Membrane Lipid Phase Behavior and Lipid-Protein Interactions

Part of the Subcellular Biochemistry book series (SCBI, volume 14)


One of the most distinguishing features of nearly all biological membranes is that they contain a highly complex assortment of polar lipids. Only a few major lipid classes can be recognized but there is a whole spectrum of molecular species within each of these major lipid classes which differ in the type, length, and number of unsaturated residues of their hydrophobic component. There is a general consensus, based on observations that have been obtained by a variety of biophysical methods, that the lipid constituents of all biological membranes are arranged in a bilayer configuration in which the polar groups are located on the outside, in contact with the aqueous medium, and the hydrocarbon substituents are oriented toward the interior to form a hydrophobic domain that excludes water. It has been argued on the basis of the hydrophilic to hydrophobic balance within the molecules that membrane lipids have a relatively low critical micellar concentration and a discrete distribution of domains within the molecule and this is responsible for creating a stable bilayer structure.


Acyl Chain Hydrocarbon Chain Acyl Chain Length Bilayer Phase Lateral Phase Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamsson, S., Dahlen, B., Lofgren, H., and Pascher, I., 1978, Lateral packing of hydrocarbon chains. Prog. Chem. Fats Other Lipids 16:125–143.PubMedGoogle Scholar
  2. Akiyama, M., Terayama, Y., and Matsushima, N., 1982, Kinetics of pretransition in multilamellar dimyristoylphosphatidylcholine vesicle. X-ray diffraction study. Biochim. Biophys. Acta 687:337–339.PubMedGoogle Scholar
  3. Alecio, M. R., Miller, A., and Watts, A., 1985, Diffraction of X-rays by rippled phosphatidylcholine bilayers. Biochim. Biophys. Act 815:139–142.Google Scholar
  4. Armond, P. A., Bjorkman, O., and Staehelin, L. A., 1980, Dissociation of supramolecular complexes in chloroplast membranes. A manifestation of heat damage to the photosynthetic apparatus. Biochim. Biophys. Acta 601:433–441.PubMedGoogle Scholar
  5. Arnold, K., Losche, A., and Gawisch, K., 1981, 31P-NMR investigations of phase separation in phosphatidylcholine/phosphatidylethanolamine mixtures. Biochim. Biophys. Acta 645:143–148.PubMedGoogle Scholar
  6. Arrondo, J. L. R., Goni, F. M., and Macarulla, J. M., 1984, Infrared spectroscopy of phosphatidylcholines in aqueous suspension. A study of the phosphate group vibrations. Biochim. Biophys. Acta 794:165–168.PubMedGoogle Scholar
  7. Barber, J., 1980, An explanation for the relationship between salt-induced thylakoid stacking and the chlorophyll fluorescence changes associated with changes in spillover of energy from photosystem II to photosystem I. FEBS Lett. 117:1–10.Google Scholar
  8. Blaurock, A. E., 1983, Evidence of bilayer structure and of membrane interactions from X-ray diffraction analysis. Biochim. Biophys. Acta 650:167–207.Google Scholar
  9. Blaurock, A. E., and Mcintosh, T. J., 1985, Structure of the crystalline bilayer in the subgel phase of dipalmitoylphosphatidylglycerol. Biochemistry 25:299–305.Google Scholar
  10. Blume, A., and Ackerman, Th., 1974, A calorimetric study of the lipid phase transitions in aqueous dispersions of phosphorylcholine-phosphonylethanolamine mixtures. FEBS Lett. 43:71–74.PubMedGoogle Scholar
  11. Boyanov, A. I., Koynova, R. D., and Tenchov, B. G., 1986, Effect of lipid admixtures on the dipalmitoylphosphatidylcholine subtransition. Chem. Phys. Lipids 39:155–163.PubMedGoogle Scholar
  12. Braganza, L. F. and Worcester, D. L., 1986, Hydrostatic pressure induces hydrocarbon chain interdigitation in single-component phospholipid bilayers. Biochemistry 25:2591–2596.PubMedGoogle Scholar
  13. Brand, J. J., Kirchanski, S. J., and Ramirez-Mitchell, R., 1979, Chill-induced morphological alterations in Anacystis nidulans as a function of growth temperature. Planta 145:63–68.Google Scholar
  14. Brentel, I., Selstam, E., and Lindblom, G., 1985, Phase equilibria of mixtures of plant galactolipids. The formation of a bicontinuous cubic phase. Biochim. Biophys. Acta 812:816–826.Google Scholar
  15. Broadhurst, M. G., 1962, Analysis of the solid-phase behaviour of the normal parafins. J. Res. Natl. Bur. Stand. Sect A 66A:241–249.Google Scholar
  16. Browning, J. L., 1981, Motions and interactions of phospholipid headgroups at the membrane surface. 3. Dynamic properties of amine-containing head groups. Biochemistry 20:7144–7151.PubMedGoogle Scholar
  17. Bull, T., and Lindman, B., 1974, Amphiphile diffusion in cubic lyotropic mesophases. Mol. Cryst. Liq. Cryst. 28:155–160.Google Scholar
  18. Burnell, E. E., Cullis, P. R., and de Kruijff, B., 1980, Effects of tumbling and lateral diffusion on phosphatidylcholine model membrane 31P-NMR lineshapes. Biochim. Biophys. Acta 603:63–69PubMedGoogle Scholar
  19. Caffrey, M., 1984, X-radiation damage of hydrated lecithin membranes detected by real-time X-ray diffraction using wiggler-enhanced synchrotron radiation as the ionizing radiation source. Nucl. Instrum. Methods Phys. Res. 222:329–338.Google Scholar
  20. Caffrey, M., 1985, Kinetics and mechanism of the lamellar gel/lamellar liquid-crystal and lamellar/ inverted hexagonal phase transition in phosphatidylethanolamine: A real-time X-ray diffraction study using synchrotron radiation. Biochemistry 24:4826–4844.PubMedGoogle Scholar
  21. Cameron, D. G., and Mantsch, H. H., 1982, Metastability and polymorphism in the gel phase of 1,2-dipalmitoyl-3-sn-phosphatidylcholine. A Fourier transform infrared study of the subtransition. Biophys. J. 38:175–184.PubMedGoogle Scholar
  22. Cameron, D. G., Casal, H. L., Mantsch, H. H., Boulanger, Y., and Smith, I. C. P., 1981, The thermotropic behaviour of dipalmitoylphosphatidylcholine bilayers. Biophys. J. 35:1–16.PubMedGoogle Scholar
  23. Cary, P. R., 1982, Biochemical Applications of Raman and Resonance Raman Spectroscopy, pp. 208–233, Academic Press, Orlando.Google Scholar
  24. Carter, D. P., and Staehelin, L. A., 1980, Proteolysis of chloroplast thylakoid membranes. II. Evidence for the involvement of the light-harvesting chlorophyll a/b-protein complex in thylakoid stacking and for the effects of magnesium ions on photosystem II-light-harvesting complex aggregates in the absence of membrane stacking. Arch. Biochim. Biophys 200:374–386.Google Scholar
  25. Casal, H. L., and Mantsch, H. H., 1984, Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy. Biochim. Biophys. Acta 779:381–401.PubMedGoogle Scholar
  26. Casal, H. L., Smith, I. C. P., Cameron, D. G., and Mantsch, H. H., 1979, Lipid reorganization in biological membranes. A study by Fourier transform infrared difference spectroscopy. Biochim. Biophys. Acta 550:145–149.PubMedGoogle Scholar
  27. Casal, H. L., Cameron, D. G., Smith, I. C. P., and Mantsch, H. H., 1980, Acholeplasma laidlawii membranes: A Fourier transform infrared study of the influence of protein on lipid organisation and dynamics. Biochemistry 19:444–451.PubMedGoogle Scholar
  28. Casal, H. L., Cameron, D. G., Jarrell, H. C., Smith, I. C. P., and Mantsch, H. H., 1982, Lipid phase transitions in fatty acid-homogeneous membranes of Acholeplasma laidlawii B. Chem. Phys. Lipids 30:17–26.Google Scholar
  29. Casal, H. L., Mantsch, H. H., Cameron, D. G., and Gaber, B. P., 1983, On the subtransitions of deuterated derivatives of l,2-dipaImitoyl-s-glycero-3-phosphocholine. Chem. Phys. Lipids 33:109–112.Google Scholar
  30. Chang, H. and Epand, R. M., 1983, The existence of a highly ordered phase in fully hydrated dilauroylphosphatidylethanolamine, Biochem. Biophys. Acta, 728:319–324.PubMedGoogle Scholar
  31. Chapman, D., Williams, R. M., and Ladbrooke, B. D., 1967, Physical studies of phospholipids. VI. Thermotropic and lyotropic mesomorphism of some 1,2-diacylphosphatidylcholines (lecithins). Chem. Phys. Lipids 1:445–475.Google Scholar
  32. Chapman, D., Urbina, J., and Keough, K. M., 1973, Biomembrane phase transitions. Studies of lipid-water systems using differential scanning calorimetry. J. Biol. Chem 249:2512–2518.Google Scholar
  33. Chapman, O., Cornell, B. A., Eliasz, A. W., and Perry, A., 1977, Interactions of helical polypeptide segments which span the hydrocarbon region of lipid bilayers. Studies of the gramicidin A lipid-water system. J. Mol. Biol. 113:517–538.PubMedGoogle Scholar
  34. Chapman, D., Cornell, B. A., and Quinn, P. J., 1977, Phase transitions, protein aggregation and a new method for modulating membrane fluidity. In Biochemistry of Membrane Transport (G. Semenza and E. Carafoli, eds.), pp. 72–85, Springer-Verlag, Berlin.Google Scholar
  35. Charvolin, J., and Rigny, P., 1971, NMR study of molecular motions in the mesophases of potassium laurate-water-d2 system. J. Magn. Reson. 4:40–46.Google Scholar
  36. Chen, S. C., Sturtevant, J. M., and Gaffney, B. J, 1980, Scanning calorimetric evidence for a third phase transition in phosphatidylcholine bilayers. Proc. Natl. Acad. Sci. U.S.A. 77:5060–5063.PubMedGoogle Scholar
  37. Cho, K. C., Choy, C. L., and Young, K., 1981, Kinetics of the pretransition of synthetic phospholipids. A calorimetric study. Biochim. Biophys. Acta 662:14–21.Google Scholar
  38. Church, S. E., Griffiths, D. J., Lewis, R. N. A. H., McElhaney, R. N., and Wickman, H. H., 1986, X-ray structure study of thermotropic phases in isoacylphosphatidylcholine multibilayers. Biophys. J. 49:597–605.PubMedGoogle Scholar
  39. Cohen, M. H., and Turnbull, D., 1959, Molecular transport in liquids and gases. J. Chem. Phys. 31:1164–1169.Google Scholar
  40. Corless, J. M., and Costello, M. J., 1982, Isolation, rapid freezing and freeze-fracture methods for frog retinal photoreceptors. Exp. Eye Res. 32:217–228.Google Scholar
  41. Cornell, B. A., and Separovic, F., 1983, Membrane thickness and acyl chain length. Biochim. Biophys. Acta 733:189–193.PubMedGoogle Scholar
  42. Cramer, W. A., Whitmarsh, J., and Low, P. S., 1981, Differential scanning calorimetry of chloroplast membranes: Identification of an endothermic transition associated with the water-splitting complex of photosystem II, Biochemistry 20:157–162.PubMedGoogle Scholar
  43. Crowe, L. M., and Crowe, J. H., 1982, Hydration-dependent hexagonal phase lipid in a biological membrane Arch. Biochem. Biophys. 217:582–587.PubMedGoogle Scholar
  44. Cullis, P. R., and de Kruijff, B., 1978a, Polymorphic phase behaviour of lipid mixtures as detected by 31P-NMR. Biochim. Biophys. Acta 507:207–218.PubMedGoogle Scholar
  45. Cullis, P. R., and de Kruijff, B., 1978b, Lipid polymorphism and the functional role of lipids in biological membranes. Biochim. Biophys. Acta 559:399–420.Google Scholar
  46. Cullis, P. R. and de Kruijff, B., 1979, Lipid polymorphism and the functional role of lipids in biological membrane. Biochim. Biophys. Acta 559:399–420.PubMedGoogle Scholar
  47. Cullis, P. R., and Grathwohl, Ch., 1977, Hydrocarbon phase transitions and lipid-protein interactions in the erythrocyte membrane. Biochim. Biophys. Acta 473:213–226.Google Scholar
  48. Cullis, P. R., and Hope, M. J., 1978, Effects of fusogenic agent on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion. Nature 271:672–674.PubMedGoogle Scholar
  49. Cullis, P. R., de Kruijff, B., Hope, M. J., Nayar, R., and Schmid, S. L., 1980, Phospholipids and membrane transport. Can. J. Biochem. 58:1091–1100.PubMedGoogle Scholar
  50. Cullis, P. R., Hope, M. J., de Kruijff, B., Verkeij, A. J., and Tilcock, C. P. S., 1985, Lipid polymorphism and function of biological membranes, In Phospholipids and Cellular Regulation (J. F. Kuo, ed.), pp. 1–60, CRC Press, Boca Raton, FL.Google Scholar
  51. Deamer, D. W., Leonard, R., Tardieu, A., and Branton, D., 1970, Lamellar and hexagonal lipid phases visualized by freeze-etching. Biochim. Biophys. Acta 219:47–60.PubMedGoogle Scholar
  52. De Grip, W. J., Drenthe, E. H. S., Van Echfeld, C. J. A., de Kruijff, B., and Verkleij, A. J., 1979, A possible role of rhodopsin in maintaining bilayer structure in the photoreceptor membrane. Biochim. Biophys. Acta 558:330–337.PubMedGoogle Scholar
  53. de Kruijff, B., and Cullis, P. R., 1980a, Cytochrome c specifically induces non-bilayer structures in cardiolipin-containing model membranes. Biochim. Biophys. Acta 602:477–490.PubMedGoogle Scholar
  54. de Kruijff, B., and Cullis, P. R., 1980b, The influence of poly(L-lysine) on phospholipid polymorphism. Evidence that electrostatic polypeptide-phospholipid interactions can modulate bi-layer-non-bilayer transitions. Biochim. Biophys. Acta 601:235–240.PubMedGoogle Scholar
  55. de Kruijff, B., Van den Besselaar, A. M. H. P., Cullis, P. R., Van den Bosch, H., and Van Deenen, L. L. M., 1978, Evidence for isotropic motion of phospholipids in liver microsomal membranes. A 31P-NMR study. Biochim. Biophys. Acta 514:1–8.PubMedGoogle Scholar
  56. de Kruijff, B., Cullis, P. R., Verkleij, A. J., Hope, M. J., Van Echfeld, C. J. A., and Tarashi, T. F., 1985, Lipid polymorphism and membrane function. In The Enzymes of Biological Membranes (A. N. Martonosi, ed.), Vol. 1, pp. 131–204, Plenum Press, New York.Google Scholar
  57. Derjaguin, B. V., and Landau, L., 1941, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in Solutions of electrolytes. Acta Physicochem. USSR 14:633–692.Google Scholar
  58. De Rosa, M., Gambarcorta, A., Nicolaus, B. and Bu’lock, J. D., 1980a, Complex lipids of Caldaviella acidophila, a thermoacidophile archaebacterium. Phytochemistry 19:821–825.Google Scholar
  59. De Rosa, M., Esposito, E., Gambarcorta, A., Nicolaus, B., and Bu’lock, J. D., 1980b, Effects of temperature on ether lipid composition of Caldaviella acidophila. Phytochemistry 19:827–831.Google Scholar
  60. De Rosa, M., Gambacorta, A., Nicolaus, B., Chappe, B., and Albrecht, P., 1983, Isoprenoid ethers; backbone of complex lipids of the archaebacterium Sulfolobus solfataricus. Biochim. Biophys. Acta 753:249–256.Google Scholar
  61. Eliel, E. G., 1962, Stereochemistry of Carbon Compounds, Chap. IV, McGraw-Hill, New York.Google Scholar
  62. Eriksson, P.-O, Khan, A., and Lindblom, G., 1982, Nuclear magnetic resonance studies of molecular motion and structure of cubic liquid crystalline phases. J. Phys. Chem 86:387–393.Google Scholar
  63. Farren, S. B., and Cullis, P. R., 1980, Polymorphism of phosphatidylglycerol-phosphatidylethanolamine model membrane systems. A 31P-NMR study. Biochem. Biophys. Res. Commun. 97:182–191.PubMedGoogle Scholar
  64. Finegold, L., and Singer, M. A., 1984, Phosphatidylcholine bilayers: Subtransitions in pure and mixed lipids. Chem. Phys. Lipids 35:291–297.PubMedGoogle Scholar
  65. Finegold, L., and Singer, M. A., 1986, The metastability of saturated phosphatidylcholines depends on the acyl chain length. Biochim. Biophys. Acta 855:417–420.PubMedGoogle Scholar
  66. Fringeli, U. P., and Gunthard, Hs. H., 1981, Infrared membrane spectroscopy. In Membrane Biology, Biochemistry and Biophysics (E. Grell, ed.), Vol. 31, pp. 270–332, Springer-Verlag, Berlin.Google Scholar
  67. Fujii, T., Tamura, A., and Yamane, T., 1985, Trans-bilayer movement of added phosphatidylcholine and lysophosphatidylcholine species with various acyl chain lengths in plasma membrane of intact human erythrocytes. J. Biochem 98:1221–1227.PubMedGoogle Scholar
  68. Fuldner, H. H., 1981, Characterization of a third phase transition in multilamellar dipalmitoyllecithin liposomes. Biochemistry 20:5707–5710.PubMedGoogle Scholar
  69. Furtado, D., Williams, W. P., Brain, A. P. R., and Quinn, P. J., 1979, Phase separations in membranes of Anacystis nidulans grown at different temperatures. Biochim. Biophys. Acta 555:352–357.PubMedGoogle Scholar
  70. Gad, A. E., Bental, M., Elyashiv, G., Weinberg, H., and Nir, S., 1985, Promotion and inhibition of vesicle fusion by polylysine. Biochemistry 24:6277–6282.PubMedGoogle Scholar
  71. Galla, H.-J., Hartmann, W., Theilen, U., and Sackmann, E., 1979, On two-dimensional passive random walk in bilayers and fluid pathways in biomembranes. J. Membr. Biol 48:215–236.PubMedGoogle Scholar
  72. Gaily, H. U., Pluschke, G., Overath, P., and Seelig, J., 1980, Structure of Escherichia coli membranes. Fatty acyl chain order parameters of inner and outer membranes and derived liposomes. Biochemistry 19:1638–1643.Google Scholar
  73. Gordon-Kam, W. J., and Steponkus, P. L., 1984, Lamellar-to-hexagonal-II phase transitions in the plasma membrane of isolated protoplasts after freeze-induced dehydration. Proc. Natl. Acad. Sci. U.S.A. 81:6373–6377.Google Scholar
  74. Gounaris, K., Brain, A. P. R., Quinn, P. J., and Williams, W. P., 1983a, Structural and functional changes associated with heat-induced phase-separations of non-bilayer lipids in chloroplast thylakoid membranes. FEBS Lett. 153:47–52.Google Scholar
  75. Gounaris, K., Mannock, D. A., Sen, A., Brain, A. P. R., Williams, W. P., and Quinn, P. J., 1983b, Polyunsaturated fatty acyl residues of galactolipids are involved in the control of bi-layer/non-bilayer lipid transitions in higher plant chloroplasts. Biochim. Biophys. Acta 732:229–242.Google Scholar
  76. Gounaris, K., Brain, A. P. R., Quinn, P. J., and Williams, W. P., 1984, Structural reorganization of chloroplast thylakoid membranes in response to heat stress. Biochim. Biophys. Acta 766:198–208.Google Scholar
  77. Graham, I., Gagne, J., and Silvius, J. R., 1985, Kinetics and thermodynamics of calcium-induced lateral phase separations in phosphatidic acid containing bilayers. Biochemistry 24:7123–7131.PubMedGoogle Scholar
  78. Griffin, R. G., Powers, L., and Persham, R. S., 1978, Head-group conformation phospholipids: A phosphorus-31 nuclear magnetic resonance study or oriented monodomain dipalmitoylphosphatidylcholine bilayers. Biochemistry 17:2718–2722.PubMedGoogle Scholar
  79. Gruen, D. W. R., and Marcelja, S., 1983, Spatially varying polarization in water. A model for the electric double layer and the hydration force. J. Chem. Soc. Faraday Trans. II 79:225–242.Google Scholar
  80. Gruner, S. M., 1985, Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids, Proc. Natl. Acad. Sci., U.S.A., 82:3665–3669.PubMedGoogle Scholar
  81. Gruner, S. M., Rothschild, K. J., and Clark, N. A., 1982, X-ray diffraction and electron microscope study of phase separation in rod outer segment photoreceptor membrane multilayers. Biophys. J. 39:241–245.PubMedGoogle Scholar
  82. Gulik, A., Luzzati, V., De Rosa, M., and Gambacorta, A., 1985, Structure and polymorphism of bipolar isopranyl ether lipids from archaebacteria. J. Mol. Biol. 182:131–149.PubMedGoogle Scholar
  83. Gulik-Krzywicki, T., Rivas, E., and Luzzati, V., 1967. Structure et polymorphisme des lipides: Etude par diffraction des rayons X du systeme forme de lipides de mitochondries de coeur de boeuf et d’eau. J. Mol. Biol. 27:303–322.PubMedGoogle Scholar
  84. Gulik-Krzywicki, T., Tardieu, A., and Luzzati, V., 1969, Smectic phase of lipid-water systems: Properties related to the nature of the lipid and to the presence of net electrical charges. Mol. Cryst. Liq. Cryst. 8:285–291.Google Scholar
  85. Harlos, K., and Eibl, H., 1980, Influence of calcium on phosphatidylglycerol. Two separate lamellar structures. Biochemistry 19:896–899.Google Scholar
  86. Hauser, H., 1984, Some aspects of the phase behaviour of charged lipids. Biochim. Biophys. Acta 772:37–50.Google Scholar
  87. Hauser, H., Pascher, I., and Sundell, S., 1980, Conformation of phospholipids. Crystal structure of a lysophosphatidylcholine analogue. J. Mol. Biol. 137:249–264.PubMedGoogle Scholar
  88. Hawton, M. H., and Doane, J. W., 1987, Pretransitional phenomena in phospholipid/water multilayers. Biophys. J. 52:401–404.PubMedGoogle Scholar
  89. Hemminga, M. A., and Cullis, P. R., 1982, Phosphorus-31-NMR studies of oriented phospholipid multilayers. J. Magn. Reson. 47:307–323.Google Scholar
  90. Hitchcock, P. B., Mason, R., Thomas, K. M., and Shipley, G. G., 1974, Structural chemistry of 1,2-dilauroyl-DL-phosphatidylethanolamine: Molecular conformation and intermolecular packing of phospholipids. Proc. Natl. Acad. Sci. U.S.A. 71:3036–3040.PubMedGoogle Scholar
  91. Hui, S. W., and Boni, L. T., 1981, Lipidic particles and cubic phase lipids. Nature 296:175–176.Google Scholar
  92. Israelachvili, J. N., 1982, Forces between surfaces in liquids. Adv. Colloid Interface Sci. 16:31–47.Google Scholar
  93. Israelachivili, J. N., Marcelja, S., and Horn, R. G., 1980, Physical principles of membrane organization, Q. Rev. Biophys 13:121–200.Google Scholar
  94. Jan, N., Lookman, T., and Pink, D. A., 1984, On computer simulation methods used to study models of two-component lipid bilayers. Biochemistry 23:3227–3231.PubMedGoogle Scholar
  95. Janiak, M. S., Small, D. M., and Shipley, G. G., 1976, Nature of the thermal pretransition of synthetic phospholipids, dimyristryl-and dipalmitoyllecithin. Biochemistry 25:4575–4580.Google Scholar
  96. Janiak, M. J., Small, D. M., and Shipley, G. G., 1979, Temperature and compositional dependence of the structure of hydrated dimyristoyl lecithin. J. Biol. Chem. 254:6068–6078.PubMedGoogle Scholar
  97. Kates, M., 1978, Phytanylether-linked polar lipids and neutral lipids of extremely halophilic bacteria. Prog. Chem. Fats Other Lipids 15:301–342.PubMedGoogle Scholar
  98. Kim, J. T., Mattai, J., and Shipley, G. G., 1987, Gel phase polymorphism in ether-linked dihex-adecylphosphatidylcholine bilayers. Biochemistry 26:6592–6598.PubMedGoogle Scholar
  99. King, M. D., and Marsh, D., 1986, Free volume model for lateral diffusion coefficients. Assessment of the temperature dependence in phosphatidylcholine and phosphatidylethanolamine bilayers. Biochim. Biophys. Acta 862:231–234.PubMedGoogle Scholar
  100. Kirk, G. L., and Gruner, S. M., 1985, Lyotropic effects of alkanes and headgroup composition on the La-H-II lipid liquid crystal phase transition: Hydrocarbon packing versus intrinsic curvature. J. Phvs. 46:761–769.Google Scholar
  101. Kirk, G. L., Gruner, S. M., and Stein, D. L., 1984, A thermodynamic model of the lamellar to inverse hexagonal phase transition of lipid membrane-water systems. Biochemistry 23:1093–1102.Google Scholar
  102. Kirkland, J. P., Nagel, D. J., and Cowan, P. L., 1983, The Naval Research Laboratory materials analysis beam line at the National Synchrotron Light Source. Nucl. lustrum. Methods 208:49–54.Google Scholar
  103. Kodama, M., Hashigami, H., and Seki, S., 1985, Static and dynamic calorimetric studies on the three kinds of phase transition in the systems of L- and DL-dipalmitoylphosphatidylcholine/water. Biochim. Biophys. Acta 814:300–306.Google Scholar
  104. Kornberg, R. D., and McConnell, H. M., 1971, Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry 10:1111–1120.PubMedGoogle Scholar
  105. Kouaouci, R., Silvius, J. R., Graham, I., and Pezolet, M., 1985, Calcium-induced lateral phase separations in phosphatidylcholine-phosphatidic acid mixtures. A Raman spectroscopic study. Biochemistry 24:7132–7140.PubMedGoogle Scholar
  106. Koynova, R. D., Boyanov, A. I., and Tenchov, B. G., 1987, Gel-state metastability and nature of the azeotropic points in mixtures of saturated phosphatidylcholines and fatty acids. Biochim. Biophys. Acta 903:186–196.Google Scholar
  107. Krause, G. H., and Santarius, K. A., 1975, Relative thermostability of the chloroplast envelope. Planta 127:285–299.Google Scholar
  108. Kumar, A., and Gupta, C. M., 1985, Transbilayer phosphatidylcholine distributions in small unilameller sphingomyelin-phosphatidylcholine vesicles: effect of altered polar head group, Biochemistry 24:5157–5163.PubMedGoogle Scholar
  109. Kuo, A.-L., and Wade, C. G., 1979, Lipid lateral diffusion by pulsed nuclear magnetic resonance. Biochemistry 18:2300–2308.PubMedGoogle Scholar
  110. Larsson, K., Fontell, K., and Krog, N., 1980, Structural relationships between lamellar, cubic and hexagonal phases in monoglyceride-water systems. Possibility of cubic structures in biological systems. Chem. Phys. Lipids 27:321–328.Google Scholar
  111. Lee, A. G., 1977, Lipid phase transitions and phase diagrams, II. Mixtures involving lipids. Biochim. Biophys. Acta 472:285–344.PubMedGoogle Scholar
  112. Lee, A. G., 1978, Calculation of phase diagrams for non-ideal mixtures of lipids, and a possible non-random distribution of lipids in lipid mixtures in the liquid crystalline phase, Biochim. Biophys. Acta 507:433–444.Google Scholar
  113. Lentz, B. R., Barenholz, Y., and Thompson, T. E., 1976, Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2. Two-component phosphatidylcholine liposomes. Biochemistry 15:4529–4537.PubMedGoogle Scholar
  114. Levine, Y. K. and Wilkins, M. H. F., 1971, Structure of oriented lipid bilayers, Nature New Biol. 230:69–72.PubMedGoogle Scholar
  115. Lewis, B. A., DasGupta, S. K., and Griffin, R. G., 1984, Solid-state NMR studies of the molecular dynamics and phase behaviour of mixed-chain phosphatidylcholines. Biochemistry 23:1988–1993.Google Scholar
  116. Lewis, R. N. A. H., Mak, N., and McElhaney, R. N., 1987, A differential scanning calorimetric study of the thermotropic phase behaviour of model membranes composed of phosphatidylcholines containing linear saturated fatty acyl chains. Biochemistry 26:6118–6126.PubMedGoogle Scholar
  117. Lindblom, G., and Wennerstrom, H., 1977, Amphil diffusion in model membrane systems studied by pulsed NMR. Biophys. Chem. 6:167–171.PubMedGoogle Scholar
  118. Lindblom, G., Larsson, K., Johansson, L., Fontell, K., and Frosen, S., 1979, The cubic phase of monoglyceride-water systems. Arguments for a structure based upon lamellar bilayer units. J. Am. Chem. Soc. 101:5465–5470.Google Scholar
  119. Lis, L. J., and Quinn, P. J., 1986, A time-resolved synchrotron X-ray study of a crystalline phase bilayer transition and packing in a saturated monogalactosylglycerol-water system. Biochim. Biophys. Acta 862:81–86.Google Scholar
  120. Lis, L. J., and Quinn, P. J., 1987, Kinetics of lyotropic liquid crystal phase transitions: A time resolved X-ray diffraction study. Mol. Cryst. Liq. Cryst 146:35–39.Google Scholar
  121. Lord, R. C., and Mendelsohn, R., 1981, Application of spectroscopic methods to study membrane structure. In Membrane Spectroscopy (E. Grell, ed.), pp. 377–436, Springer-Verlag, Berlin.Google Scholar
  122. Luna, E. J., and McCorinell, H. M., 1978, Multiple phase equilibria in binary mixtures of phospholipids. Biochim. Biophys. Acta 509:462–473.PubMedGoogle Scholar
  123. Luzzati, V., 1986, X-ray diffraction studies of lipid-water systems. In Biological Membranes, Physical Facts and Functions (D. Chapman, ed.), pp. 71–123, Academic Press, London.Google Scholar
  124. Luzzati, V., and Reiss-Husson, F., 1966, Structure of the cubic phase of lipid-water systems. Nature 20:1351–1352.Google Scholar
  125. Luzzati, V., and Tardieu, A., 1974, Lipid phases; structure and structural transitions. Annu. Rev. Phys. Chem. 25:79–94.Google Scholar
  126. Luzzati, V., Gulik-Kryzwicki, T., and Tardieu, A., 1968, Polymorphism of lecithine. Nature (London) 218:1031–1034.Google Scholar
  127. Mabrey, S., and Sturtevant, J., 1976, Investigation of phase transitions of lipids and lipid mixtures by high sensitivity differential scanning calorimetry. Proc. Natl. Acad. Sci. U.S.A. 73:3862–3866.PubMedGoogle Scholar
  128. Machold, O., Simpson, D. J., and Hayes-Hanson, G., 1977, Correlation between the freeze-fracture appearance and polypeptide composition of thylakoid membranes in barley. Carlsburg Res. Commun. 42:499–516.Google Scholar
  129. Madden, T. D., and Cullis, P. R., 1982, Stabilization of bilayer structure for unsaturated phosphatidylethanolamines by detergents. Biochim. Biophys. Acta 684:149–153.PubMedGoogle Scholar
  130. Mannock, D. A., Brain, A. P. A., and Williams, W. P., 1985, Phase behaviour of the membrane lipids of the thermophilic blue-green alga Anacystis nidulans. Biochim. Biophys. Acta 821:153–164.Google Scholar
  131. Mansourian, A. R., and Quinn, P. J., 1986, Phase properties of binary mixtures of monogalactosyldiacylglycerols differing in hydrocarbon chain substituents dispersed in aqueous systems. Biochim. Biophys. Acta 855:169–178.Google Scholar
  132. Mantsch, H. H., Casal, H. L., and Jones, R. N., 1986 Infrared spectroscopy of membrane lipid systems. In Spectroscopy of Biological Systems (R. J. H. Clark and R. E. Hester, eds.), pp. 1–46, Wiley, Chichester.Google Scholar
  133. Marsh, D., and Seddon, J. M., 1982, Gel-to-inverted hexagonal (L-H11) phase transitions in phosphatidylethanolamine and fatty-acid phosphatidylcholine mixtures, demonstrated by 31P-NMR spectroscopy and X-ray diffraction. Biochim. Biophys. Acta 690:117–123.PubMedGoogle Scholar
  134. Masserini, M., and Freire, E., 1986, Thermotropic characterization of phosphatidylcholine vesicles containing ganglioside GMi with homogenous ceramide chain length, Biochemistry 25:1043–1049.PubMedGoogle Scholar
  135. McDaniel, R. V., Mcintosh, T. J., and Simon, S. A., 1983, Nonelectrolyte substitution for water in phosphatidylcholine bilayers. Biochim. Biophys. Acta 731:97–108.Google Scholar
  136. McElhaney, R. N., 1982, The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes. Chem. Phys. Lipids 30:229–259.PubMedGoogle Scholar
  137. McElhaney, R. N., 1986, Differential scanning calorimetric studies of lipid-protein interactions in model membrane systems. Biochim. Biophys. Acta 864:361–421.PubMedGoogle Scholar
  138. Mcintosh, T. J., McDaniel, R. V., and Simon, S. A., 1983, Induction of an interdigitated gel phase in fully hydrated phosphatidylcholine bilayers. Biochim. Biophys. Acta 731:109–114.Google Scholar
  139. McLaughlin, A. C., Cullis, P. R., Hemminga, M. A., Hoult, D. I., Radda, G. K., Ritchei, G. A., Seeley, P. J., and Richards, R. E., 1975, Application of 31P-NMR to model and biological membrane systems. FEBS Lett. 57:213–218.PubMedGoogle Scholar
  140. McLaughlin, A. C., Herbette, L., Blasie, J. K., Wang, C. T., Hymel, L., and Fleischer, S., 1981, 31P-NMR studies of oriented multilayers formed from isolated sarcoplasmic reticulum and reconstituted sarcoplasmic reticulum. Evidence that “boundary-layer” phospholipid is not immobilized. Biochim. Biophys. Acta 643:1–16.PubMedGoogle Scholar
  141. Mendelsohn, R., and Koch, C. C., 1980, Deuterated phospholipids as Raman spectroscopic probes of membrane structure. Phase diagrams for the dipalmitoylphosphatidylcholine (and its d62 derivative)—dipalmitoylphosphatidylethanolamine system. Biochim. Biophys. Acta 598:260–271.PubMedGoogle Scholar
  142. Moor, H., Kistler, J., and Muller, M., 1976, Freezing in a propane jet. Experientia 32:805–815.Google Scholar
  143. Mullet, J. E., and Arntzen, C. J., 1980, Simulation of grana stacking in a model membrane system, Biochim. Biophys. Acta 589:100–117.PubMedGoogle Scholar
  144. Nagle, J. F., and Wilkinson, D. A., 1982, Dilametric studies of the sub-transition in dipalmitoyl-phosphatidylcholine. Biochemistry 21:3817–3821.PubMedGoogle Scholar
  145. Navarro, J., Tovio-Kunnuncan, M., and Racker, E., 1984, Effect of lipid composition on the calcium/adenosine 5’-triphosphate coupling ratio of the Ca2+-ATPase of sarcoplasmic reticulum. Biochemistry 23:130–135.PubMedGoogle Scholar
  146. Nave, C., Helliwell, J. R., Moore, P. R., Tompson, A. W., Worgan, J. S., Greenall, R. J., Miller, A., Burley, S. K., Bradshaw, J., Pigram, W. J., Fuller, W., Siddons, D. P., Deutsch, M., and Tregear, R. T., 1985, Facilities for solution scattering and fibre diffraction at the Daresbury SRS. J. Appl. Crystallogr. 18:396–403.Google Scholar
  147. Nayer, R., Schmid, S. L., Hope, M. J., and Cullis, P. R., 1982, Structured preferences of phosphatidylinositol and phosphatidylinositol-phosphatidylethanolamine model membranes. Influence of Ca2+ and Mg2+. Biochim. Biophys. Acta 688:169–176.Google Scholar
  148. Noordam, P. C., van Echteld, C. J. A., DeKruijff, B., and DeGier, J., 1981, Rapid transbilayer movement of phosphatidylcholine in unsaturated phosphatidylethanolamine-containing model systems. Biochim. Biophys. Acta 646:483–487.Google Scholar
  149. Papahadjopoulos, D., Vail, W. J., Jacobson, K., and Poste, G., 1975, Cochleate cylinders: Formation by fusion of unilamellar vesicles. Biochim. Biophys. Acta 394:483–491.PubMedGoogle Scholar
  150. Parsegian, V. A., Fuller, N., and Rand, R. P., 1979, Measured work of deformation and repulsion of lecithin bilayers. Proc. Natl. Acad. Sci. U.S.A. 76:2750–2754.PubMedGoogle Scholar
  151. Pearson, R. H., and Pascher, I., 1979, Molecular structure of lecithin dihydrate. Nature 281:499–451.PubMedGoogle Scholar
  152. Phillips, M. C., Hauser, H., and Paltauf, F., 1972, Inter and intra-molecular mixing of hydrocarbon chains in lecithin/water systems. Chem. Phys. Lipids 8:127–133.PubMedGoogle Scholar
  153. Pope, J. M., Walker, L., Cornell, B. A., and Francis, G. W., 1981, NMR study of synthetic lecithin bilayers in the vicinity of the gel-liquid-crystalline transition. Biophys. J. 35:509–520.PubMedGoogle Scholar
  154. Quinn, P. J., 1985, A lipid phase separation model of low-temperature damage to biological membranes. Cryobiology 22:28–46.Google Scholar
  155. Quinn, P. J., and Chapman, D., 1980, The dynamics of membrane structure. Crit Rev. Biochem. 8:1–117.Google Scholar
  156. Quinn, P. J., Gounaris, K., Sen, A., and Williams, W. P., 1982, Structural configuration of plant membrane lipids and their role in the organisation of chloroplast thylakoid constituents. In Biochemistry and Metabolism of Plant Lipids (J. F. G. M. Wintermans and P. J. C. Kuiper, eds.), pp. 327–330, Elsevier Biomedical Press,. Amsterdam.Google Scholar
  157. Quinn, P. J., and Williams W. P., 1983, The structural role of lipids in photosynthetic membranes. Biochim. Biophys. Acta 737:223–266.Google Scholar
  158. Quinn, P. J., Brain, A. P. R., Stewart, L. C., and Kates, M., 1986, The structure of membrane lipids of the extreme halophile, Halobacterium cutirubrum, in aqueous systems studied by freeze-fracture. Biochim. Biophys. Acta 863:213–223.Google Scholar
  159. Ranck, J. L., Keira, T., and Luzzati, V., 1977, A novel packing of the hydrocarbon chains in lipids. The low temperature phases of dipalmitoylphosphatidyl-glycerol. Biochim. Biophys. Acta 488:432–441.PubMedGoogle Scholar
  160. Ranck, J. L., Letellier, L., Shechter, E., Krop, B., Pernot, P., and Tardieu, A., 1984, X-ray analysis of the kinetics of Escherichia coli lipid and membrane structural transitions. Biochemistry 23:4955–4961.PubMedGoogle Scholar
  161. Rand, R. P., and Luzzati, V., 1968, X-ray diffraction study in water of lipids extracted from human erythrocytes. The position of cholesterol in the lipid lamellae. Biophys. J. 8:125–137.PubMedGoogle Scholar
  162. Rand, R. P., Tinker, D. A., and Fast, P. G., 1971, Polymorphism of phosphatidylethanolamines from two natural sources. Chem. Phys. Lipids 6:333–342.PubMedGoogle Scholar
  163. Reiss-Husson, F., 1967, Structure des phases liquides-cristallines de différentes phospholipides, monoglycerides, sphingolipides, anhydres ou en presence d’eau. J. Mol. Biol. 25:363–382.PubMedGoogle Scholar
  164. Renooij, W., Van Golde, M. G., Zwall, R. F. A., and van Deenen, L. L. M., 1976, Topological asymmetry of phospholipid metabolism in rat erythrocyte membranes. Evidence for flip-flop of lecithin. Eur. J. Biochem. 61:53–58.PubMedGoogle Scholar
  165. Rice, D., and Oldfield, E., 1979, Deuterium nuclear magnetic resonance studies of the interaction between dimyristoylphosphatidylcholine and gramicidin A. Biochemistry 18:3272–3279.PubMedGoogle Scholar
  166. Rilfors, L., Eriksson, P.-O., Arvidson, G., and Lindblom, G., 1986, Relationship between three-dimensional arrays of “lipidic particles” and bicontinuous cubic lipid phases. Biochemistry 25:7702–7710.PubMedGoogle Scholar
  167. Roeder, S. B. W., Burnell, E. E., Kuo, A.-L., and Wade, C. G., 1976, Determination of the lateral diffusion coefficient of potassium oleate in the lamellar phase. J. Chem. Phys. 64:1848–1849.Google Scholar
  168. Rousselet, A., Guthmann, C., Matricon, J., Bienvenue, A., and Devaux, P. F., 1976, Study of the transverse diffusion of spin-labelled phospholipids in biological membranes. I. Human red blood cells. Biochim. Biophys. Acta 426:357–371.PubMedGoogle Scholar
  169. Ruocco, M. J., and Shipley, G. G., 1982a, Characterisation of the sub-transition of hydrated dipalmitoylphosphatidylcholine bilayers. Kinetic, hydration and structural study. Biochim. Biophys. Acta 691:309–320.Google Scholar
  170. Ruocco, M. J., and Shipley, G. G., 1982b, Characterisation of the subtransition of hydrated di-palmitoylphosphatidylcholine bilayers. Biochim. Biophys. Acta 684:59–66.Google Scholar
  171. Ruppel, D., and Sackmann, E., 1983, On defects in different phases of two-dimensional lipid bilayers, J. Phys. 44:1025–1034.Google Scholar
  172. Ryrie, I. J., Anderson, J. M., and Goodchild, D. J., 1980, The role of the light-harvesting chlorophyll alb-protein complex in chloroplast membrane stacking, Eur. J. Biochem. 107:345–354.PubMedGoogle Scholar
  173. Sakurai, I., Sakurai, T., Seto, T., and Iwayanagi, S., 1983, Lyotropic phase transitions in single crystals of L- and DL-dipalmitoylglycerophosphocholines. Chem. Phys. Lipids 32:1–11.Google Scholar
  174. Salisbury, N. J., Dark, A., and Chapman, D., 1971, Deuteron magnetic resonance studies of water associated with phospholipids. Chem. Phys. Lipids 8:142–151.Google Scholar
  175. Schreiber, U., and Armond, P. A., 1978, Heat-induced changes in chlorophyll fluorescence in isolated chloroplasts and related heat damage at the pigment level. Biochim. Biophys. Acta 502:138–151.PubMedGoogle Scholar
  176. Schreiber, U., and Berry, J., 1977, Heat-induced changes in chlorophyll fluorescence in intact leaves correlated with damage to the photosynthetic apparatus. Planta 136:233–238.Google Scholar
  177. Schreiber, U., Colbow, K., and Vidaver, W., 1976, Analysis of temperature jump chlorophyll fluorescence induction in plants. Biochim. Biophys. Acta 423:249–263.PubMedGoogle Scholar
  178. Scriven, L. E., 1976, Equilibrium bicontinuous structure. Nature 263:123–125.Google Scholar
  179. Seddon, J. M., Harlos, K., and Marsh, D., 1983, Metastability and polymorphism in the gel and fluid bilayer phases of dilauroylphosphatidylethanolamine. Two crystalline forms in excess water. J. Biol. Chem 258:3850–3854.PubMedGoogle Scholar
  180. Seddon, J. M., Cevc, G., Kaye, R. D., and Marsch D., 1984, X-ray diffraction study of the polymorphism of hydrated diacyl- and dialkylphosphatidylethanolamines. Biochemistry 23:2634–2644.PubMedGoogle Scholar
  181. Seelig, J., 1977, Deuterium magnetic resonance. Theory and application to lipid membranes. Q. Rev. Biophys. 10:353–418.PubMedGoogle Scholar
  182. Seelig, J., 1978, 31P nuclear magnetic resonance and the head group; structure of phospholipids in membranes. Biochim. Biophys. Acta 515:105–140.PubMedGoogle Scholar
  183. Seelig, J., and Gaily, H. U., 1976, Investigation of phosphatidylethanolamine bilayers by deuterium and phosphorus-31 nuclear magnetic resonance. Biochemistry 15:5199–5204.PubMedGoogle Scholar
  184. Seelig, J., and Niederberger, W., 1974, Deuterium-labelled lipids as structural probes in liquid-crystalline bilayers. A deuterium magnetic resonance study. J. Am. Chem. Soc. 96:2069–2072.Google Scholar
  185. Seelig, J., and Seelig, A., 1980, Lipid conformation in model membranes and biological membranes. Q. Rev. Biophys. 13:19–61.PubMedGoogle Scholar
  186. Seigneuret, M., and Devaux, P. F., 1984, ATP-dependent asymmetric distribution of spin-labelled phospholipids in the erythrocyte membrane: Relation to shape changes. Proc. Natl. Acad. Sci. U.S.A. 81:3751–3755.PubMedGoogle Scholar
  187. Sen, A., and Yeagle, P. L., 1986, Hydration and the lamellar to hexagonal II phase transition of phosphatidylethanolamine. Biochemistry 25:7518–7522.PubMedGoogle Scholar
  188. Sen, A., Williams, W. P., and Quinn, P. J., 1981, The structure and thermotropic properties of pure 1,2-diacylgalactosylglycerols in aqueous systems. Biochim. Biophys. Acta 663:380–389.PubMedGoogle Scholar
  189. Sen, A., Williams, W. P., Brain, A. P. R., and Quinn, P. J., 1982a, Bilayer and non-bilayer transformation in aqueous dispersions of mixed sn-3-galactosyldiacylglycerols isolated from chloroplasts. A freeze-fracture study. Biochim. Biophys. Acta 685:297–306.Google Scholar
  190. Sen, A., Brain, A. P. R., Quinn, P. J., and Williams, W. P., 1982b, Formation of inverted lipid micelles in aqueous dispersions of mixed sw-3-galactosyldiacylglycerol, induced by heat and ethylene glycol. Biochim. Biophys. Acta 686:215–224.PubMedGoogle Scholar
  191. Sen, A., Mannock, D. A., Collins, D. J., Quinn, P. J., and Williams, W. P., 1983, Thermotropic phase properties and structure of 1,2-distearoylgalactosylglycerols in aqueous systems. Proc. R. Soc. London B 218:349–364.Google Scholar
  192. Serrallach, E. N., Dijkman, R., de Haas, G. H., and Shipley, G. G., 1983, Structure and thermotropic properties of l,3-dipalmitoyl-glycero-2-phosphocholine. J. Mol. Biol. 170:155–174.PubMedGoogle Scholar
  193. Serrallach, E. N., de Haas, G. H., and Shipley, G. G., 1984, Structure and thermotropic properties of mixed chain phosphatidylcholine bilayer membranes. Biochemistry 23:713–720.Google Scholar
  194. Shimshick, E. J., and McConnell, H. M., 1973, Lateral phase separation in phospholipid membranes, Biochemistry 12:2351–2360.PubMedGoogle Scholar
  195. Shipley, G. G. 1973, Recent X-ray diffraction studies of biological membranes and membrane components. In Biological Membranes (D. Chapman and D. F. H. Wallach, eds.), Vol.2, pp. 1–89, Academic Press, London.Google Scholar
  196. Silvius, J. R., 1982, Lipid-protein interactions in biological membranes. In Lipid-Protein Interactions (P. C. Jost and O. H. Griffith, eds.), Vol. 2, pp. 239–281, Wiley, New York.Google Scholar
  197. Silvius, J. R., and Gange, J., 1984a, Lipid phase behaviour and calcium-induced fusion of phosphatidylethanolamine-phosphatidylserine vesicles. Calorimetric and fusion studies. Biochemistry 23:3232–3240.Google Scholar
  198. Silvius, J. R., and Gagne, J., 1984b, Calcium-indpced fusion and lateral phase separations in phosphatidylcholine-phosphatidylserine vesicles. Correlation by calorimetric and fusion mea-surements. Biochemistry 23:3241–3247.Google Scholar
  199. Silvius, J. R., Lyons, M., Yeagle, P. L., and O’Leary, T. J., 1985, Thermotropic properties of bilayers containing branched-chain phospholipids. Calorimetric, Raman, and 31P-NMR studies. Biochemistry 24:5388–5395.PubMedGoogle Scholar
  200. Singer, M. A., and Finegold, L., 1985, Permeability and morphology of low temperature phases in bilayers of single and of mixtures of phosphatidylcholines. Biochim. Biophys. Acta 816:303–312.PubMedGoogle Scholar
  201. Sklar, L. A., Milijanich, G. P., and Dratz, E. A., 1979, Phospholipid lateral phase separation and the partition of cis-parinaric acid and trans-parinaric acid among aqueous, solid lipid and fluid lipid phases. Biochemistry 18:1707–1716.PubMedGoogle Scholar
  202. Small, D. M., 1986, Phase behaviour of lipid-water systems. In Handbook of Lipid Research (D. J. Hanahan, ed.), Vol. 4, pp. 1–672, Plenum Press, New York.Google Scholar
  203. Smith, I. C. P., and Mantsch, H. H., 1979, A look at membranes by Fourier transform NMR and IR of deuterated lipids. Trends Biochem. Sci. 4:152–154.Google Scholar
  204. Snyder, B., and Freire, E., 1980, Compositional domain structure in phosphatidylcholine-cholesterol and sphingomyelin-cholesterol bilayers. Proc. Natl. Acad. Sci. U.S.A. 77:4055–4059.PubMedGoogle Scholar
  205. Stier, A., Finch, S. A. E., and Bosterling, B., 1978, Non-lamellar structure in rabbit liver microsomal membranes. FEBS Lett. 91:109–122.PubMedGoogle Scholar
  206. Stilbs, P., 1987, Fourier transform pulsed-gradient spin-echo studies of molecular diffusion. Prog. Nucl. Magn. Reson. Spectrosc. 19:1–45.Google Scholar
  207. Stilbs, P., Arvidson, G., and Lindblom, G., 1984, Vesicle membrane-water partition coefficients determined from Fourier transform pulsed-gradient spin-echo NMR based self-diffusion data. Application to anesthetic binding in tetracaine-phosphatidylcholine-water systems. Chem. Phys. Lipids 35:309–314.Google Scholar
  208. Stockton, G. W., Polnaszek, C. F., Leitch, L. C., Tulloch, A. P., and Smith, I. C. P., 1974, A study of mobility and order in model membranes using 2H-NMR relaxation rates and quadrupole splittings of specifically deuterated lipids. Biochem. Biophys. Res. Commun. 60:844–850.PubMedGoogle Scholar
  209. Strenk, L. M., Westerman, P. W., Vaz, N. P. A., and Doane, J. W., 1985, Spatial modulation in lecithin bilayers. Biophys. J. 48:355–359.PubMedGoogle Scholar
  210. Sunder, S., Cameron, D. G., Mantsch, H. H., and Bernstein, H. J., 1978, Infrared and laser Raman studies of deuterated model membranes: Phase transition in 1,2-perdeuterodipalmitoylsn-glycero-3-phosphocholine. Can. J. Chem. 56:2121–2126.Google Scholar
  211. Tamura, A., Yoshikawa, K., Fujii, T., Ohki, K., Nozawa, Y., and Sumida, Y., 1986, Effect of fatty acyl chain length of phosphatidylcholine on their transfer from liposomes to erythrocytes and transverse diffusion in the membranes inferred by TEMPO-phosphatidylcholine spin probes. Biochim. Biophys. Acta 855:250–256.PubMedGoogle Scholar
  212. Tanford, C., 1973, The Hydrophobic Effect: Formation of Micelles and Biological Membranes, Wiley-Interscience, New York.Google Scholar
  213. Taraschi, T. F., de Kruijff, B., Verleij, A. J., and van Echfeld, C. J. A., 1982, Effect of glycophorin on lipid polymorphism. A 31P-NMR study. Biochim. Biophys. Acta 685:153–161.PubMedGoogle Scholar
  214. Tenchov, B. G., 1985, Nonuniform lipid distribution in membranes. Prog. Sur. Sci. 20:273–340.Google Scholar
  215. Tenchov, B. G., Lis, L. J., and Quinn, P. J., 1987, Mechanism and kinetics of the subtransition in hydrated L-dipalmitoylphosphatidylcholine, Biochim. Biophys. Acta 897:143–151.PubMedGoogle Scholar
  216. Tenchov, B. G., Boyanov, A. J., and Koynova, R., 1984, Lyotropic polymorphism of racemic dipalmitoylphosphatidylethanolamine. A differential scanning calorimetric study. Biochemistry 23:3553–3558.Google Scholar
  217. Tenchov, B. G., Lis, L. J., and Quinn, P. J., 1987, Mechanism and kinetics of the subtransition in hydrated L-dipalmtoylphosphatidylcholine. Biochim. biophys. Acta 897:143–151.PubMedGoogle Scholar
  218. Ter-Minassian-Saraga, L., and Madelmont, G., 1984, Subtransition and hydration studies of fully hydrated DPPC gel-phase. J. Colloid Interface Sci. 99:420–426.Google Scholar
  219. Thomas, P. G., Brain, A. P. R., Quinn, P. J., and Williams, W. P., 1985, Low pH and phospholipase A2 treatment induce the phase separation of non-bilayer lipids within pea chloroplast membranes. FEBS Lett. 183:161–166.Google Scholar
  220. Tilcock, C. P. S., and Cullis, P. R., 1980, The polymorphic phase behaviour of mixed phosphatidylserine-phosphatidylethanolamine model systems as detected by 31P-NMR. Effects of divalent cations and pH. Biochim. Biophys. Acta 641:189–201.Google Scholar
  221. Tilcock, C. P. S., Cullis, P. R., and Gruner, S. M., 1986, On the validity of 31P-NMR determinations of phospholipid polymorphic phase behaviour. Chem. Phys. Lipids 40:47–56.Google Scholar
  222. Tsuchida, K., Hatta, I., Imaizumi, S., Ohki, K., and Nozawa, Y., 1985, Kinetics near the pretransition of a multilamellar phospholipid studied by ESR. Biochim. Biophys. Acta 812:249–254.Google Scholar
  223. Tsuchida, K., Ohki, K., Sekiya, T., Nozawa, Y., and Hatta, I., 1987, Dynamics of appearance and disappearance of the ripple structure in multilamellar liposomes of dipalmitoylphosphatidylcholine. Biochim. Biophys. Acta 898:53–58.PubMedGoogle Scholar
  224. Van den Bresselaar, A. M. H. P., de Kruijff, B., Van den Bosch, H., and van Deenen, L. L. M., 1978, Phosphatidylcholine mobility in liver microsomal membranes. Biochim. Biophys. Acta 510:242–255.Google Scholar
  225. Van der Steen, A. T. M., De Kruijff, B., and De Gier, J., 1982, Glycophorin incorporation increases the bilayer permeability of large unilamellar vesicles in a lipid-dependent manner. Biochim. Biophys. Acta 691:13–23.Google Scholar
  226. Van der Steen, A. T. M., Taraschi, T. F., Voorhout, W. F., and de Kruijff, B., 1983, Barrier properties of glycophorin-phospholipid systems prepared by different methods. Biochim. Biophys. Acta 733:51–64.PubMedGoogle Scholar
  227. Van Dijck, P. W. M., Van Zoelen, E. J. J., Seldenrijk, R., van Deenen, L. L. M., and de Gier, J., 1976, Calorimetric behaviour of individual phospholipid classes from human and bovine erythrocyte membranes. Chem. Phys. Lipids 17:336–343.PubMedGoogle Scholar
  228. Van Dijck, P. W. M., Kaper, A. J., Oonk, H. A. J., and de Gier, J., 1977, Miscibility properties of binary phosphatidylcholine mixtures. A calorimetric study. Biochim. Biophys. Acta 470: 58–69.PubMedGoogle Scholar
  229. Van Venetie, R., and Verkleij, A. J., 1981, Analysis of the hexagonal-II phase and its relations to lipidic particles and the lamellar phase. A freeze-fracture study. Biochim. Biophys. Acta 645:262–269.PubMedGoogle Scholar
  230. Van Venetie, R., and Verkleij, A. J., 1982, Possible role of non-bilayer lipids in the structure of mitochondria. A freeze-fracture electron microscopy study. Biochim. Biophys. Acta 692:397–405.PubMedGoogle Scholar
  231. Vasilenko, I., de Kruijff, B., and Verkleij, A. J., 1982, The synthesis and use of thiophospholipids in 31P-NMR studies of lipid polymorphism. Biochim. Biophys. Acta 685:144–152.PubMedGoogle Scholar
  232. Vaz, W. L. C., Goodsaid-Zalduondo, F., and Jacobson, K., 1984, Lateral diffusion of lipids and proteins in bilayer membranes. FEBS Lett. 174:199–207.Google Scholar
  233. Vaz, W. L. C., Clegg, R. M., and Hallmann, D., 1985, Translational diffusion of lipids in liquid crystalline phase phosphatidylcholine multibilayers. A comparison of experiment with theory. Biochemistry 24:781–786.PubMedGoogle Scholar
  234. Verkleij, A. J., and Ververgaert, P. H. J. Th., 1978, Freeze-fracture morphology of biological membranes. Biochim. Biophys. Acta 515:303–327.PubMedGoogle Scholar
  235. Verkleij, A. J., Ververgaert, P. H. J. Th., van Deenen, L. L. M., and Elbers, P. F., 1972, Phase transitions of phospholipid bilayers and membranes of Acholeplasma laidlawii B visualized by freeze fracturing electron microscopy. Biochim. Biophys. Acta 288:326–332.PubMedGoogle Scholar
  236. Verkleij, A. J., Zwaal, R. F. A., Roelofsen, B., Comfurius, P., Kastelijn, D., and van Deenen, L. L. M., 1973, The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim. Biophys. Acta 323:178–193.PubMedGoogle Scholar
  237. Ververgaert, P. H. J. Th., Verkleij, A. J., Elbers, P. F., and van Deenen, L. L. M., 1973, Analysis of the crystalline process in lecithin liposomes: A freeze-etch study. Biochim. Biophys. Acta 311:320–329.PubMedGoogle Scholar
  238. Verwey, E. J. W., and Overbeek, J. Th. G., 1984, Theory of the Stability ofLyophobic Colloids, Elsevier, Amsterdam.Google Scholar
  239. Viani, P., Cervato, G., Marchesini, S., and Cestaro, B., 1986, Fluorospectroscopic studies of mixtures of distearoylphasphatidylcholine and sulphatides with defined fatty acid compositions, Chem. Phys. Lipids 39:41–51.PubMedGoogle Scholar
  240. Wieslander, A., Rilfors, L., Johansson, B. A., and Lindblom, G., 1981, Reversed cubic phase with membrane glucolipids from Acholeplasma laidlawii. 1H, 2H and diffusion nuclear magnetic resonance measurements. Biochemistry 20:730–735.PubMedGoogle Scholar
  241. Wieslander, A., Ulmius, J., Lindblom, G., and Fontell, K., 1978, Water binding and phase structures for different Acholeplasma laidlawii membrane lipids studied by deuteron magnetic resonance and X-ray diffraction. Biochim. Biophys. Acta 512:241–253.PubMedGoogle Scholar
  242. Wieslander, A., Rilfors, L., Johansson, B. A., and Lindblom, G., 1981, Reversed cubic phase with membrane glucolipids from Acholeplasma laidlawii. 1H, 2H and diffusion nuclear magnetic resonance measurements. Biochemistry 20:730–735.PubMedGoogle Scholar
  243. Wilkins, W. H. F., Blaurock, A. E., and Engelman, D. M., 1971, Bilayer structure in membranes. Nature New Biol. 230:72–76.PubMedGoogle Scholar
  244. Wilkinson, D. A., and Mcintosh, T. J., 1986, A subtransition in a phospholipid with a net charge, dipalmitoylphosphatidylglycerol. Biochemistry 25:295–298.PubMedGoogle Scholar
  245. Wilkinson, D. A., and Nagle, J. F., 1978, A differential dilatometer. Anal. Biochem. 84:263–271.PubMedGoogle Scholar
  246. Wilkinson, D. A., and Nagle, J. F., 1981, Dilatometry and calorimetry of saturated phosphatidy-lethanolamine dispersions, Biochemistry 20:187–192.PubMedGoogle Scholar
  247. Wilkinson, D. A., and Nagle, J. F., 1984, Metastability in the phase behavior of dimyristoylphos-phatidylethanolamine bilayers, Biochemistry 23:538–541.Google Scholar
  248. Williams, W. P., Sen, A., Brain, A. P. R., Quinn, P. J., and Dickens, M. J., 1981, Lipidic particles and cubic phases. Nature 296:175–176.Google Scholar
  249. Wilschut, J., Nir, S., Scholma, J., and Hoekstra, D., 1985, Kinetics of Ca2+-induced fusion of cardiolipin-phosphatidylcholine vesicles: Correlation between vesicle aggregation, bilayer destabilization and fusion. Biochemistry 24:4630–4636.PubMedGoogle Scholar
  250. Wong, P. T. T., 1984, Raman spectroscopy of thermotropic and high-pressure phases of aqueous phospholipid dispersions. Annu. Rev. Biophys. Bioeng. 13:1–24.PubMedGoogle Scholar
  251. Wu, S. H. and McConnell, H. M., 1975, Phase separations in phospholipid membranes, Biochemistry 14:847–854.Google Scholar
  252. Zingsheim, H. P., 1972, Membrane structure and electron microscopy. The significance of physical problems and technics (freeze etching). Biochim. Biophys. Acta 265:339–366.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  1. 1.Department of BiochemistryKing’s College LondonLondonUK

Personalised recommendations