogle Scholar
  127. Tsien, R. W., 1983, Calcium channels in excitable cell membranes. Annu. Rev. Physiol. 45:341–358.PubMedGoogle Scholar
  128. Tsong, T. Y., 1983, Voltage modulation of membrane permeability and energy utilization in cells. Biosci. Rep. 3:487–505.PubMedGoogle Scholar
  129. Vassilev, P. M., and Hume, J. R., 1986, Calcium channels from cardiac sarcoplasmic reticulum incorporated into bilayer membranes. J. Gen. Physiol. 88:60a.Google Scholar
  130. Vassilev, P. M., and Tien, H. T., 1985, Planar lipid bilayers in relation to biomembranes. In Structure and Properties of Cell Membranes (G. Benga, ed.), pp. 63–101, CRC Press, Boca Raton, FL.Google Scholar
  131. Vassilev, P., Kanazirska, M., and Tien, H. T., 1985, Intermembrane linkage mediated by tubulin. Biochem. Biophys. Res. Commun. 126:559–565.PubMedGoogle Scholar
  132. Vassilev, P. M., Hadley, R. W., Lee, K. S., and Hume, J. R., 1986a, Voltage-dependent action of tetrodotoxin in mammalian cardiac myocytes. Am. J. Physiol. 251: H475–H480.PubMedGoogle Scholar
  133. Vassilev, P. M., Kanazirska, M., and Tien, H. T., 1986b, Calcium channels from intracellular membranes reconstituted in patch-clamped bilayers. Biophys. J. 49:349a.Google Scholar
  134. Vassilev, P., Kanazirska, M., and Tien, H. T., 1986c, Microtubule-dependent membrane interactions studied in two types of double bilayer membrane systems. Bioelectrochem. Bioenerg. 15:395–406.Google Scholar
  135. Vassilev, P. M., Kanazirska, M. P., and Tien, H. T., 1987, Ca2+ channels from brain microsomal membranes reconstituted in patch-clamped bilayers. Biochim. Biophys. Acta 897:324–330.PubMedGoogle Scholar
  136. Vergara, C., and Latorre, R., 1983, Kinetics of Ca2+-activated K+ channels from rabbit muscle incorporated into planar bilayers. Evidence for a Ca2+ and Ba2+ blockade, J. Gen. Physiol. 82:543–568.PubMedGoogle Scholar
  137. Vergara, C., Moczydlowski, E., and Latorre, R., 1984, Conduction, blockade and gating in a Ca2+-activated K+ channel incorporated into planar lipid bilayers. Biophys. J. 45:73–76.PubMedGoogle Scholar
  138. Vodyanoy, V., and Murphy, R. B., 1983, Single-channel fluctuations in bimolecular lipid membranes induced by rat olfactory epithelial homogenates. Science 220:717.PubMedGoogle Scholar
  139. Vodyanoy, V., Halverson, P., and Murphy, R. B., 1982, Hydrostatic stabilization of solvent-free lipid bimolecular membranes. J. Colloid Interface Sci. 88:227.Google Scholar
  140. White, M. M., and Miller, C., 1979, A voltage-gated aniontchannel from the electric organ of Torpedo californica. J. Biol. Chem. 254:10161–10166.PubMedGoogle Scholar
  141. Worley, J. F. III, French, R. J., and Krueger, B. K., 1986, Trimethyloxonium modification of single batrachotoxin-activated sodium channels in planar bilayers. Changes in unit conductance and in block by saxitoxin and calcium. J. Gen. Physiol, 87:327–249.PubMedGoogle Scholar
  142. Yamamoto, D., Yeh, J. Z., and Narahashi, T., 1984, Voltage-dependent calcium block of normal and tetramethrin-modified single sodium channels. Biophys. J. 45:337–344.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  1. 1.Membrane Biophysics Laboratory, Department of PhysiologyMichigan State UniversityEast LansingUSA

Personalised recommendations