Advertisement

Reconstitution and Physiological Protein Translocation Processes

Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 14)

Abstract

Two interpretations can be attached to the word “reconstitution.” In a restricted sense, it generally refers to incorporation of proteins or proteinaceous complexes into bilayer membranes, often with the aim of restoring the natural function of the incorporated material. In a more general sense it refers to the in vitro rebuilding or regenerating of natural biological processes with or without involvement of membranes (Etemadi, 1985). With regard to protein trans-location processes, reconstitution experiments in both the restricted and the general senses have been attempted.

References

  1. Abrahamsen, L., Moks, T., Nilsson, B., Hellman, U., and Uhlen, M., 1985, Analysis of signals for secretion in the staphylococcal protein A gene. EMBO J. 4:3901–3906.Google Scholar
  2. Adams, G. A., and Rose, J. K., 1985a, Structural requirements of a membrane spanning domain for protein anchoring and cell surface transport. Cell 41:1007–1015.PubMedGoogle Scholar
  3. Adams, G. A., and Rose, J. K., 1985b, Incorporation of a charged amino acid into the membrane spanning region blocks cell surface transport but not membrane anchoring of a viral glycoprotein. Mol. Cell Biol. 5:1442–1448.PubMedGoogle Scholar
  4. Adelman, M. R., Sabatini, D. D., and Blobel, G., 1973, Ribosome-membrane insertion. Nondestructive disassembly of rat liver rough microsomes into ribosomal and microsomal components. J. Cell Biol. 56:206–229.PubMedGoogle Scholar
  5. Ades, I. Z., and Butow, R. A., 1980a, The product of mitochondria-bound cytoplasmic polysomes in yeast. J. Biol. Chem. 255:9918–9924.PubMedGoogle Scholar
  6. Ades, I. Z., and Butow, R. A., 1980b, The transport of proteins into yeast mitochondria, kinetics and pools. J. Biol. Chem. 255:9925–9935.PubMedGoogle Scholar
  7. Adler, L. A., and Arvidson, S., 1987, Correlation between the rate of exoprotein synthesis and the amount of multiprotein complex or membrane-bound ribosome (MBRP-complex) in Staphylococcus aureus. J. Gen. Microbiol. 133:803–813.PubMedGoogle Scholar
  8. Adrian, G. S., McCammon, M. T., Montgomory, D. L., and Douglas, M. G., 1986, Sequences required for delivery and localization of ADP/ATP translocator to the mitochondrial inner membrane, Mol. Cell. Biol. 6:626–634.PubMedGoogle Scholar
  9. Ainger, K. J., and Meyer, D. I., 1986, Translocation of nascent secretory proteins across membranes can occur late in translation. EMBO J. 5:951–955.PubMedGoogle Scholar
  10. Akiyama, Y., and Ito, K., 1985, The Sec γ membrane component of the bacterial protein export machinery: Analysis by new electrophoretic methods for integral membrane proteins. EMBO J. 4:3351–3356.PubMedGoogle Scholar
  11. Akiyama, Y., and Ito, K., 1987, Topology of the Sec γ protein an integral membrane protein involved in protein export in Escherichia coli, EMBO J. 6:3465–3470.PubMedGoogle Scholar
  12. Allison, D. S., and Schatz, G., 1986, Artificial mitochondrial presequences. Proc. Natl. Acad. Sci. U.S.A. 83:9011–9015.PubMedGoogle Scholar
  13. Amar-Costesec, A., Todd, J. A., and Kreibich, G., 1984, Segregation of the polypeptide translocation apparatus to regions of the endoplasmic reticulum containing ribophorin and ribosomes. I. Functional tests on rat liver microsomal subfranctions. J. Cell Biol. 99:2247–2253.PubMedGoogle Scholar
  14. Anderson, D. J., Walter, P., and Blobel, G., 1982, Signal recognition protein is required for the integration of acetylcholine receptor 8 subunit, a transmembrane glycoprotein, into the endo-plasmic reticulum. J. Cell Biol. 93:501–506.PubMedGoogle Scholar
  15. Anderson, L., 1981, Identification of mitochondrial proteins and some of their precursors in two-dimensional electrophoretic maps of human cells. Proc. Natl. Acad. Sci. U.S.A. 78:2407–2411.PubMedGoogle Scholar
  16. Aoyagi, H., Lee, S., Kanmera, T., Mihara, H., and Kato, T., 1987, Interaction of synthetic fragments of the extension peptide of cytochrome P-450 (scc) precursor with phospholipid bilayer, J. Biochem. 102:813–820.PubMedGoogle Scholar
  17. Arakawa, H., Takiguchi, M., Amaya, Y., Nagata, S., Hayashi, H., and Mori, M., 1987, cDNA-derived amino acid sequence of rat mitochondrial 3-oxoacyl-CoA thiolase with no transient presequence: Structural relationship with peroxisomal isoenzyme. EMBO J. 6:1361–1366.PubMedGoogle Scholar
  18. Argan, C., and Shore, G. C., 1985, The precursor of ornithine carbamyl transferase is transported to mitochondria as a 5 S complex containing an import factor. Biochem. Biophys. Res. Commun. 131:289–298.PubMedGoogle Scholar
  19. Argan, C., Lusty, C., and Shore, G., 1982, Nature of surface components on mitochondria which are required for import of ornithine carbamyl transferase. J. Cell Biol. 95(2, Pt. 2): 391a (Abstract).Google Scholar
  20. Argan, C., Lusty, C. J., and Shore, G. C., 1983, Membrane and cytosolic components affecting transport of the precursor of ornithine carbamyl transferase into mitochondria. J. Biol. Chem. 258:6667–6670.PubMedGoogle Scholar
  21. Arinc, E., Rzepecki, L. M., and Strittmatter, P., 1987, Topography of the C terminus of cytochrome b5 tightly bound to dimyristoyl phosphatidylcholine vesicles, J. Biol. Chem. 262:15563–15567.PubMedGoogle Scholar
  22. Armstrong, J., Nieman, H., Smeekens, S., Rottier, P., and Warren, G., 1984, Sequence and topology of a model intracellular membrane protein Ej glycoprotin from coronavirus. Nature (London) 308:751–752.Google Scholar
  23. Arpin, M., Matsuura, S., Margoliash, E., Sabatini, D. D., and Morimoto, T., 1980, A segment of cytochrome c containing information for the uptake of newly synthesized cytochrome polypeptides by mitochondria. Eur. J. Cell Biol. 22:152 (Abstract M 451).Google Scholar
  24. Audigier, Y., Friedlander, M., and Blobel, G., 1987, Multiple topogenic sequences in bovine opsin, Proc. Natl. Acad. Sci. USA 84:5783–5787.PubMedGoogle Scholar
  25. Austen, B. M., 1979, Predicted secondary structures of amino-terminal extension sequences on secreted proteins. FEBS. Lett. 103:308–313.PubMedGoogle Scholar
  26. Austen, B. M., and Ridd, D. H., 1983, Studies on the binding of a synthetic signal peptide to pancreatic rough microsomal vesicles. Biochem. Soc. Trans. 11:160–161.Google Scholar
  27. Austen, B. M., Hermon-Taylor, J., Kaderbhai, M. A., and Ridd, D. H., 1984, Design and synthesis of a consensus signal sequence that inhibits protein translocation into rough microsomal vesicles. Biochem. J. 224:317–325.PubMedGoogle Scholar
  28. Bacallao, R., Crooke, E., Shiba, K., Wickner, W., and Ito, K., 1986, The Sec γ protein can act post-translationally to promote bacterial protein export. J. Biol. Chem. 261:12907–12910.PubMedGoogle Scholar
  29. Baker, A., and Schatz, G., 1987, Sequences from a prokaryotic genome on the mouse dihydrofolate reductase gene can restore the import of a truncated precursor protein into yeast mitochondria. Proc. Natl. Acad. Sci. U.S.A. 84:3117–3121.PubMedGoogle Scholar
  30. Bakker, E. P., and Randall, L. L., 1984, The requirement for energy during export of fS-lactamase in Escherichia coli is fulfilled by the total protonmotive force. EMBO J. 3:895–900.PubMedGoogle Scholar
  31. Bancroft, C. F., Sussman-Berger, P., and Dobner, P. R., 1980, Biosynthesis of rat growth hormone and its messenger RNA. Ann. N.Y. Acad. Sci. 343:56–68.PubMedGoogle Scholar
  32. Bankaitis, V. A., and Bassford, P. J. Jr., 1985a, Proper interaction between at least two components is required for efficient export of proteins to Escherichia coli cell envelope. J. Bacteriol. 161:169–178.PubMedGoogle Scholar
  33. Bankaitis, V. A., and Bassford, P. J. Jr., 1985b, Sequences within the mature maltose-binding protein of Escherichia coli may be actively involved in initiating the export process. Ann. Inst. Pasteur Microbiol. 136B:3–7.PubMedGoogle Scholar
  34. Bankaitis, V. A., Rasmussen, B. A., and Bassford, P. J. Jr., 1984, Intragenic suppressor mutations that restore export of maltose-binding protein with a truncated signal peptide. cell 37:243–252.PubMedGoogle Scholar
  35. Bar-Nun, S., Kreibich, G., Adesnik, M., Alterman, L., Negishi, M., and Sabatini, D. D., 1980, Synthesis and insertion of cytochrome P-450 into endoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 77:965–969.PubMedGoogle Scholar
  36. Bassford, P. J. Jr., Silhavy, T. J., and Beckwith, J., 1979, Use of gene fusion to study secretion of maltose-binding protein in E. coli periplasm. J. Bacteriol. 139:19–31.PubMedGoogle Scholar
  37. Bassuener, R., Wobus, U., and Rapoport, T. A., 1984, Signal recognition particle triggers the translocation of storage globulin polypeptides from field beans (Vicia faba L.) across mammalian endoplasmic reticulum membrane. FEBS Lett. 166:314–320.Google Scholar
  38. Becker, W. M., Riezman, H., Weir, E. M., Titus, D. E., and Leaver, C. J., 1982, In vitro synthesis and compartmentation of glyoxysomal enzymes from cucumber. Ann. N.Y. Acad. Sci. 386:329–349.Google Scholar
  39. Bedbrook, J. R., Smith, S. M., and Ellis, R. J., 1980, Molecular cloning and sequencing of cDNA encoding the precursor to the small subunit of chloroplast ribulose-1,5-bisphosphate carboxylase. Nature (London) 287:692–697.Google Scholar
  40. Bedouelle, H., Bassford, P. J. Jr., Fowler, A. V., Zabin, I., Beckwith, J., and Hofnung, M., 1980, Mutations which alter the function of the signal sequence of the maltose binding protein of Escherichia coli. Nature (London) 285:78–81.Google Scholar
  41. Beevers, H., 1979, Microbodies in higher plants. Annu. Rev. Plant Physiol. 30:159–193.Google Scholar
  42. Beevers, H., and Gonzalez, E., 1987, Proteins and phospholipids of glyoxysomal membranes from castor bean, Methods Enzymol. 148:528–532.Google Scholar
  43. Behra, R., and Christen, P., 1986, In vitro import into mitochondria of the precursor of mitochondrial aspartate aminotransferase. J. Biol. Chem. 261:257–263.PubMedGoogle Scholar
  44. Bell, G. I., Swain, W. F., Pictet, R., Cordell, B., Goodman, H. M., and Rutter, W. J., 1979, Nucleotide sequence of a cDNA clone encoding human preproinsulin. Nature (London) 282:525–527.Google Scholar
  45. Bergelson, L. D., and Barsukov, L. I., 1977, Topological asymmetry of phospholipids in membranes. The distribution of phospholipids in biological membranes is related to that in bilayer membranes of small vesicles. Science 179:224–230.Google Scholar
  46. Bernstein, M., Hoffmann, W., Ammerer, G., and Schekman, R., 1985, Characterization of a gene product (Sec 53 p) required for protein assembly in yeast endoplasmic reticulum. J. Cell Biol. 101:2374–2382.PubMedGoogle Scholar
  47. Bhat, N. K., and Avadhani, N. G., 1985, Transport of proteins into hepatic and nonhepatic mitochondria: Specificity of uptake and processing of precursor form of carbamyl phosphate synthetase. Biochemistry 24:8107–8113.PubMedGoogle Scholar
  48. Bickman, E. R., Oliver, D. B., Garwin, J. L., Kumamoto, C., and Beckwith, J., 1984, The use of extragenic suppressors to define genes involved in protein export in Escherichia coli. Mol. Gen. Genet. 196:24–27.Google Scholar
  49. Bielinska, R. M., Rogers, G., Rucinsky, T., and Boime, I., 1979, Processing in vitro of placental peptide hormones by smooth microsomes. Proc. Natl. Acad. Sci. U.S.A. 76:6152–6156.PubMedGoogle Scholar
  50. Bingham, R. W., and Campbell, P. B., 1972, Studies on the biosynthesis of mitochondrial malate dehydrogenase and the location of its synthesis in liver cell of the rat. Biochem. J. 126:211–215.PubMedGoogle Scholar
  51. Birrel, G. B., and Griffith, O. H., 1976, Cytochrome c induced lateral phase separation in a diphosphatylglycerol-steroid spin-label model membrane. Biochemistry 95:2925–2929.Google Scholar
  52. Bitsch, A., and Kloppstech, K., 1986a, Reconstitutiop of the solubilized envelope receptors for nuclear-coded precursor proteins. Plant Biol. 2:244–246.Google Scholar
  53. Bitsch, A., and Kloppstech, K., 1986b, Transport of proteins into chloroplasts. Reconstitution of the binding capacity for nuclear-coded precursor proteins after solubilization of envelope with detergents. Eur. J. Cell Biol. 40:160–166.Google Scholar
  54. Blachly-Dyson, E., and Stevens, T. H., 1987, Yeast carboxypeptidase γ can be translocated and glycosylated without its aminoterminal signal sequence. J. Cell Biol. 104:1183–1191.PubMedGoogle Scholar
  55. Black, S. D., French, J. S., William, C. H. Jr., and Coon, M. J., 1979, Role of hydrophobic polypeptide in the N-terminal region of NADPH-cytochrome P-450 reductase in complex formation with P-450 LM. Biochem. Biophys. Res. Commun. 91:1528–1535.PubMedGoogle Scholar
  56. Blobel, G., 1980, Intracellular protein topogenesis. Proc. Natl. Acad. Sci. U.S.A. 77:1496–1500.PubMedGoogle Scholar
  57. Blobel, G., and Dobberstein, B., 1975, Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J. Cell Biol. 67:852–862.PubMedGoogle Scholar
  58. Blobel, G., and Sabatini, D. D., 1971, Ribosome-membrane interaction in eukaryotic cells, in Biomembranes (L. A. Manson, ed.), Vol. 2, pp. 193–195. Plenum Press, N.Y.Google Scholar
  59. Boeke, J. D., and Model, P., 1982, A prokaryotic membrane anchor sequence: Carboxyl terminus of bacteriophage f gene III protein retains it in the membrane. Proc. Natl. Acad. Sci. U.S.A. 79:5200–5204.PubMedGoogle Scholar
  60. Boime, I., Szczesna, E., and Smith, D., 1977, Membrane dependent cleavage of the human placental lactogen precursor to its native form in ascites cell-free extract. Eur. J. Biochem. 73:515–520.PubMedGoogle Scholar
  61. Bonatti, S., and Blobel, G., 1979, Absence of a cleavable signal sequence in Sindbis virus glycoprotein PE2. J. Biol. Chem. 254:12261–12264.PubMedGoogle Scholar
  62. Bonatti, S., Migliaccio, G., Blobel, G., and Walter, P., 1984, Role of signal recognition particle in the membrane assembly of Sindbis viral glycoproteins. Eur. J. Biochem. 140:499–502.PubMedGoogle Scholar
  63. Borgese, N., and Gaetani, S., 1982, Biosynthesis and post-translational insertion into membranes of rat liver NADH-cytochrome b5 reductase. J. Cell Biol. 95(2, Pt. 2):399a (abstract).Google Scholar
  64. Bos, T. J., Davis, A. R., and Nayak, D. P., 1984, NH2 terminal hydrophobic region of influenza virus neuraminidase provides the signal function in translocation. Proc. Natl. Acad. Sci. U.S.A. 81:2327–2331.PubMedGoogle Scholar
  65. Boutry, M., Nagy, F., Poulsen, C., Aoyagi, K., and Chua, N. H., 1987, Targeting of bacterial chloramphenicol acetyltransferase to mitochondria in transgenic plants. Nature (London) 328:340–342.Google Scholar
  66. Bremer, E., Cole, S., Hindennach, I., Henning, U., Beck, E., Kurz, C., and Schaller, H., 1982, Export of a protein into the outer membrane of Escherichia coli. Stable incorporation of OmpA protein requires less than 193 amino terminal acid residues. J. Biochem. 122:223–231.Google Scholar
  67. Bretscher, M. S., 1973, Membrane structure: Some general principles. Science 181:622–629.PubMedGoogle Scholar
  68. Briggs, M. S., and Gierasch, L. M., 1984, Exploring the conformational roles of sequences: Synthesis and conformational analysis of X receptor protein wild-type and mutant signal peptides. Biochemistry 23:3111–3114.PubMedGoogle Scholar
  69. Briggs, M. S., Gierasch, L. M., Zlotnick, A., Lear, J. D., and De Grado, W. F., 1985, In vivo function and membrane binding properties are correlated for Escherichia coli Lam B signal peptides. Science 228:1096–1099.PubMedGoogle Scholar
  70. Briggs, M. S., Cornell, D. G., Dluhy, R. A., and Gierasch, L. M., 1986, Conformation of signal peptides induced by lipids suggest initial steps in protein export. Science 233:206–208.PubMedGoogle Scholar
  71. Brown, D. A., and Simoni, R. S., 1984, Biogenesis of 3-hydroxy-3-methyl glutaryl coenzyme A reductase, an integral glycoprotein of the endoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 81:1674–1678.PubMedGoogle Scholar
  72. Brown, L. R., and Wütrich, K., 1977, NMR and ESR studies of the interactions of cytochrome c with mixed cardiolipin-phosphatidylcholine vesicles. Biochim. Biophys. Acta 468:389–410.PubMedGoogle Scholar
  73. Brown, P. A., Halvorson, H. O., Raney, P., and Perlman, D., 1984, Conformational alterations in the proximal portion of the yeast invertase signal peptide do not block secretion. Mol. Gen. Genet. 197:351–357.PubMedGoogle Scholar
  74. Brusilow, W. S. A., Gunsalus, R. P., Hardeman, E. C., Decker, K. P., and Simoni, R. D., 1981, In vitro synthesis of F0 and Fj components of the proton translocating ATPase of Escherichia coli. J. Biol. Chem. 256:3141–3144.PubMedGoogle Scholar
  75. Büchel, D. E., Gronenbord, B., and Müller-Hill, B., 1980, Sequences of the lactose permease gene. Nature (London) 283:541–545.Google Scholar
  76. Burns, D., and Lewin, A., 1986, Inhibition of the import of mitochondrial proteins by RNase. J. Biol Chem. 261:6155–6163.Google Scholar
  77. Burr, F. A., and Burr, B., 1981, In vitro uptake and processing of prezein and other maize proteins by maize membranes. J. Cell Biol. 90:427–434.PubMedGoogle Scholar
  78. Burstein, V., and Schechter, I., 1978, Primary structure of N-terminal peptide segment linked to the variable and constant regions of immunoglobulin light chain precursors: Implication of the organization and controlled expression of immunoglobulin genes. Biochemistry 17:2392–2400.PubMedGoogle Scholar
  79. Campbell, M. T., Sutton, R., and Pollak, J. K., 1982, Import of carbamoylphosphate synthetase into mitochondria from fetal rat liver. Eur. J. Biochem. 125:401–406.PubMedGoogle Scholar
  80. Cancedda, R., and Schlesinger, M. J., 1974, Localization of polyribosomes containing alkaline phosphatase nascent polypeptides on membranes of Escherichia coli. J. Bacteriol. 117:290–301.PubMedGoogle Scholar
  81. Caplan, M. J., Palade, G. E., and Jamieson, J. D., 1986, Newly synthesized sodium-potassium ATPase α-subunit has no cytosolic intermediate in MDCK cells. J. Biol. Chem. 261:2860–2865.PubMedGoogle Scholar
  82. Cardoza, J. D., Kleinfeld, A. M., Stallcup, K. C., and Mescher, M. F., 1984, Hairpin configuration of H-2Kk in liposomes formed by detergent dialysis. Biochemistry 23:4401–4409.PubMedGoogle Scholar
  83. Carlson, M., and Botstein, D., 1982, Two differently regulated mRNAs with different 5’ ends encode secreted and intra cellular forms of yeast invertase. Cell 28:145–154.Google Scholar
  84. Cascarano, J., Montisano, D. F., Pickett, C. B., and Jones, T. W., 1982, Rough endoplasmic reticulum-mitochondrial complexes from rat liver. Exp. Cell Res. 139:39–50.PubMedGoogle Scholar
  85. Cashmore, A. R., 1983, Nuclear gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase, Basic Life Sci. 26:29–38.Google Scholar
  86. Caulfield, M. P., Tai, P. C., and Davis, B. D., 1983, Association of penicillin-binding proteins and other enzymes with the ribosome-free membrane fraction of Bacillus subtilis. J. Bacteriol. 156:1–5.PubMedGoogle Scholar
  87. Caulfield, M. P., Horiuchi, S., Tai, P. C., and Davis, B. D., 1984, The 64-kilodalton membrane protein of Bacillus subtilis is also present as a multicomplex on membrane free ribosomes. Proc. Natl. Acad. Sci. U.S.A. 81:7772–7776.PubMedGoogle Scholar
  88. Caulfield, M. P., Furlong, D., Tai, P. C., and Davis, B. D., 1985, Secretory S complex of Bacillus subtilis forms a large organized structure when released from ribosomes. Proc. Natl. Acad. Sci. U.S.A. 82:4031–4035.PubMedGoogle Scholar
  89. Caulfield, M. P., Duong, L. T., and Rosenblatt, M., 1986, Demonstration of post-translational secretion of human placental lactogen by a mammalian in vitro translation system. J. Biol. Chem. 261:10953–10956.PubMedGoogle Scholar
  90. Chamberlain, B. K., Nozaki, Y., Tanford, C., and Webster, R. E., 1978, Association of the major coat protein of fd bacteriophage with phospholipid vesicles. Biochim. Biophys. Acta 510:18–37.PubMedGoogle Scholar
  91. Chapman, D., and Urbina, J., 1971, Phase transition and bilayer structure of Mycoplasma laidlawii B. FEBS Lett. 12:169–172.PubMedGoogle Scholar
  92. Chen, L., and Tai, P. C., 1985, ATP is essential for protein translocation into Escherichia coli membrane vesicles. Proc. Natl. Acad. Sci. U.S.A. 82:4384–4388.PubMedGoogle Scholar
  93. Chen, L., and Tai, P. C., 1987a, Effects of antibodies and other inhibitors on ATP-dependent protein translocation into membrane vesicles. J. Bacteriol. 169:2373–2379.PubMedGoogle Scholar
  94. Chen, L., and Tai, P. C., 1987b, Evidence for the involvement of ATP in co-translational protein translocation. Nature (London) 328:164–166.Google Scholar
  95. Chen, L., Rhoads, D., and Tai, P. C., 1985, Alkaline phosphatase and OmpA protein can be translocated post-translationally into membrane vesicles of Escherichia coli. J. Bacteriol. 161:973–980.PubMedGoogle Scholar
  96. Chen, L., Tai, P. C., Briggs, M. S., and Gierasch, L. M., 1987, Protein translocation into Escherichia coli membrane vesicles is inhibited by functional synthetic signal peptides. J. Biol. Chem. 262:1427–1429.PubMedGoogle Scholar
  97. Chen, W. J., and Douglas, M. G., 1987a, Phosphodiester bond cleavage outside mitochondria is required for the completion of protein import into mitochondrial matrix. cell 49:651–658.PubMedGoogle Scholar
  98. Chen, W. J., and Douglas, M. G., 1987b, The role of protein structure in the mitochondrial import pathway. Unfolding of mitochondrially bound precursors is required for membrane translocation, J. Biol. Chem. 262:15605–15609.PubMedGoogle Scholar
  99. Cheng, M. Y., Pollock, R. A., Hendrick, J. A., and Horwich, A. L., 1987, Import and processing of human ornithine transcarbamylase precursor by mitochondria from Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 84:4063–4067.PubMedGoogle Scholar
  100. Chia, C. P., and Arntzen, C. J., 1986, Evidence for two step processing of nuclear encoded chloroplast protein during membrane assembly. J. Cell Biol. 103:725–731.PubMedGoogle Scholar
  101. Chien, S. M., and Freeman, K. B., 1983, Synthesis and uptake of precursor forms of mammalian mitochondrial proteins. Fed. Proc. 42:2125 (Abstract).Google Scholar
  102. Chien, S. M., Patel, H. V., and Freeman, K. B., 1984, Import of rat liver mitochondrial malate dehydrogenase. Binding of the precursor to mitochondria, an intermediate stage in import. J. Biol. Chem. 259:13633–13636.PubMedGoogle Scholar
  103. Chiocchia, K. B., and Dirckamer, K., 1984, Direct evidence for the transmembrane orientation of the hepatic glycoprotein receptors. J. Biol. Chem. 259:15440–15446.Google Scholar
  104. Chitnis, P. R., Hartl, E., Kohorn, B. L., Tobin, E. M., and Thornber, J. P., 1986, Assembly of the precursor and processed light-harvesting chlorophyll a/b protein of Lemna into the light-harvesting complex II of barley etioplasts, J. Cell. Biol 102:982–988.PubMedGoogle Scholar
  105. Chitnis, P., Nechushtai, R., and Thornber, J. P., 1987, Insertion of the precursor of the light-harvesting chlorophyll a/b protein into the thylakoid requires the presence of a developmentally regulated stromal factor, Plant Mol Biol 10:3–11.Google Scholar
  106. Christiansen, K., and Carlsen, J., 1985, Reconstitution of cytochrome b5 into lipid vesicles in a form which is nonsusceptible to attack by carboxypeptidase Y. Biochim. Biophys. Acta 815:215–222.PubMedGoogle Scholar
  107. Chu, T. W., Grand, P. M., and Strauss, A. W., 1987a, Mutation of a neutral amino acid in the transit peptide of rat mitochondrial malate dehydrogenase abolishes binding and import, J. Biol Chem. 262:15759–15764.PubMedGoogle Scholar
  108. Chu, T. W., Grant, P. M., and Strauss, A. W., 1987b, The role of arginine residues in the rat mitochondrial malate dehydrogenase transit peptide, J. Biol Chem. 262:12806–12811.PubMedGoogle Scholar
  109. Chua, N. H., and Schmidt, G. W., 1978, Post-translational transport into intact chloroplasts of a precursor to the small subunit of ribulose 1,5-bisphosphate carboxylase. Proc. Natl Acad. Sci. U. S.A. 75:6110–6114.PubMedGoogle Scholar
  110. Chua, N. H., and Schmidt, G. W., 1979, Transport of proteins into mitochondria and chloroplasts. J. Cell Biol 81:461–483.PubMedGoogle Scholar
  111. Chyn, T. L., Martonosi, A. N., Morimoto, T., and Sabatini, D. D., 1979, In vitro synthesis of the Ca2+ transport ATPase by ribosomes bound to sarcoplasmic reticulum membranes. Proc. Natl Acad. Sci. U.S.A. 76:1241–1245.PubMedGoogle Scholar
  112. Claesson, L., Larhammer, D., Rask, L., and Peterson, P. A., 1983, cDNA clone for human invariant γ chain of class II histocompatibility and its implications for protein structure. Proc. Natl Acad. Sci. U.S.A. 80:7395–7399.PubMedGoogle Scholar
  113. Cline, K., 1986, Import of proteins into chloroplasts. Membrane integration of a thylakoid precursor protein reconstituted in chloroplast lysates. J. Biol Chem. 261:14804–14810.PubMedGoogle Scholar
  114. Cline, K., Werner-Washburne, M., Lubben, T. H., and Keegstra, K., 1985, Precursors to two nuclear-encoded chloroplast proteins bind to the outer envelope membrane before being imported into chloroplasts. J. Biol. Chem. 260:3691–3696.PubMedGoogle Scholar
  115. Coleman, J., Inukai, M., and Inouye, M., 1985, Dual functions of signal peptide in protein transfer across the membrane. cell 43:351–360.PubMedGoogle Scholar
  116. Collier, D. N., Bankaitis, V. A., Weiss, J. B., and Bassford, P. J., Jr., 1988, The antifolding activity of Sec B promotes the export of E. coli maltose-binding protein, cell 53:273–283.PubMedGoogle Scholar
  117. Cornwell, K. L., and Keegstra, K., 1987, Evidence that a chloroplast surface protein is associated with a specific binding site for the precursor to the small subunit of ribulose 1,5-bisphosphate carboxylase, Plant. Physiol. 85:760–785.Google Scholar
  118. Coruzzi, G., Brogli, R., Cashmore, A., and Chua, N. H., 1983, Nucleotide sequences of two pea cDNA clones encoding the small subunit of ribulose 1,5-bisphosphate carboxylase and the major chlorophyll a/b-binding thylakoid membrane polypeptide. J. Biol. Chem. 258:1399–1402.PubMedGoogle Scholar
  119. Côté, C., and Boulet, D., 1985, Differential import and processing of the precursors to FrATPase β-subunit and ornithine carbamyl transferase by liver, spleen, heart and kidney mitochondria. Biochem. Biophys. Res. Commun. 129:240–247.PubMedGoogle Scholar
  120. Cover, W. H., Ryan, J. P., Bassford, P. J. Jr., Walsh, K. A., Bollinger, J., and Randall, L. L., 1987, Suppression of a signal sequence mutation by an amino acid substitution in the mature portion of the maltose-binding protein. J. Bacteriol. 169:1794–1800.PubMedGoogle Scholar
  121. Crane, D., Holmes, R., and Masters, C. J., 1982a, Synthesis and incorporation of phospholipid by peroxisomes of mouse liver. Biochim. Biophys. Acta 712:57–64.PubMedGoogle Scholar
  122. Crane, D. I., Holmes, R. S., and Masters, C. J., 1982b, Proteolytic modification of mouse liver catalase. Biochem. Biophys. Res. Commun. 104:1567–1572.PubMedGoogle Scholar
  123. Crane, D. I., Holmes, R. S., and Masters, C. J., 1983, On the synthesis and incorporation of catalase and urate oxidase into the peroxisomes of mouse liver. Int. J. Biochem. 15:1429–1437.PubMedGoogle Scholar
  124. Crimaudo, C., Hortsch, M., Gausephol, H., and Meyer, D. I., 1987, Human ribophorins I and II: the primary structure and membrane topology of two highly conserved rough endoplasmic reticulum-specific glycoproteins, EMBO J. 6:75–82.PubMedGoogle Scholar
  125. Culter, D. F., and Garoff, H., 1986a, Mutants of the membrane binding region of Semliki forest virus E2 protein. I. Cell surface transport and fusogenic activity. J. Cell Biol. 102:889–901.Google Scholar
  126. Culter, D. F., Melancon, P., and Garoff, H., 1986b, Mutants of membrane binding region of Semliki forest virus E2 protein. II. Topology and membrane binding. J. Cell Biol. 102:902–910.Google Scholar
  127. Dailey, H. A., and Strittmatter, P., 1981a, The role of COOH-terminal anionic residues in binding cytochrome b5 to phospholipid vesicles and biological membranes. J. Biol. Chem. 256:1677–1680.PubMedGoogle Scholar
  128. Dailey, H. A., and Strittmatter, P. 1981b, Orientation of the carboxyl and NH2 termini of the membrane-binding segment of cytochrome b5 on the same side of phospholipid bilayers. J. Biol. Chem. 256:3951–3955.PubMedGoogle Scholar
  129. Dalbey, R. E., and Wickner, W., 1986, The role of tjhe polar, carboxyl terminal domain of Escherichia coli leader peptidase in its translocation across the plasma membrane. J. Biol. Chem. 261:13844–13849.PubMedGoogle Scholar
  130. Dalbey, R. E., and Wickner, W., 1988, Characterization of the internal signal anchor domain of Escherichia coli leader peptidase, J. Biol. Chem. 263:404–408.PubMedGoogle Scholar
  131. Daniels, C. J., Bole, D. G., Quay, S. C., and Oxender, D. L., 1981, Role of membrane potential in the secretion of proteins into the periplasm of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 78:5396–5400.PubMedGoogle Scholar
  132. Date, T., Goodman, J. M., and Wickner, W. T., 1980, Procoat, the precursor of M13 coat protein, requires an electrochemical potential for membrane insertion. Proc. Natl. Acad. Sci. U.S.A. 77:4669–4673.PubMedGoogle Scholar
  133. Daum, G., Gasser, S. M., and Schatz, G., 1982, Import of proteins into mitochondria. Energy dependent, two step processing of the intermembrane space enzyme cytochrome b2 by isolated yeast mitochondria. J. Biol. Chem. 257:13075–13080.PubMedGoogle Scholar
  134. Davis, B. D., and Tai, P. C., 1980, The mechanisms of protein secretion across membranes. Nature (London) 283:433–438.Google Scholar
  135. Davis, N. G., and Model, P., 1985, An artificial anchor domain hydrophobicity suffices to stop transfer. cell 41:607–614.PubMedGoogle Scholar
  136. Davis, N. G., Boeke, J. D., and Model, P., 1985, Fine structure of membrane anchor domain. J. Mol. Biol. 181:111–121.PubMedGoogle Scholar
  137. De Geus, P., Vehreij, H. M., Riegman, N. H., Hoekstra, W. P. M., and de Haas, G. P., 1984, The pro- and mature forms of the Escherichia coli K-12 outer membrane phospholipase A are identical. EMBO J. 3:1799–1802.PubMedGoogle Scholar
  138. De Haan, M., Van Loon, A. P. G. M., Kreike, J., Vaessen, R. T. M. J., and Grivell, L. A., 1983, The biosynthesis of the ubiquinol-cytochrome c reductase complex in yeast. DNA sequence analysis of the nuclear gene coding for the 14 kDa subunit. Eur. J. Biochem. 138:169–177.Google Scholar
  139. De Lemos-Chiarandini, C., Frey, A. B., Sabatini, D. D., and Kreibich, G., 1987, Determination of membrane topology of the phenobarbital-induced cytochrome P-450 isoenzyme PB-4 using site specific antibodies, J. Cell. Biol. 104:209–219.PubMedGoogle Scholar
  140. Della-Cioppa, G., Bauer, S. C., Klein, B. K., Shah, D. M., Fraley, R. T., and Kishore, G. M., 1986, Translocation of the precursor of 5-enoylpyruvoylshikimate-3-phosphate synthase into chloroplasts of higher plants in vitro. Proc. Natl. Acad. Sci. U.S.A. 83:6873–6877.PubMedGoogle Scholar
  141. Della-Cioppa, G., Bauer, S. C., Taylor, M. L., Rochester, D. E., Klein, B. K., Shah, D. M., Fraley, R. T. and Kishore, G. M., 1987, Targeting a herbicide-resistant enzyme from Escherichia coli to chloroplasts of higher plants. Bio/Technology 5:579–584.Google Scholar
  142. Desel, H., Zimmermann, R., Janes, M., Miller, F., and Neupert, W., 1982, Biosynthesis of glyoxysomal enzymes in Neurospora crassa. Ann. N.Y. Acad. Sci. 386:377–388.PubMedGoogle Scholar
  143. Deshaies, R. J., and Schekman, R., 1987, A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum, J. Cell. Biol. 105:633–645.PubMedGoogle Scholar
  144. Devillers-Thiery, A., Kindt, T., Scheele, G., and Blobel, G., 1975, Homology in ammo-terminal sequence of precursors to pancreatic secretory proteins. Proc. Natl. Acad. Sci. U.S.A. 72:5016–5020.PubMedGoogle Scholar
  145. DiRienzo, J. M., and Inouye, M., 1979, Lipid fluidity dependent biosynthesis and assembly of outer membrane proteins of E. coli. cell 17:155–161.PubMedGoogle Scholar
  146. DiRienzo, J. M., Nakamura, K., and Inouye, M., 1978, The membrane proteins of gram negative bacteria: Biosynthesis assembly and function. Annu. Rev. Biochem. 47:481–552.PubMedGoogle Scholar
  147. Distel, B., Veenhuis, M., and Tabak, H. F., 1987, Import of alcohol oxidase into peroxisomes of Saccharomyces cerevisiae, EMBO J. 6:3111–3116.PubMedGoogle Scholar
  148. Dorbani, L., Janczic, V., Linden, M., Leterrier, J. F., Nelson, B. D., and Rendon, A., 1987, Subfractionation of the outer membrane of rat brain mitpchondria: Evidence for the existence of a domain containing the porin hexokinase complex. Arch. Biochem. Biophys. 252:188–196.PubMedGoogle Scholar
  149. Douglas, M. G., Geller, B. L., and Emr, S. D., 1984, Intracellular targeting and import of an Fr ATPase-subunit-β-galactosidase hybrid protein into yeast mitochondria, Proc. Natl. Acad. Sci. U.S.A. 81:3983–3987.PubMedGoogle Scholar
  150. Douma, A. C., Veenhuis, M., Suiter, G. J., and Harder, W., 1987, A proton translocating adenosine triphosphatase is associated with the peroxisomal membrane of yeasts. Arch. Microbiol. 147:42–47.PubMedGoogle Scholar
  151. Dumont, M. E., and Richards, F. M., 1984, Insertion of apoeytochrome c into lipid vesicles. J. Biol. Chem. 259:4147–4156.PubMedGoogle Scholar
  152. Duong, L. T., Caulfield, M. P., and Rosenblatt, M., 1987, Synthetic signal peptide and analogs display different activities in mammalian and plant in vitro secretion synthesis. J. Biol. Chem. 262:6328–6333.PubMedGoogle Scholar
  153. Ehring, R., Beyreuther, K., Wright, J. K., and Overath, P., 1980, In vitro and In vivo products of E. coli lactose permease gene are identical. Nature (London) 283:537–540.Google Scholar
  154. Eilers, M., Hwang, S., and Schatz, G., 1988, Unfolding and refolding of a purified precursor protein during import into isolated mitochondria, EMBO J. 7:1139–1145.PubMedGoogle Scholar
  155. Eilers, M., and Schatz, G., 1986, Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature (London) 382:228–232.Google Scholar
  156. Eilers, M., Opplinger, W., and Schatz, G., 1987, Both ATP and energized inner membrane are required to import a purified precursor protein into mitochondria. EMBO J. 6:1073–1077.PubMedGoogle Scholar
  157. Emr, S. D., and Bassford, P. J. Jr., 1982, Localization and processing of outer membrane and periplasmic proteins in Escherichia coli strains harboring export specific suppressor mutations. J. Biol. Chem. 257:5852–5860.PubMedGoogle Scholar
  158. Emr, S. D., and Silhavy, T. J., 1982, Molecular components of the signal sequence that function in the initiation of protein export. J. Cell Biol. 95:689–696.PubMedGoogle Scholar
  159. Emr, S. D., and Silhavy, T. J., 1983, Importance of secondary structure in the signal sequence for protein secretion. Proc. Natl. Acad. Sci. U.S.A. 80:4599–4603.PubMedGoogle Scholar
  160. Emr, S. D., Hall, M. N., and Silhavy, T. J., 1980, Mechanism of protein localization: The signal hypothesis and bacteria. J. Cell Biol. 86:701–711.PubMedGoogle Scholar
  161. Emr, S. D., Hanley-Way, S., and Silhavy, T. J., 1981, Suppressor mutations which restore export of a protein with a defective signal sequence. cell 23:79–88.PubMedGoogle Scholar
  162. Emr, S., Vassarotti, A., Garret, J., Geller, B., Takeda, M., and Douglas, M., 1986, The amino terminus of the yeast FrATPase β-subunit precursor functions as a mitochondrial import signal. J. Cell Biol. 102:523–533.PubMedGoogle Scholar
  163. Endo, T., and Schatz, G., 1988, Latent membrane perturbation activity of a mitochondrial precursor protein is exposed by unfolding, EMBO J. 7:1153–1158.PubMedGoogle Scholar
  164. Enequist, H. G., Hirst, T. R., Harayama, S., Hardy, S. J. S., and Randall, L. L., 1981, Energy is required for maturation of exported proteins in Escherichia coli. Eur. J. Biochem. 116:227–233.PubMedGoogle Scholar
  165. Engelman, D. M., and Steitz, T. A., 1981, The spontaneous insertion of proteins into and across membranes; the helical hairpin hypothesis. cell 23:411–422.PubMedGoogle Scholar
  166. Enoch, H. G., Fleming, P. J., and Strittmatter, P., 1979, The binding of cytochrome b5 to phospholipid vesicles and biological membranes. Effect of orientation on intermembrane transfer and digestion by carboxypeptidase Y. J. Biol. Chem. 254:6483–6488.PubMedGoogle Scholar
  167. Enosawa, S., and Ohashi, A., 1986, Localization of enzyme for heme attachment to apocytochrome c in yeast mitochondria. Biochem. Biophys. Res. Commun. 141:1145–1150.PubMedGoogle Scholar
  168. Epand, R. M., Hui, S. M., Argan, C., Gillespie, L. L., and Shore, G. C., 1986, Structural analysis and amphiphilic properties of a chemically synthesized mitochondrial signal peptide. J. Biol. Chem. 261:10017–10020.PubMedGoogle Scholar
  169. Erickson, A. H., Walter, P., and Blobel, G., 1983, Translocation of a lysosomal enzyme across the microsomal membrane requires signal recognition particles. Biochem. Biophys. Res. Commun. 115:275–280.Google Scholar
  170. Eskridge, E. M., and Shields, D., 1982, Cell-free processing of small polypeptide hormones is a co-translational event. J. Cell Biol. 95:394a (Abstract).Google Scholar
  171. Etemadi, A.-H., 1980a, Membrane asymmetry. A survey and critical appraisal of the methodology. I. Methods for assessing the asymmetric orientation and distribution of proteins. Biochim. Biophys. Acta 604:347–422.PubMedGoogle Scholar
  172. Etémadi, A.-H., 1980b, Membrane asymmetry. A survey and critical appraisal of the methodology. H. Methods for assessing the unequal distribution of lipids. Biochim. Biophys. Acta 604:423–475.PubMedGoogle Scholar
  173. Etémadi, A.-H., 1980c, Tendances organisationnelles des constituants des membranes biologiques et les problèmes de l’asymétrie de leur distribution. Biochimie 62:111–134.PubMedGoogle Scholar
  174. Etémadi, A.-H., 1985, Functional and orientational features of protein molecules in reconstituted lipid membranes. Adv. Lipid Res. 21:281–428.PubMedGoogle Scholar
  175. Etémadi, A.-H., 1986a, Mechanism of biogenesis and translocation of cell surface membrane proteins, in Handbook of Plasma Membranes, CRC Press, Boca Raton, FL.Google Scholar
  176. Etémadi, A.-H., 1986b, Intracellular path and maturation of cell surface proteins, in Handbook of Plasma Membranes, CRC Press, Boca Raton, FL.Google Scholar
  177. Etémadi, A.-H., 1987, Reconstitution and cellular protein translocation processes, in: International Symposium Membranes Lipids, Metabolism Organization, Varna, Abstract lecture 1–5.Google Scholar
  178. Etémadi, A.-H., 1988, Overview on protein translocation and membrane insertion processes and conditions for their physiologically significant reconstitution, in: International Conference on Biomembranes in Health and Disease, Lucknow, Abstract Lecture 43.Google Scholar
  179. Evans, E. A., Gilmore, R., and Blobel, G., 1986, Purification of microsomal signal peptidase as a complex. Proc. Natl. Acad. Sci. U.S.A. 83:581–585.PubMedGoogle Scholar
  180. Fecycz, I. T., and Blobel, G., 1987, Soluble factors stimulating secretory protein translocation in bacteria and yeast can substitute for each other. Proc. Natl. Acad. Sci. U.S.A. 84:3723–3727.PubMedGoogle Scholar
  181. Fenton, W. A., Hack, A. M., Helfgott, D., and Rosenberg, L. E., 1984, Biogenesis of mitochondrial enzyme methylmalonyl Co A mutase. Synthesis and processing of a precursor in a cell free system and in cultured cells. J. Biol. Chem. 259:6616–6621.PubMedGoogle Scholar
  182. Ferro-Novick, S., Novick, P., Field, C., and Schekman, R., 1984a, Yeast secretory mutants that block formation of active cell surface enzymes. J. Cell Biol. 98:35–43.PubMedGoogle Scholar
  183. Ferro-Novick, S., Hausen, W., Sehaver, I., and Schekman, R., 1984b, Genes required for completion of import of proteins into the endoplasmic reticulum in yeast. J. Cell Biol. 98:44–53.PubMedGoogle Scholar
  184. Fidelio, G. D., Austen, B. M., Chapman, D., and Lucy, J. A., 1986, Properties of signal sequence peptides at an air-water interface. Biochem. J. 238:301–304.PubMedGoogle Scholar
  185. Fidelio, G. D., Austen, B. M., and Chapman, D., and Lucy, J. A., 1987, Interaction of ovalbumin and its putative signal sequence with phospholipid monolayers. Possible importance of differing lateral stabilities in protein translocation. Biochem. J. 244:295–301.PubMedGoogle Scholar
  186. Fields, S., Winter, G., and Brownlee, G. G., 1981, Structure of neuraminidase gene in human influenza virus A/PR/8/34. Nature (London) 230:213–217.Google Scholar
  187. Fikes, J. D., Bankaitis, V. A., Ryan, J. P., and Bassford, P. J., Jr., 1987, Mutational alterations affecting the export competence of a truncated but fully functional maltose-binding protein signal peptide, J. Bacteriol. 169:2345–2351.PubMedGoogle Scholar
  188. Fikes, J. D., and Bassford, P. J. Jr., 1987, Export of unprocessed precursor maltose-binding protein to the periplasm of Escherichia coli cells. J. Bacteriol. 169:2352–2359.PubMedGoogle Scholar
  189. Finidori, J., Rizzolo, L., Gonzalez, A., Kreibich, G., Adesnik, M., and Sabatini, D. D., 1987, The influenza hemagglutinin insertion signal is not cleaved and does not halt translocation when presented to the endoplasmic reticulum membrane as part of a translocating polypeptide. J. Cell Biol. 104:1705–1714.PubMedGoogle Scholar
  190. Firguira, F. A., Hendrick, J. P., Kalousek, F., Kraus, J. P., and Rosenberg, L. E., 1984, RNA required for import of precursor proteins into mitochondria. Science 226:1319–1322.Google Scholar
  191. Fitts, R., Reuveny, Z., Van Amsterdam, J., Mulholland, J., and Botstein, D., 1987, Substitution of tyrosine for either cysteine in β-lactamase prevents release from the membrane during secretion, Proc. Natl. Acad. Sci. USA 84:8540–8543.PubMedGoogle Scholar
  192. Fluegg, V. I., and Hinz, G., 1986, Energy dependence of protein translocation into chloroplasts. Eur. J. Biochem. 160:563–570.Google Scholar
  193. Freitag, H., Janes, M., and Neupert, W., 1982a, Biosynthesis of mitochondrial porin and insertion into the outer mitochondrial membrane of Neurospora crassa. Eur. J. Biochem. 126:197–202.PubMedGoogle Scholar
  194. Freitag, H., Neupert, W., and Benz, R., 1982b, Purification and characterization of a pore protein of the outer mitochondrial membrane from Neurospora crassa. Eur. J. Biochem. 123:629–639.PubMedGoogle Scholar
  195. Freudl, R., Braun, G., Hindennach, I., and Henning, U., 1985, Lethal mutations in the structural gene of an outer membrane protein (OmpA) of Escherichia coli K-12. Mol. Gen. Genet. 210:76–81.Google Scholar
  196. Freudl, R., Maclntyre, S., Degen, M., and Henning, U., 1988, Alterations to the signal peptide of an outer membrane protein (OmpA) of Escherichia coli K12 can promote either the co-translational or the post-translational mode of processing, J. Biol. Chem. 262:344–349.Google Scholar
  197. Freudl, R., Schwartz, H., Stierhof, Y. D., Gamon, K., Hindennach, I., and Henning, U., 1986, An outer membrane protein (OmpA) of Escherichia coli K-12 undergoes a conformational change during export. J. Biol. Chem. 261:11355–11361.PubMedGoogle Scholar
  198. Friedlander, M., and Blobel, G., 1985, Bovine opsin has more than one signal sequence, Nature 318:338–343.PubMedGoogle Scholar
  199. Fujiki, Y., and Lazarow, P. B., 1982, Post-translational uptake of an in vitro synthesized peroxisomal polypeptide of rat liver. J. Cell Biol. 95(2, Pt. 2): 398a (Abstract).Google Scholar
  200. Fujiki, Y., and Lazarow, P. B., 1985, Post-translational import of fatty acyl CoA oxidase and catalase into peroxisomes. J. Biol. Chem. 260:5603–5609.PubMedGoogle Scholar
  201. Fujiki, Y., Rachubinski, R. A., and Lazarow, P. B., 1984, Synthesis of a major integral membrane polypeptide of rat liver peroxisomes on free polysomes. Proc. Natl. Acad. Sci. U.S.A. 81:7127–7131.PubMedGoogle Scholar
  202. Furuta, S., Hashimoto, T., Miura, S., Mori, M., and Tatibana, M., 1982, Cell free synthesis of enzymes of peroxisomal β-oxidation. Biochem. Biophys. Res. Commun. 105:639–646.PubMedGoogle Scholar
  203. Furuya, S., Okada, M., Ito, A., Aoyagi, H., Kanmera, T., Kato, T., Sagara, Y., Horiuchi, T., and Omura, T., 1987, Synthetic partial extension peptides of P-450 (scc) and adrenodoxin precursors: effects on the import of mitochondrial enzyme precursors, J. Biochem. (Tokyo) 102:821–832.Google Scholar
  204. Furuya, E., Yoshida, Y., and Tagawa, K., 1979, Interaction of aspartate aminotransferase with negatively charged lecithin liposomes. J. Biochem. (Tokyo) 85:1157–1163.Google Scholar
  205. Garcia, P. D., and Ghrayeb, J., Inouye, M., and Walter, P., 1987, Wild type and mutant signal peptide of Escherichia coli outer membrane lipoprotein interact with equal efficiency with mammalian signal recognition particle. J. Biol. Chem. 262:9463–9468.PubMedGoogle Scholar
  206. Gardel, C., Benson, S., Hunt, J., Michaelis, S., and Beckwith, J., 1987, sec D, a new gene involved in protein export in Escherichia coli, J. Bacteriol. 169:1285–1290.Google Scholar
  207. Gamier, J., Gaye, P., Mercier, J. C., and Robson, B., 1980, Structural properties of signal peptides and their membrane insertion. Biochimie 62:231–239.Google Scholar
  208. Garwin, J. L., and Beckwith, J., 1982, Secretion and processing of ribulose-binding protein in Escherichia coli. J. Bacteriol. 149:789–792.PubMedGoogle Scholar
  209. Gasser, S. M., and Schatz, G., 1983, Import of proteins into mitochondria. In vitro, studies on the biogenesis of the outer membrane. J. Biol. Chem. 258:3427–3430.PubMedGoogle Scholar
  210. Gasser, S. M., Daum, G., and Schatz, G., 1982a, Import of proteins into mitochondria. Energy dependent uptake of precursors by isolated mitochondria. J. Biol. Chem. 257:13034–13041.PubMedGoogle Scholar
  211. Gasser, S. M., Ohashi, A., Daum, G., Böhni, P. C., Gibson, J., Reid, G. A., Yonetani, T., and Schatz, G., 1982b, Imported mitochondrial proteins cytochrome b2 and cytochrome cx are processed in two steps. Proc. Natl. Acad. Sci. U.S.A. 79:267–271.PubMedGoogle Scholar
  212. Gearing, D. P., and Nagley, P., 1986, Yeast mitochondrial ATPase subunit 8, normally a mito chondrial gene product, expressed in vitro and imported back into the organelle. EMBO J. 5:3651–3655.PubMedGoogle Scholar
  213. Geering, K., Meyer, D., Paccolat, M. P., Kraehenbuhl, J. P., and Rossier, B. C., 1985, Membrane insertion of α- and β-subunits of Na+, K+-ATPase. J. Biol. Chem. 260:5154–5160.PubMedGoogle Scholar
  214. Geller, B. L., and Wickner, W., 1985, M13 procoat inserts into liposomes in absence of other membrane proteins. J. Biol. Chem. 260:13281–13285.PubMedGoogle Scholar
  215. Geller, B. L., Movva, N. R., and Wickner, W., 1986, Both ATP and the electrochemical potential are required for optimal assembly of proOmpA into Escherichia coli inner membrane vesicles. Proc. Natl. Acad. ScL U.S.A. 83:4219–4222.Google Scholar
  216. Geredes, H. H., Behrends, W., and Kindl, H., 1982, Biosynthesis of microbody matrix enzyme in greening cotyledons. Glycolate oxidase synthesized In vivo and in vitro. Planta 156:572–578.Google Scholar
  217. Gething, M. J., and Sambrook, J., 1982, Construction of influenza hemagglutinin genes that code for intracellular and secreted forms of the protein. Nature (London) 300:593–603.Google Scholar
  218. Ghersa, P., Huber, P., Semenza, G., and Wacker, H., 1986, Cell free synthesis, membrane integration and glycosylation of pro-sucrase-isomaltase. J. Biol. Chem. 261:7969–7974.PubMedGoogle Scholar
  219. Ghosh, M. K., and Hajra, A. K., 1986, Subcellular distribution and properties of acyl/alkyl dihydroxy acetone phosphate reductase in rodent livers. Arch. Biochem. Biophys. 245:523–530.PubMedGoogle Scholar
  220. Ghrayeb, J., and Inouye, M., 1984, Nine amino acid residues at the amino terminal of lipoprotein are sufficient for its modification, processing and localization in the outer membrane of Escherichia coli. J. Biol. Chem. 259:463–467.PubMedGoogle Scholar
  221. Ghrayeb, J., Lunn, C. A., Inouye, S., and Inouye, M., 1985, An alternate pathway for the processing of the prolipoprotein signal peptide in Escherichia coli. J. Biol. Chem. 260:10961–10965.PubMedGoogle Scholar
  222. Giam, C. Z., Chai, T., Hayashi, S., and Wu, H. C., 1984, Prolipoprotein modification and processing in Escherichia coli. A unique secondary structure in prolipoproteins signal sequence for the recognition by glyceryltransferase. Eur. J. Biochem. 141:331–337.PubMedGoogle Scholar
  223. Gibbs, S. P., 1979, The route of entry of cytoplasmically, synthesized proteins into chloroplasts of algae possessing chloroplast ER. J. Cell Sci. 34:253–266.Google Scholar
  224. Gietl, C., and Hock, B., 1984, Import of in vitro synthesized glyoxysomal malate dehydrogenase into isolated watermelon glyoxysomes. Planta 162:261–267.Google Scholar
  225. Gietl, C., and Hock, B., 1986, Import of glyoxysomal malate dehydrogenase precursor into glyoxysomes: A heterologous in vitro system. Planta 167:87–93.Google Scholar
  226. Gillepsie, L. L., 1987, Identification of an outer mitochondrial membrane protein that interacts with a synthetic signal peptide. J. Biol. Chem. 262:7939–7942.Google Scholar
  227. Gillepsie, L. L., Argan, C., Taneja, A. T., Hodges, R. S., Freeman, K. B., and Shore, G. C., 1985, A synthetic signal peptide blocks import of precursor proteins destined for the mitochondrial inner membrane matrix. J. Biol. Chem. 260:16045–16048.Google Scholar
  228. Gilmore, R., and Blobel, G., 1983, Transient involvement of signal recognition particle and its receptor in the microsomal membrane prior to protein translocation. cell 35:667–685.Google Scholar
  229. Gilmore, R., and Blobel, G., 1985, Translocation of secretory proteins across the microsomal membrane occurs through an environment accessible to aqueous perturbants. Translocation through proteinaceous channel. cell 42:497–505.PubMedGoogle Scholar
  230. Gilmore, R., Walter, P., and Blobel, G., 1982, Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor. J. Cell Biol. 95(2, Pt. 1): 470–477.PubMedGoogle Scholar
  231. Godinot, C., and Lardy, H. A., 1973, Biosynthesis of glutamate dehydrogenase in rat liver. Demonstration of its microsomal localization and hypothetical mechanism of transfer to mitochondria. Biochemstry 12:2051–2061.Google Scholar
  232. Gogol, E. P., and Engelman, D. M., 1984, Neutron scattering shows that cytochrome b5 penetrates deeply the lipid bilayer. Biophys. J. 46:491–495.PubMedGoogle Scholar
  233. Goldman, B. M., and Blobel, G., 1978, Biosynthesis of peroxisomes: Intracellular site of synthesis of catalase and unease. Proc. Natl Acad. Sci. U.S.A. 75:5066–5070.PubMedGoogle Scholar
  234. Gonzalez, E., 1986, Glycoproteins in the matrix of glyoxysomes in endosperm of castor bean seedlings. Plant Physiol 80:950–955.PubMedGoogle Scholar
  235. Gonzalez, F. J., and Kasper, C. B., 1980, In vitro translation of epoxide hydratase messenger RNA. Biochem. Biophys. Res. Commun. 93:1254–1258.PubMedGoogle Scholar
  236. Gonzalez-Cadavid, N. F., and Cardova, C. S., 1974, Role of membrane bound and free polysomes in the synthesis of cytochrome c in rat liver. Biochem. J. 140:157–167.PubMedGoogle Scholar
  237. Goodman, J. M., 1985, Dihydroxyacetone synthase is an abundant constituent of the methanol induced peroxisomes of Candida boidinii. J. Biol Chem. 260:7108–7113.PubMedGoogle Scholar
  238. Goodman, J. M., Scott, C. W., Donahue, P. N., and Atherthon, J. P., 1984, Alcohol dehydrogenase assembles post-translationally into the peroxisomes of Candida boidinni. J. Biol Chem. 259:8485–8493.PubMedGoogle Scholar
  239. Gordon, J. I., Alpers, D. H., Schonfeld, G., Andy, R., Smith, D. P., and Strauss, A., 1981, The primary translation product of rat intestinal apo A1 mRNA is a preprotein. Fed. Proc. 40: 1635.Google Scholar
  240. Gorgas, K., 1985, Serial section analysis of mouse hepatic peroxisomes. Anat. Embryol 172:21–32.PubMedGoogle Scholar
  241. Gorin, M. B., Yancey, S. B., Cline, J., Revel, J. P., and Horwitz, J., 1984, The major intrinsic protein (MIP) of the bovine lens fiber membrane: Characterization and structure based on cDNA cloning. cell 39:49–59.PubMedGoogle Scholar
  242. Gould, S. J., Keller, G. A., and Subramani, S., 1987, Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase, J. Biol Chem. 105:2923–2931.Google Scholar
  243. Greenhut, S. F., and Roseman, M. A., 1985, Distribution of cytochrome b5 between sonicated phospholipid vesicles of different sizes. J. Biol Chem. 260:5883–5886.PubMedGoogle Scholar
  244. Grossman, A., Bartlett, S. G., and Chua, N. H., 1980, Energy dependent uptake of cytoplasmically synthesized polypeptides by chloroplasts. Nature (London) 285:625–628.Google Scholar
  245. Grossman, A. R., Bartlett, S. G., Schmidt, G. W., Mullet, J. E., and Chua, N. H., 1982, Optimal conditions for post-translational uptake of proteins by isolated chloroplasts. In vitro synthesis and transport of plastocyanin, ferredoxin-NADP+ oxidoreductase and fructose 1,6-diphosphatase, J. Biol Chem. 257:1558–1563.PubMedGoogle Scholar
  246. Guan, J. L., and Rose, J. K., 1984, Conversion of a secretory protein into a transmembrane protein results in its transport to the Golgi complex but not to the cell surface. Cell 37:779–787.PubMedGoogle Scholar
  247. Gundelfinger, E. D., Krause, E., Melli, M., and Dobberstein, B., 1983, The organization of 7 SL RNA in the signal recognition particle. Nucleic Acids Res. 11:7363–7374.PubMedGoogle Scholar
  248. Halegoua, S., and Inouye, M., 1979, Translocation and assembly of outer membrane proteins of Escherichia coli. Selective accumulation of precursor and novel assembly intermediates caused by phenethyl alcohol. J. Mol Biol 130:30–61.Google Scholar
  249. Halegoua, S., Hirashima, A., Sekizawa, J., and Inouye, M., 1976, Protein synthesis in toluene treated Escherichia coli. Exclusive synthesis of membrane protein. Eur. J. Biochem. 69:163–167.PubMedGoogle Scholar
  250. Halegoua, S., Sekizawa, J., and Inouye, M., 1977, A new form of structural lipoprotein of outer membrane of Escherichia coli. J. Biol Chem. 252:2324–2330.PubMedGoogle Scholar
  251. Hallermeyer, G., and Neupert, W., 1976, Studies on the synthesis of mitochondrial proteins in the cytoplasm and on their transport in the mitochondria, in Genetics and Biogenesis of Chloroplasts and Mitochondria (T. Bücher, W. Neupert, W. Sebald, and S. Werner, eds.), pp. 807–812. North-Holland/Elsevier, Amsterdam.Google Scholar
  252. Hallermeyer, G., Zimmerman, R., and Neupert, W., 1977, Kinetic studies on the transport of cytoplasmically synthesized proteins into mitochondria in intact cells of Neurospora crassa. Eur. J. Biochem. 81:523–532.Google Scholar
  253. Hampsey, D. M., Lewin, A. S., and Kohlhaw, G. B., 1983, Submitochondrial localization, cell free synthesis and mitochondrial import of 2-isopropylmalate synthase of yeast. Proc. Natl. Acad. Sci. U.S.A. 80:1270–1274.PubMedGoogle Scholar
  254. Hansen, W., Garcia, P. D., and Walter, P., 1986, In vitro protein translocation across the yeast endoplasmic reticulum. ATP dependent post-translational translocation of the prepro-a-factor. cell 45:397–406.PubMedGoogle Scholar
  255. Harmey, M. A., Hallermeyer, G., and Neupert, W., 1976, In vitro synthesis and transport into mitochondria of cytoplasmically translated proteins, in Genetics and Biogenesis of Chloroplasts and Mitochondria (T. Bücher, W. Neupert, W. Sebald, and S. Werner, eds.), pp. 813–818. North-Holland/Elsevier, Amsterdam.Google Scholar
  256. Harmey, M. A., Hallermeyer, G., Korb, H., and Neupert, W., 1977, Transport of cytoplasmically synthesized proteins into mitochondria in a cell free system from Neurospora crassa. Eur. J. Biochem. 81:533–544.PubMedGoogle Scholar
  257. Harnik-Ort, V., Prakash, K., Marcantonio, E., Colman, D. R., Rosenfeld, M. G., Adesnik, M., and Sabatini, D. D., 1987, Isolation and characterization of cDNA clones for rat ribophorin. I: Complete coding sequence and in vitro synthesis and insertion of the encoded product into endoplasmic reticulum. J. Cell Biol. 104:855–863.PubMedGoogle Scholar
  258. Harold, F. M., and Van Brunt, J., 1977, Circulation of H+ and K+ across the plasma membrane is not obligatory for bacterial growth. Science 197:372–373.PubMedGoogle Scholar
  259. Harson, M. M., Conder, M. J., and Lord, J. M., 1983, Endoplasmic reticulum and glyoxysomal membranes from castor bean endosperm: Interaction between membrane glycoproteins and organelle matrix proteins. Planta 157:143–149.Google Scholar
  260. Hartl, F. U., and Just, W. W., 1987, Integral membrane polypeptides of rat liver peroxisomes: Topology and response to different metabolic states. Arch. Biochem. Biophys. 255:109–119.PubMedGoogle Scholar
  261. Hartl, F. U., Pfanner, N., and Neupert, W., 1987a, Translocation intermediates on the import pathway of proteins into mitochondria. Biochem. Soc. Trans. 15:96–97.Google Scholar
  262. Hartl, F. U., Ostermann, J., Guiard, B., and Neupert, W., 1987b, Successive translocation into and out of the mitochondrial matrix: targeting of proteins in the intermembrane space by bipartite signal peptide, cell 51:1027–1037.PubMedGoogle Scholar
  263. Hase, T., Mueller, U., Riezman, H., and Schatz, G., 1984, A 70-kd protein of the yeast mitochondrial outer membrane is targeted and anchored via its extreme amino terminus. EMBO J. 3:3157–3164.PubMedGoogle Scholar
  264. Hase, T., Nakai, M., and Matsubara, H., 1986, The N-terminal 21 amino acids of the 70 kd protein of the yeast mitochondrial outer membrane direct E. coli β-galactosidase into mitochondrial matrix space in yeast cells. FEBS Lett. 197:199–203.PubMedGoogle Scholar
  265. Hashimoto, T., 1982, Individual proxisomal 0-oxidation enzymes. Ann. N.Y. Acad. Sci. 385:5–12.Google Scholar
  266. Heinemann, F. S., and Ozols, J., 1984, The covalent structure of hepatic microsomal epoxide hydrolase, II. The complete amino acid sequence. J. Biol. Chem. 259:797–804.PubMedGoogle Scholar
  267. Heinrich, P. C., Schmelzer, E., Northmann, C. K., and Witt, I., 1982, Rat liver cytochrome c oxidase subunits IV and V; cell free synthesis as larger molecular weight precursors, mRNA sizes and sites of synthesis. Prog. Clin. Biol. Res. 1028:149–159.Google Scholar
  268. Henning, B., and Neupert, W., 1981, Assembly of cytochrome c. Apocytochrome c is bound to specific sites on mitochondria before its conversion to holocytochrome c. Eur. J. Biochem. 121:203–212.Google Scholar
  269. Henning, B., Koehler, H., and Neupert, W., 1983, Receptor sites involved in post-translational transport of apocytochrome c into mitochondria. Specificity, affinity and number of sites. Proc. Natl. Acad. Sci. U.S.A. 80:4963–4967.Google Scholar
  270. Henning, U., Cole, S. T., Bremer, E., Hindennach, I., and Schaller, H., 1983, Gene fusion using OmpA geile coding for a major outer membrane protein of Escherichia coli. Eur. J. Biochem. 136:233–240.PubMedGoogle Scholar
  271. Hernandez-Yago, J., and Grisolia, S., 1987, Apocytochrome c competes with pre-ornithine carbamyl transferase for transport into mitochondria, Biochem. Biophys. Res. Commun. 146:1318–1323.PubMedGoogle Scholar
  272. Hernandez-Yago, J., Knecht, E., Felipo, V., Miralies, V., and Grisolia, S., 1983, Exit of proteins and fragments thereof from mitochondria is accelerated by the import of cytosolic synthesized protein. Biochem. Biophys. Res. Commun. 113:199–204.PubMedGoogle Scholar
  273. Hiatt, A., McDonough, A., and Edelman, I. S., 1984, Assembly of the (Na+ K+)-adenosine triphosphatase, post-translational membrane integration of the α-subunit. J. Biol. Chem. 259:2629–2635.PubMedGoogle Scholar
  274. Higgins, C. F., Haag, P. D., Nikaido, K., Ardelshir, F., Garcia, G., and Ames, G. F. L., 1982, Complete nucleotide sequence and identification of membrane components of histidine transport operon of S. typhimurium. Nature (London) 298:723–727.Google Scholar
  275. Highfield, P. E., and Ellis, R. J., 1978, Synthesis and transport of the small subunit of chloroplast ribulose bisphosphate carboxylase. Nature (London) 271:420–424.Google Scholar
  276. Hock, B., and Gietl, C., 1982, Cell-free synthesis of watermelon glyoxysomal malate dehydrogenase: A comparison with the mitochondrial isoenzyme. Ann. N.Y. Acad. Sci. 386:350–361.PubMedGoogle Scholar
  277. Holland, E. C., Leung, J. O., and Dirckamer, K., 1984, Rat liver asialoglycoprotein receptor lacks a cleavable NH2-terminal signal sequence. Proc. Natl. Acad. Sci. U.S.A. 81:7338–7342.PubMedGoogle Scholar
  278. Horiuchi, S., Marty-Mazars, D., Tai, P., and Davis, B. D., 1983a, Localization and quantitation of proteins characteristic of the complex membrane of Bacillus subtilis. J. Bacteriol. 153:1215–1221.Google Scholar
  279. Horiuchi, S., Tai, P., and Davis, B. D., 1983b, A 64-kilodalton membrane protein of Bacillus subtilis covered by secreting ribosomes. Proc Natl. Acad. Sci. U.S.A. 80:3287–3291.PubMedGoogle Scholar
  280. Hortin, G., and Boime, I., 1980a, Inhibition of preprotein processing in ascites tumor lysates by incorporation of leucine analog. Proc. Natl. Acad. Sci. U.S.A. 77:1356–1360.PubMedGoogle Scholar
  281. Hortin, G., and Boime, I., 1980b, Pre-prolactin accumulates in rat pituitary cells incubated with threonine analog. J. Biol. Chem. 255:7051–7053.PubMedGoogle Scholar
  282. Hortsch, M., and Meyer, D. I., 1988, The human docking protein does not associate with the membrane of the rough endoplasmic reticulum via a signal or insertion sequence-mediated mechanism, Biochem. Biophys. Res. Commun. 150:111–117.Google Scholar
  283. Hortsch, M., Avossa, A., and Meyer, D. I., 1985, A structural and functional analysis of docking protein: Characterization of active domains by proteolysis and specific antibodies. J. Biol. Chem. 260:9137–9145.PubMedGoogle Scholar
  284. Hortsch, M., Avossa, D., and Meyer, D. I., 1986, Characterization of secretory protein translocation: Ribosome-membrane interaction in endoplasmic reticulum. J. Cell Biol. 103:241–253.PubMedGoogle Scholar
  285. Horwich, A. L., Fenton, W. A., Williams, K. R., Kalousek, F., Kraus, J. P., Doolittle, R. F., Königsberg, W., and Rosenberg, L. E., 1984, Structure and expression of a complementary DNA for the nuclear coded precursor of human mitochondrial ornithine transcarbamylase. Science 224:1068–1074.PubMedGoogle Scholar
  286. Horwich, A. L., Fenton, W. A., Firgaira, F. A., Fox, J. E., Kolansky, D., Mellman, I. S., and Rosenberg, L. E., 1985a, Expression of amplified DNA sequences for ornithine transcarbamylase in HeLa cells: Arginine residues may be required for mitochondrial import of enzyme precursor. J. Cell Biol. 100:1515–1521.PubMedGoogle Scholar
  287. Horwich, A. L., Kalousek, F., and Rosenberg, L. E., 1985b, Arginine in the leader peptide is required for both import and proteolytic cleavage of a mitochondrial precursor. Proc. Natl. Acad. Sci. U.S.A. 82:4930–4933.PubMedGoogle Scholar
  288. Horwich, A. L., Kalousek, F., Mellman, I., and Rosenberg, L. E., 1985c, A leader peptide is sufficient to direct mitochondrial import of a chimeric protein. EMBO J. 4:1129–1135.PubMedGoogle Scholar
  289. Horwich, A. L., Kalousek, F., Fenton, W. A., Pollock, R. A., and Rosenberg, L. E., 1986, Targeting of pre-ornithine transcarbamylase to mitochondria: Definition of critical regions and residues in the leader peptide. cell 44:451–459.PubMedGoogle Scholar
  290. Horwich, A. L., Kalousek, F., Fenton, W. A., Furtak, K., Pollock, R. A., and Rosenberg, L. E., 1987, The ornithine transcarbamylase leader peptide directs mitochondrial import through both midportion structure and net positive charge. J. Cell Biol. 105:669–677.PubMedGoogle Scholar
  291. Hu, V. W., and Wiesnieski, B. J., 1979, Photoactive labeling of M13 coat protein in model membranes by use of glycolipid probe. Proc. Natl. Acad. Sci. U.S.A. 76:5460–5464.PubMedGoogle Scholar
  292. Hurt, E. C., and Schatz, G., 1987, A cytosolic protein contains a cryptic mitochondrial targeting signal. Nature (London) 325:499–503.Google Scholar
  293. Hurt, E. C., and Van Loon, A. P. G. M., 1986, How proteins find mitochondria and intramitochondrial components. Trends Biochem. Sci. 11:204–207.Google Scholar
  294. Hurt, E. C., Pesold-Hurt, B., and Schatz, G., 1984, The amino terminal region of an imported mitochondrial precursor polypeptide can direct cytoplasmic dehydrofolate reductase into the mitochondrial matrix. EMBO J. 3:3149–3156.PubMedGoogle Scholar
  295. Hurt, E. C., Mueller, U., and Schatz, G., 1985, The first twelve amino acids of a yeast mitochondrial outer membrane protein can direct a nuclear encoded cytochrome oxidase subunit to the mitochondrial inner membrane. EMBO J. 4:3509–3518.PubMedGoogle Scholar
  296. Hurt, E. C., Goldschmidt-Clermont, M., Pesold-Hurt, B., Rochaix, J. D., and Schatz, G., 1986a, A mitochondrial presequence can transport a chloroplast encoded protein into yeast mitochondria. J. Biol. Chem. 261:11440–11443.PubMedGoogle Scholar
  297. Hurt, E. C., Soltanifar, N., Goldschmidt-Clermont, M., Rochaix, J. D., and Schatz, G., 1986b, The cleavable pre-sequence of an imported chloroplast protein directs attached polypeptides into yeast mitochondria. EMBO J. 5:1343–1350.PubMedGoogle Scholar
  298. Ibrahimi, I., 1987, Dithiothreitol and the translocation of preprolactin across mammalian endoplasmic reticulum, J. Cell. Biol. 105:1555–1560.PubMedGoogle Scholar
  299. Ibrahimi, I., and Gentz, R., 1987, A functional interaction between the signal peptide and the translation apparatus is detected by the use of a single point mutation which blocks translocation across mammalian endoplasmic reticulum. J. Biol. Chem. 262:10189–10194.PubMedGoogle Scholar
  300. Ibrahimi, I., Culter, D., Stueber, D., and Bujard, H., 1986, Determinants for protein translocation across mammalian endoplasmic reticulum. Membrane insertion of truncated and full-length prelysozyme molecule, Eur. J. Biochem. 155:571–576.PubMedGoogle Scholar
  301. Ichihara, S., Hussain, M., and Mizushima, S., 1982, Mechanism of export of outer membrane lipoproteins through the cytoplasmic membrane in Escherichia coli. Binding of lipoprotein precursors to the peptidoglycan layer. J. Biol. Chem. 257:495–500.PubMedGoogle Scholar
  302. Ikeda, Y., Keese, S. M., Fenton, W. A., and Tanaka, K., 1987, Biosynthesis of four rat liver mitochondrial acyl-CoA dehydrogenases: In vitro synthesis, import into mitochondria and processing of their precursors in a cell free system and in cultured cells. Arch. Biochem. Biophys. 252:662–674.PubMedGoogle Scholar
  303. Innis, M. A., Tokunaga, M., Williams, M. E., Loranger, J. M., Chang, S. Y., Chang, S., and Wu, H. C., 1984, Nucleotide sequence of Escherichia coli prolipoprotein signal peptidase (1 sp) gene. Proc. Natl. Acad. Sci. U.S.A. 81:3708–3712.PubMedGoogle Scholar
  304. Inouye, H., and Beckwith, J., 1977, Synthesis and processing of an Escherichia coli alkaline phosphatase precursor in vitro. Proc. Natl. Acad. Sci. U.S.A. 74:1440–1444.PubMedGoogle Scholar
  305. Inouye, H., Barnes, W., and Beckwith, J., 1982, Signal sequence of alkaline phosphatase of E. coli. J. Bacteriol. 149:434–439.PubMedGoogle Scholar
  306. Inouye, M., and Halegoua, S., 1980, Secretion and membrane localizaiton of proteins of Escherichia coli. CRC Crit. Rev. Biochem. 7:339–371.Google Scholar
  307. Inouye, M., DiRienzo, J., Maeda, T., Mowa, R., Nakamura, K., Lee, A. G., Pirtle, R., and Pirtle, I., 1980, Secretion of outer membrane proteins of Escherichia coli across the cytoplasmic membrane. Ann. N.Y. Acad. Sci. 343:362–367.PubMedGoogle Scholar
  308. Inouye, S., Soberon, X., Franceschini, T., Nakamura, K., Itakura, K., and Inouye, M., 1982, Role of positive charge on the amino terminal region of the signal peptide in protein secretion across the membrane. Proc. Natl. Acad. Sci. U.S.A. 79:3438–3441.PubMedGoogle Scholar
  309. Inouye, S., Hsu, C. P. S., Itakura, K., and Inouye, M., 1983a, Requirement for signal peptide cleavage of Escherichia coli lipoprotein. Science 221:59–61.PubMedGoogle Scholar
  310. Inouye, S., Franceschini, T., Sato, M., Itakura, K., and Inouye, M., 1983b, Prolipoprotein signal peptidase of Escherichia coli requires a cysteine residue at the cleavage site. EMBO J. 2:87–91.PubMedGoogle Scholar
  311. Inouye, S., Duffaud, G., and Inouye, M., 1986, Structural requirement at the cleavage site for efficient processing of the lipoprotein secretory precursor of Escherichia coli. J. Biol. Chem. 261:10970–10975.PubMedGoogle Scholar
  312. Inukai, M., and Inouye, M., 1983, Association of the prolipoprotein accumulated in the presence of globomycin with the outer membrane of Escherichia coli. Eur. J. Biochem. 130:27–32.PubMedGoogle Scholar
  313. Ito, A., Ogishima, T., Ou, W., Omura, T., Aoyagi, H., Lee, S., Mihara, H., and Izumiya, N., 1985, Effects of synthetic model peptides resembling the extension peptides of mitochondrial enzyme precursors on import of the precursors into mitochondria. J. Biochem. (Tokyo) 98:1571–1582.Google Scholar
  314. Ito K., 1984, Identification of the sec γ (prl A) gene product involved in protein export in Escherichia coli. Mol. Gen. Genet. 197:204–208.PubMedGoogle Scholar
  315. Ito, K., Bassford, P. J. Jr., and Beckwith, J., 1981, Protein localization in E. coli. Is there a common step in insertion of periplasmic and outer membrane proteins? cell 24:707–717.PubMedGoogle Scholar
  316. Ito, K., Cerretti, D. P., Nashimoto, H., and Nomura, M., 1984, Characterization of an amber mutation in the structural gene for ribosomal protein L15; which impairs the expression of the protein export gene, sec Y, in Escherichia coli. EMBO J. 3:2319–2324.Google Scholar
  317. Jain, M., and Zakim, D., 1987, The spontaneous incorporation of proteins into preformed bilayers, Biochim. Biophys. Acta 906:33–68.Google Scholar
  318. Jaussi, R., Cotton, B., Juretic, N., Christen, P., and Schuemperli, D., 1985, The primary structure of the precursor of chicken mitochondrial aspartate aminotransferase. Cloning and sequence analysis of cDNA. J. Biol. Chem. 260:16060–16063.PubMedGoogle Scholar
  319. Johnson, L. V., Walsh, M. L., Bockus, B. J., and Chen, L. B., 1981, Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J. Cell Biol. 88:526–535.PubMedGoogle Scholar
  320. Josefsson, L. G., and Randall, L. L., 1981a, Processing In vivo of precursor maltose-binding protein in Escherichia coli occurs post-translationally as well as co-translationally. J. Biol. Chem. 256:2504–2507.PubMedGoogle Scholar
  321. Josefsson, L. G., and Randall, L. L., 1981b, Different exported proteins in Excherichia coli show differences in the temporal mode of processing In vivo. cell 25:151–157.PubMedGoogle Scholar
  322. Joste, V., Berrez, J. C., Latruff, N., and Nelson, B. D., 1987, An import factor in reticulocyte lysates which stimulates processing of several precursors destined for the rat liver mitochondrial inner membrane, Acta Chem. Scand. Ser. B. B 41:770–772.Google Scholar
  323. Kadonaga, J. T., Gantier, A. E., Strauss, D. R., Charles, A. D., Edge, M. D., and Knowles, J. R., 1984, The role of the β-lactamase signal sequence in the secretion of proteins by Escherichia coli. J. Biol. Chem. 259:2149–2154.PubMedGoogle Scholar
  324. Kaiser, C. A., Preuss, D., Grisafi, P., and Botstein, D., 1987, Many random sequences funtionally replace the secretion signal sequences of yeast invertase. Science 235:312–317.PubMedGoogle Scholar
  325. Kalousek, F., Orsulak, M. D., and Rosenberg, L. E., 1984, Newly processed transcarbamylase subunits are assembled to trimers in rat liver mitochondria. J. Biol. Chem. 259:5392–5395.PubMedGoogle Scholar
  326. Kamisaki, Y., Sakakibara, R., Horio, Y., and Wada, H., 1982, Low isoelectric point of precursor of mitochondrial glutamic oxaloacetate transaminase isoenzyme synthesized in vitro. Biochem. Int. 4:289–296.Google Scholar
  327. Kaput, J., and Blobel, G., 1986, Binding of the heme ligand inhibits translocation of in vitro synthesized cytochrome c peroxidase into yeast mitochondria. Yeast 2: S182.Google Scholar
  328. Kaput, J., Goltz, S., and Blobel, G., 1982, Nucleotide sequence of the yeast nuclear gene for cytochrome c peroxidase precursor. Functional implications of the presequence for protein transport into mitochondria. J. Biol. Chem. 257:15054–15058.PubMedGoogle Scholar
  329. Karlin-Neumann, G. A., and Tobin, E. M., 1986, Transit peptides of nuclear-encoded chloroplast proteins share a common amino acid framework. EMBO J. 5:9–13.PubMedGoogle Scholar
  330. Kartenbeck, J., and Franke, W. W., 1974, Membrane relationship between endoplasmic reticulum and peroxisomes in rat hepatocytes and Morris hepatoma cells. Cytobiology 10:152–156.Google Scholar
  331. Kasper, C. B., and Porter, T. D., 1985, Coding nucleotide sequence of rat NADPH-cytochrome P-450 oxidoreductase cDNA and identification of flavin binding domain, Proc. Natl. Acad. Sci. U.S.A. 82:973–977.PubMedGoogle Scholar
  332. Katz, F. N., Rothman, J. E., Lingappa, V. R., Blobel, G., and Lodish, H. F., 1977, Membrane assembly in vitro: Synthesis, glycosylation and asymmetric insertion of transmembrane proteins. Proc. Natl. Acad. Sci. U.S.A. 74:3278–3282.PubMedGoogle Scholar
  333. Kawajiri, K., Harano, T., and Omura, T., 1977, Biosynthesis of the mitochondrial matrix enzyme, glutamate dehydrogenase, in rat liver cells. II. Significance of binding of glutamate dehydrogenase to microsomal membrane. J. Biochem. (Tokyo) 82:1417–1423.Google Scholar
  334. Kellems, R. E., Allison, V. F., and Butow, R. A., 1974, Cytoplasmic type 80 S ribosomes associated with yeast mitochondria. II. Evidence for the association of cytoplasmic ribosomes with the outer mitochondrial membrane, in situ. J. Biol. Chem. 249:3297–3303.PubMedGoogle Scholar
  335. Kellems, R. E., Allison, V. F., and Butow, R. A., 1975, Cytoplasmic type 80 S ribosomes associated with yeast mitochondria. IV. Attachment of ribosomes to the outer membrane of isolated mitochondria. J. Cell Biol. 65:1–14.PubMedGoogle Scholar
  336. Keller, G. A., Barton, M. C., Shapiro, D. J., and Singer, S. J., 1985, 3-Hydroxy-3-methyl glutaryl CoA reductase is present in peroxisomes in rat liver cells. Proc. Natl. Acad. Sci. U.S.A. 82:770–774.PubMedGoogle Scholar
  337. Keller, G. A., Pazirandeh, M., and Krisans, S., 1986, 3-Hydroxyl-3-methyl glutaryl coenzyme A reductase localization in rat liver peroxisomes and microsomes of control and cholestyramine treated animals: Quantitative biochemical and immunoelectron microscopical analyses. J. Cell Biol. 103:875–886.PubMedGoogle Scholar
  338. Keller, G. A., Gould, S., Deluca, M., and Subramani, S., 1987, Firefly luciferase is targeted to peroxisomes in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 84:3264–3265.PubMedGoogle Scholar
  339. Kendall, D. A., Bock, S. C., and Kaiser, E. T., 1986, Idealization of the hydrophobic segment of the alkaline phosphatase signal peptide. Nature (London) 321:706–708.Google Scholar
  340. Keng, T., Alani, E., and Guarente, L., 1986, The nine aminoterminal residues of S-aminolevulinate synthase direct-β-galactosidase into the mitochondrial matrix. Mol. Cell. Biol. 6:355–364.PubMedGoogle Scholar
  341. Kensil, C. R., and Strittmatter, P., 1986, Binding and fluorescence properties of the membrane domain of NADH-cytochrome b5 reductase. Determination of the depth of Trp-16 in the bilayer. J. Biol. Chem. 261:7316–7321.PubMedGoogle Scholar
  342. Kensil, C. R., Hediger, M. A., Ozols, J., and Strittmatter, P., 1983, Isolation and partial characterization of the ammo-terminal membrane binding domain of NADH-cytochrome b5 reductase. J. Biol. Chem. 258:14656–14663.PubMedGoogle Scholar
  343. Kiino, D. R., and Silhavy, T. J., 1984, Mutation Prl F1 relieves the lethality associated with export of β-galactosidase hybrid proteins in Escherichia coli. J. Bacteriol. 158:878–883.PubMedGoogle Scholar
  344. Kindl, H., Koller, W., and Frevert, J., 1980, Cytoplasmic precursor pool during glyoxysome biosynthesis. Hoppe-Seyler’s Z. Physiol. Chem. 361:465–467.PubMedGoogle Scholar
  345. Kinoshita, N., Unemoto, T., and Kobayashi, H., 1984, Proton motive force is not obligatory for growth of Escherichia coli. J. Bacteriol. 160:1074–1077.PubMedGoogle Scholar
  346. Kirwin, P. M., Elderfield, P. D., and Robinson, C., 1987, Transport of proteins into chloroplasts, Partial purification of thylakoidal processing peptidase involved in plastocyanin biogenesis, J. Biol. Chem. 262:16386–16390.PubMedGoogle Scholar
  347. Kleene, R., Pfanner, N., Pfaller, R., Link, T. A., Sebald, W., Neupert, W., and Tropschug, M., 1987, Mitochondrial porin of Neurospora crassa: cDNA cloning, In vitro expression and import into mitochondria, EMBO J. 6:2627–2633.PubMedGoogle Scholar
  348. Kloppstech, K., and Bitsch, A., 1986, Cross-linking of envelope proteins presumably involved in binding of nuclear coded chloroplast precursor proteins. Plant Biol. 2:235–240.Google Scholar
  349. Koester, A., Heisig, M., Heinrich, P. C., and Just, W. W., 1986, In vitro synthesis of peroxisomal membrane polypeptides. Biochem. Biophys. Res. Commun. 137:628–632.Google Scholar
  350. Kohorn, B. D., Harel, E., Chitnis, P. R., Thornber, J. P., and Tobin, E. M., 1986, Functional and mutational analysis of the light-harvesting chlorophyll a/b protein of thylakoid membranes. J. Cell Biol. 102:972–981.PubMedGoogle Scholar
  351. Kolansky, D. M., Conboy, J. G., Fenton, W. A., and Rosenberg, P. E., 1982, Energy dependent translocation of precursor of ornithine transcarbamylase by isolated rat liver mitochodria. J. Biol. Chem. 257:8467–8471.PubMedGoogle Scholar
  352. Koller, W., and Kindl, H., 1980, Cytosolic malate synthethase. A small pool characterized by rapid turnover. Hoppe-Seyler’s Z. Physiol. Chem. 361:1437–1444.PubMedGoogle Scholar
  353. Kopito, R. R., and Lodish, H. F., 1985, Primary structure and transmembrane orientation of the murine anion exchange protein. Nature (London) 316:234–238.Google Scholar
  354. Kornfeld, R., and Kornfeld, S., 1985, Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54:631–664.PubMedGoogle Scholar
  355. Koshland, D., and Botstein, D., 1980, Secretion of β-lactamase requires the carboxy end of the protein. cell 20:749–760.PubMedGoogle Scholar
  356. Koshland, D., and Botstein, D., 1982, Evidence for post-translational translocation of β-lactamase across the bacterial inner membrane. cell 30:893–902.PubMedGoogle Scholar
  357. Koshland, D., Sauer, R. T., and Botstein, D., 1982, Diverse effects of mutations in the signal sequence on the secretion of β-lactamase in Salmonella typhimurium. cell. 30:903–914.PubMedGoogle Scholar
  358. Kreibich, G., Ullrich, B. L., and Sabatini, D. D., 1978a, Proteins of rough microsomal membranes related to ribosome binding. I. Identification of ribophorins I and II, membrane proteins characteristic of rough microsomes. J. Cell Biol. 77:464–487.PubMedGoogle Scholar
  359. Kreibich, G., Freienstein, C. M., Pereyra, P. N., Ullrich, B. L., and Sabatini, D. D., 1978b, Proteins of rough microsomal membranes related to ribosome binding. II. Cross-linking of bound ribosomes to specific membrane proteins exposed at the binding site. J. Cell Biol. 77:488–506.PubMedGoogle Scholar
  360. Kreibich, G., Csako-Graham, M., Grebeneau, R., and Sabatini, D. D., 1980, Functional and structural characteristics of endoplasmic reticulum membrane proteins associated with ribosome binding sites. Ann N.Y. Acad. Sci. 343:17–33.PubMedGoogle Scholar
  361. Kreibich, G., Ojakian, G., Rodriguez-Boulan, E. J., and Sabatini, D. D., 1982, Recovery of ribophorins in “inverted rough” vesicles derived from liver rough microsomes. J. Cell Biol. 93:111–121.PubMedGoogle Scholar
  362. Krieg, U. C., Walter, P., and Johnson, A. E., 1986, Photo cross-linking of the signal sequence of nascent preprolactin to the 54-kilodalton polypeptide of the signal recognition particle. Proc. Natl. Acad. Sci. U.S.A. 83:8604–8608.PubMedGoogle Scholar
  363. Kruse, C., and Kindl, H., 1983, Oligomerization of malate synthase during glyoxysome biosynthesis. Arch. Biochem. Biophys. 223:629–638.PubMedGoogle Scholar
  364. Kruse, C., Frevert, J., and Kindl, H., 1981, Selective uptake by glyoxysome of in vitro translated malate synthase. FEBS. Lett. 129:36–38.Google Scholar
  365. Kuhn, A., Wickner, W., and Kreil, G., 1986, The cytoplasmic terminus of M13 procoat is required for the membrane insertion of its central domain. Nature (London) 322:335–339.Google Scholar
  366. Kumamoto, C. A., and Beckwith, J., 1983, Mutations in a new gene, sec B, cause defective protein localization in Escherichia coli. J. Bacteriol. 154:253–260.PubMedGoogle Scholar
  367. Kumamoto, C. A., Oliver, D. B., and Beckwith, J., 1984, Signal sequence mutations disrupt feedback between secretion of an exported protein and its synthesis in E. coli. Nature (London) 308:863–864.Google Scholar
  368. Kumamoto, T., Morohashi, K., Ito, A., and Omura, T., 1987, Site-directed mutagenesis of basic amino acid residues in the extension peptide of P-450 (scc) precursor: effects on import of precursor into mitochondria, J. Biochem. (Tokyo) 102:833–834.Google Scholar
  369. Kuntz, M., Simons, A., Schell, J., and Schreier, P. H., 1987, Targeting of protein to chloroplasts in transgenic tobacco by fusion to mutated transit peptide. Mol. Gen. Genet 205:454–460.Google Scholar
  370. Kurzchalia, T. V., Wiedmann, M., Girshovich, A. S., Bochkareva, E. S., Bielka, H., and Rapoport, T. A., 1986, The signal sequence of nascent preprolactin interacts with the 54 K polypeptide of signal recognition particle. Nature (London) 320:634–636.Google Scholar
  371. Lai, J. S., Sarvas, M., Brammar, W. J., Neugebauer, K., and Wu, H. C., 1981, Bacillus licheniformis penicillinase synthesized in Escherichia coli contains covalently linked fatty acid and glyceride. Proc. Natl. Acad. Sci. U.S.A. 78:3506–3510.PubMedGoogle Scholar
  372. Lamppa, G. K., Morelli, G., and Chua, N. H., 1985, Structure and developmental regulation of a wheat gene encoding the major chlorophyll a/b-binding polypeptide. Mol. Cell. Biol. 5:1370–1378.PubMedGoogle Scholar
  373. Lauffer, L., Garcia, P. D., Harkins, R. N., Coussens, L., Axel, U., and Walter, P., 1985, Topology of signal recognition particle receptor in endoplasmic reticulum membrane. Nature (London) 318:334–338.Google Scholar
  374. Lazarow, P. B., and De Duve, C., 1973, The synthesis and turnover of rat liver peroxisomes. V. Intracellular pathway of catalase synthesis. J. Cell Biol. 59:507–524.PubMedGoogle Scholar
  375. Lazarow, P. B., Robbin, M., Fujiki, Y., and Wong, L., 1982, Biogenesis of peroxisomal proteins In vivo and in vitro. Ann. N.Y. Acad. Sci. 386:285–300.PubMedGoogle Scholar
  376. Lee, C. A., and Beckwith, J., 1986, Suppression of growth and protein secretion defects in Escherichia coli sec A mutants by decreasing protein synthesis. J. Bacteriol. 166:878–883.PubMedGoogle Scholar
  377. Lee, C. A., Fournier, M. J., and Beckwith, J., 1985, Escherichia coli 6S RNA is not essential for growth of protein secretion. J. Bacteriol. 161:1156–1161.PubMedGoogle Scholar
  378. Leskes, A., Siekevitz, P., and Palade, G. E., 1971a, Differentiation of endoplasmic reticulum in hepatocytes. I. Glucose-6-phosphatase distribution in situ. J. Cell Biol. 49:264–287.PubMedGoogle Scholar
  379. Leskes, A., Siekevitz, P., and Palade, G. E., 1971b, Differentiation of endoplasmic reticulum in hepatocytes. II. Glucose-6-phosphatase in rough microsoipes. J. Cell Biol. 49:288–302.PubMedGoogle Scholar
  380. Lewin, A. S., and Norman, D. K., 1983, Assembly of F1-ATPase in isolated mitochondria. J. Biol. Chem. 258:6750–6755.PubMedGoogle Scholar
  381. Liao, M. J., and Khorana, H. G., 1984, Removal of the carboxyl terminal peptide does not affect refolding or function of bacteriorhodopsin as a light-dependent proton pump. J. Biol. Chem. 259:4194–4199.PubMedGoogle Scholar
  382. Lin, J. J. C., Kanazawa, H., Ozols, J., and Wu, H. C., 1978, An Escherichia coli mutant with an amino acid alteration within the signal sequence of outer membrane prolipoprotein. Proc. Natl Acad. Sci. U.S.A. 75:4891–4895.PubMedGoogle Scholar
  383. Lin, J. J. C., Kanazawa, H., and Wu, H. C., 1980, Assembly of outer membrane proteins in Escherichia coli mutant, with a single amino acid replacement within the signal sequence of prolipoprotein. J. Bacteriol 141:550–557.PubMedGoogle Scholar
  384. Lingappa, V. R., Katz, F. N., Lodish, H. F., and Blobel, G., 1978, A signal sequence for the insertion of a membrane glycoprotein. Similarity to the signals of secretory proteins in a primary structure and function. J. Biol Chem. 253:8667–8670.PubMedGoogle Scholar
  385. Lingappa, V. R., Lingappa, J. R., and Blobel, G., 1979, Chicken ovalbumin contains an internal signal sequence. Nature (London) 281:117–121.Google Scholar
  386. Lingelbach, K. R., Graf, L. J., Dunn, A. R., and Hoogenraad, N. J., 1986, Effect of deletion within the leader peptide of pre-ornithine transcarbamylase on mitochondrial import. Eur. J. Biochem. 161:19–23.PubMedGoogle Scholar
  387. Lipp, J., and Dobberstein, B., 1986a, Signal recognition particle-dependent membrane insertion of mouse invariant chain: A membrane-spanning protein with cytoplasmically exposed amino terminus. J. Cell Biol 102:2169–2175.PubMedGoogle Scholar
  388. Lipp, J., and Dobberstein, B., 1986b, The membrane-spanning segment of invariant chain (Iγ) contains a potentially cleavable signal sequence. cell 46:1103–1112.PubMedGoogle Scholar
  389. Lord, J. M, 1978, Evidence that proliferation of endoplasmic reticulum precedes formation of glyoxysomes and mitochondria in germinating castor bean endosperm. J. Exp. Bot. 29:13–23.Google Scholar
  390. Lord, J. M., and Roberts, L. M., 1982, Glyoxysome biosynthesis via endoplasmic reticulum in castor bean endosperm. Ann. N.Y. Acad. Sci. 386:362–376.Google Scholar
  391. Lory, S., Tai, P. C., and Davis, B. D., 1983, Mechanism of protein secretion by gram-negative bacteria: Pseudomonas aeruginosa exotoxin A. J. Bacteriol 156:695–702.PubMedGoogle Scholar
  392. Lubben, T. H., Bansberg, J., and Keegstra, K., 1987, Stop-transfer regions do not halt translocation of proteins into chloroplasts, Science 238:1112–1114.PubMedGoogle Scholar
  393. Lubben, T. H., and Keegstra, K., 1986, Efficient in vitro import of a cytosolic heat shock protein into pea chloroplasts. Proc. Natl Acad. Sci. U.S.A. 83:5502–5506.PubMedGoogle Scholar
  394. Lubin, I. M., Wu, L. N. Y., Wuthier, R. E., and Fisher, R. R., 1987, Rhodamine 123 inhibits import of rat liver mitochondrial transhydrogenase. Biochem. Biophys. Res. Commun. 144:477–483.PubMedGoogle Scholar
  395. Lunn, C. A., and Inouye, M., 1987, Effects of prolipoprotein signal peptide mutations on secretion of hybrid prolipo-jS-lactamase in Escherichia coli. J. Biol Chem. 262:8318–8324.PubMedGoogle Scholar
  396. Lycett, G. W., Delauney, A. J., Catehouse, J. A., Gilroy, J., Croy, R. R. D., and Boutler, D., 1983, The vicilin gene family of pea (Pisum sativum L.) a complete cDNA sequence for preprovicilin. Nucleic Acids Res. 11:2367–2380.PubMedGoogle Scholar
  397. Maarse, A. C., Van Loon, A. P. G. M., Riezman, H., Gregor, I., Schatz, G., and Grivell, L. A., 1984, Subunit IV of yeast cytochrome oxidase: Cloning and nucleotide sequencing of the gene and partial amino acid sequencing of the mature protein. EMBO J. 3:2831–2837.PubMedGoogle Scholar
  398. Maccecchini, M. L., Rudin, Y., Blobel, G., and Schatz, G., 1979a, Import of proteins into mitochondria: Precursor forms of the extramitochondrially made FrATPase subunits in yeast. Proc. Natl Acad. Sci. U.S.A. 76:343–347.PubMedGoogle Scholar
  399. Maccecchini, M. L., Rudin, Y., and Schatz, G., 1979b, Transport of proteins across the mitochondrial outer membrane. A precursor form of the cytoplasmically made intermembrane enzyme, cytochrome c peroxidase. J. Biol Chem. 254:7468–7471.PubMedGoogle Scholar
  400. Maeshima, M., Yokoi, H., and Asahi, T., 1988, Evidence for no proteolytic processing during transport of isocitrate lyase into glyoxysomes in castor bean endosperm, Plant Cell Physiol 29:381–384.Google Scholar
  401. Maher, P. S., and Singer, S. J., 1986, Disulfide bonds and the translocation of proteins across membranes. Proc. Natl. Acad. Sci. U.S.A. 83:9001–9005.PubMedGoogle Scholar
  402. Majzoub, J. A., Rosenblatt, M., Fennick, B., Mannus, R., Kronenberg, H. M., Potts, J. T. Jr., and Habener, J. F., 1980, Synthetic pre-pro-parathyroid hormone leader sequence inhibits cell-free processing of placental, parathyroid and pituitary prehormones. J. Biol. Chem. 255:11478–11484.PubMedGoogle Scholar
  403. Marcantonio, E., Amar-Costesec, A., and Kreibich, G., 1984, Segregation of polypeptide translocation apparatus to regions of the endoplasmic reticulum containing ribophorin and ribosomes. ii. Rat liver microsomal subfractions contain equimolar amounts of ribophorins and ribosomes. J. Cell Biol. 99:2254–2259.PubMedGoogle Scholar
  404. Martial, J. A., Hallwell, R. A., Baxter, J. D., and Goodman, H. M, 1979, Human growth hormone: Complementary DNA cloning and expression in bacteria. Science 205:602–607.PubMedGoogle Scholar
  405. Marty-Mazars, D. M., Horiuchi, S., Tai, P. C., and Davis, B. D., 1983, Proteins of ribosome bearing and free-membrane domains in Bacillus subtilis. J. Bacteriol. 154:1381–1388.PubMedGoogle Scholar
  406. Matocha, M. F., and Waterman, M. R., 1984, Discriminatory processing of the precursor forms of cytochrome P-450 see and adrenodoxin by adrenocortical and heart mitochondria. J. Biol. Chem. 259:8672–8678.PubMedGoogle Scholar
  407. Matocha, M. F., and Waterman, M. R., 1986, Import and processing of P-450 see and P-450 11/3 precursors by corpus luteal mitochondria: A processing pathway recognizing homologous and heterologous precursors. Arch. Biochem. Biophys. 250:456–460.PubMedGoogle Scholar
  408. Matsuura, S., Arpin, M., Hannun, C., Margoliash, E., Sabatini, D. D., and Morimoto, T., 1981, In vitro synthesis and post-translational uptake of cytochrome c into isolated mitochondria: Role of a specific addressing signal in the apocytochrome c. Proc. Natl. Acad. Sci. U.S.A. 78:4368–4372.PubMedGoogle Scholar
  409. Mclntyre, S., Freudl, R., Degen, m., Hindennach, I., and Henning, U., 1987, The signal sequence of an E. coli outer membrane protein can mediate translocation of a not normally secreted protein across the plasma membrane. J. Biol. Chem. 262:8416–8422.Google Scholar
  410. McKean, D. J., and Maurer, R. A., 1978, Complete amino acid sequence of the precursor region of rat prolactin. Biochemistry 17:5215–5219.PubMedGoogle Scholar
  411. MacLennan, D. H., Brandl, C. J., Korczak, B., and Green, N. M., 1985, Amino-acid sequence of Ca2+ +Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316:696–700.PubMedGoogle Scholar
  412. Meek, R. L., Walsh, K. A., and Palmiter, R. D., 1982, The signal sequence of ovalbumin is located near the aminoterminus. J Biol. Chem. 257:12245–12251.PubMedGoogle Scholar
  413. Meyer, D. I., 1982, Translocation of secretory and membrane proteins across the endoplasmic reticulum: The requirement for two specific receptors. J. Cell Biol. 95(2, Pt. 2) 388a (Abstract).Google Scholar
  414. Meyer, D. I., 1985, Signal recognition particle does not mediate a translational arrest of nascent secretory proteins in mammalian cell free systems. EMBO J. 4:2031–2033.PubMedGoogle Scholar
  415. Meyer, D. I., and Dobberstein, B., 1980a, A membrane component essential for vectorial translocation of nascent proteins across the endoplasmic reticulum: Requirement for its extraction and reassociation with the membrane. J. Cell Biol. 87:498–502.PubMedGoogle Scholar
  416. Meyer, D. I., and Dobberstein, B., 1980b, Identification and characterization of a membrane component essential for the translocation of nascent proteins across the membrane of the endoplasmic reticulum. J. Cell Biol. 87:503–508.PubMedGoogle Scholar
  417. Meyer, D. I., Krause, E., and Dobberstein, B., 1982a, Secretory protein translocation across membranes. The role of the “docking protein.” Nature (London) 297:647–650.Google Scholar
  418. Meyer, D. I., Louvard, D., and Dobberstein, B., 1982b, Characterization of molecules involved in protein translocation using a specific antibody. J. Cell Biol. 92:579–582.PubMedGoogle Scholar
  419. Michaelis, S., Guarente, L., and Beckwith, J., 1983a, In vitro construction and characterization of Pho A-lac Z gene fusions in Escherichia coli. J. Bacteriol. 154:356–365.PubMedGoogle Scholar
  420. Michaelis, S., Inouye, H., Oliver, D., and Beckwith, J., 1983b, Mutations that alter the signal sequences of alkaline phosphatase in Escherichia coli. J. Bacteriol. 154:366–374.PubMedGoogle Scholar
  421. Mihara, K., and Blobel, G., 1982, In vitro synthesis and integration into mitochondria of porin, a major protein of the outer mitochondrial membrane of Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A. 79:7012–7016.Google Scholar
  422. Mihara, K., and Sato, R., 1985, Molecular cloning and sequencing of cDNA from yeast porin, an outer mitochodrial membrane protein: A search for targeting signal in primary structure. EMBO J. 4:769–774.PubMedGoogle Scholar
  423. Mihara, K., Sato, R., Sakakibara, R., and Wada, H., 1978, Reduced nicotinamide adenine dinucleotide-eytochrome b5 reductase: Location of the hydrophobic membrane binding region at the carboxyl terminal and the masked amino terminus. Biochemistry 17:2829–2834.Google Scholar
  424. Mihara, K., Omura, T., Harano, T., Brenner, S. C., Fleischer, S., Rayagoplan, K. V., and Blobel, G., 1982, Rat liver L-glutamate dehydrogenase, malate dehydrongenase, D-jS-hydroxybutyrate dehydrogenase and sulfite oxidase are each synthesized as larger precursors by cytoplasmic free polysomes. J. Biol. Chem. 257:3355–3358.PubMedGoogle Scholar
  425. Milstein, C., Brownlee, G. G., Harrison, T. M., and Mathews, M. B., 1972, A possible precursor of immunoglobulin light chains. Nature New Biol. 239:117–120.PubMedGoogle Scholar
  426. Minami, E., Shinohara, K., Kuwabara, T., and Watanabe, A., 1986, In vitro synthesis and assembly of photosystem II proteins of spinach chloroplasts. Arch. Biochem. Biophys. 244:517–527.PubMedGoogle Scholar
  427. Minsky, A., Summers, R. G., and Knowles, J. R., 1986, Secretion of β-lactamase into the periplasm of Escherichia coli: Evidence for a distinct release step associated with a conformation change. Proc. Natl. Acad. Sci. U.S.A. 83:4180–4184.PubMedGoogle Scholar
  428. Mirales, V., Felipo, V., Hernandez-Yago, J., and Grisolia, S., 1983, Transport of the precursor for rat liver glutamate dehydrogenase into mitochondria in vitro. Biochem. Biophys. Res. Commun. 110:449–503.Google Scholar
  429. Mishkind, M. L., Wessler, S. R., and Schmidt, G. W., 1985, Functional determinants in transit sequence: Import and partial maturation by vascular plant chloroplasts of the ribulose 1,5-bisphosphate carboxylase small subunit of Chlamydomonas. J. Cell Biol. 100:226–234.PubMedGoogle Scholar
  430. Miura, S., Mori, M., Morita, T., and Tatibana, M., 1982, A high isolectric point of mitochondrial ornithine carbamyltransferase precursor and inhibition of its processing in vitro by basic proteins. Biochem. Int. 4:201–208.Google Scholar
  431. Miura, S., Mori, M., and Tatibana, M., 1983, Transport of ornithine carbamyltransferase precursor into mitochondria. Stimulation by potassium ion, magnesium ion and reticulocyte cytosolic protein(s). J. Biol. Chem. 258:6671–6674.PubMedGoogle Scholar
  432. Miura, S., Mori, M., Takiguchi, M., Tatibana, M., Furuta, S., Miyazawa, S., and Hashimoto, T., 1984, Biosynthesis and intracellular transport of enzymes of peroxisomal β-oxidation. J. Biol. Chem. 259:6397–6402.PubMedGoogle Scholar
  433. Miura, S., Amaya, Y., and Mori, M., 1986, A metalloprotease involved in the processing of mitochondrial precursor proteins. Biochem. Biophys. Res. Commun. 134:1151–1159.PubMedGoogle Scholar
  434. Miyazawa, S., Ozasa, H., Furuta, S., Osumi, T., Hashimoto, T., Miura, S., Mori, M., and Tatibana, M., 1983, Biosynthesis and turnover of carnitine acetyltransferase in rat liver. J. Biochem. (Tokyo) 93:453–459.Google Scholar
  435. Montisano, D. F., Cascarano, J., Pickett, C. B., and James, T. W., 1982, Association between mitochondria and rough endoplasmic reticulum in rat liver, Anat. Rec. 203:441–450.PubMedGoogle Scholar
  436. Moore, K. E., and Miura, S., 1987, A small hydrophobic domain anchors leader peptidase to the cytoplasmic membrane of Escherichia coli. J. Biol. Chem. 262:8806–8813.PubMedGoogle Scholar
  437. Mori, M., Morita, T., Ikeda, F., Amaya, Y., Tatibana, M., and Cohen, P. P., 1981, Synthesis, intracellular transport and processing of the precursor for mitochondrial ornithine transcarbamylase and carbamyl phosphate synthetase I in isolated hepatocytes. Proc. Natl. Acad. Sci. U.S.A. 78:6056–6060.PubMedGoogle Scholar
  438. Mori, M., Miura, S., Morita, T., and Tatibana, M., 1982, Synthesis and intracellular transport of mitochondrial carbamyl phosphate synthetase I and ornithine transcarbamylase. Adv. Exp. Med. Biol. 153:267–276.PubMedGoogle Scholar
  439. Mori, M., Matsue, H., Miura, S., Tatibana, M., and Hashimoto, T., 1985, Transport of matrix proteins into mitochondrial matrix. Evidence suggesting a common pathway for 3-ketoacyl CoA thiolase and enzymes having presequences. Eur. J. Biochem 149:181–186.PubMedGoogle Scholar
  440. Morita, T., Mori, M., Ikeda, F., and Tatibana, M., 1982, Transport of carbamyl phosphate synthetase I and ornithine transcarbamylase into mitochondria. Inhibition by rhodamine 123 and accumulation of enzyme precursors in isolated hepatocytes. J. Biol. Chem. 257:13075–13080.Google Scholar
  441. Mueckler, M., and Lodish, H. F., 1986, Post-translational insertion of a fragment of the glucose transporter into microsomes requires phosphoanhydride bond cleavage. Nature (London) 322:549–552.Google Scholar
  442. Mueckler, M., Caruso, C., Baldwin, S. A., Panico, M., Blench, I., Morris, H. R., Allard, W. J., Lienhard, G. E., and Lodish, H. F., 1985, Sequence and structure of a human glucose transporter. Science 229:941–945.PubMedGoogle Scholar
  443. Mueller, M., and Blobel, G., 1984, Protein export in Escherichia coli requires a soluble activity. Proc. Natl. Acad. Sci. U.S.A. 81:7737–7741.Google Scholar
  444. Mueller, M., Ibrahimi, I., Chang, C. N., Walter, P., and Blobel, G., 1982, A bacterial secretory protein requires signal recognition particle for translocation across mammalian endoplasmic reticulum. J. Biol. Chem. 257:11860–11863.Google Scholar
  445. Müller, G., and Zimmermann, R., 1987, Import of honeybee prepromelittin into the endoplasmic reticulum: structural basis of independence of SRP and docking protein, EMBO J. 6:2099–2107.PubMedGoogle Scholar
  446. Muren, E. M., and Randall, L. L., 1985, Export of α-amylase by Bacillus amyloliquefaciens requires proton motive force. J. Bacteriol. 164:712–716.PubMedGoogle Scholar
  447. Mustonen, P., Virtanen, J. A., Somerhaiju, P. J., and Kinnunen, P. K. J., 1987, Binding of cytochrome c to liposomes as revealed by the quenching of fluorescence from pyrene-labeled phospholipids. Biochemistry 26:2991–2997.PubMedGoogle Scholar
  448. Myers, M., Mayorga, D. L., Emtage, J., and Friere, E., 1987, Thermodynamic characterization of interactions between ornithine transcarbamylase leader peptide and phospholipid bilayer membranes, Biochemistry 26:4309–4315.PubMedGoogle Scholar
  449. Nabi, N., Ishikawa, T., Ohashi, M., and Omura, T., 1983, Contribution of cytoplasmic free and membrane-bound ribosomes to the synthesis of NADPH-adrenodoxin of bovine adrenal cortex mitochondria. J. Biochem. (Tokyo) 94:1505–1515.Google Scholar
  450. Nagaraj, R., 1984, Interaction of synthetic signal sequence fragments with model membranes. FEBS Lett 165:79–82.PubMedGoogle Scholar
  451. Nagata, S., Tsunetsuga-Yokota, Y., Naito, A., and Kaziro, Y., 1983, Molecular cloning and sequence determination of the nuclear gene coding for mitochondrial elongation factor Tn of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 80:6182–6196.Google Scholar
  452. Nakagawa, T., Maeshima, M., Muto, H., Kajiura, H., Hattori, H., and Asahi, T., 1987, Separation, amino-terminal sequence and cell free synthesis of the smallest subunit of sweet potato cytochrome c oxidase. Eur. J. Biochem. 165:303–307.PubMedGoogle Scholar
  453. Natsoulis, G., Hilger, F., and Fink, G. R., 1986, The HTS1 gene encodes both the cytoplasmc and mitochondrial histidine tRNA synthetases of S. cerevisiae. cell 46:235–243.PubMedGoogle Scholar
  454. Nelson, N., Maccecchini, M. L., Rudin, Y., and Schatz, G., 1979, Import of proteins into mitochondria, in Biological Function of Proteinases (H. Holzer and H. Tschesche, eds.), pp. 109–119. Springer, Berlin.Google Scholar
  455. Nesmeyanova, M. A., 1982, On the possible participation of acid phospholipids in the translocation of secreted proteins through the bacterial cytoplasmic membrane, FEBS Lett. 142:189–193.PubMedGoogle Scholar
  456. Ness, S. A., and Weiss, R. L., 1987, Carboxyl-terminal sequences influence the import of mitochondrial protein precursors In vivo, Proc. Natl. Acad. Sci. USA 84:6692–6696.PubMedGoogle Scholar
  457. Neupert, W., and Schatz, G., 1981, How proteins are transported into mitochondria. Trends Biochem. Sci. 6:1–4.Google Scholar
  458. Nguyen, M., and Shore, G. C., 1987, Import of hybrid vesicular stomatitis G protein to the mitochondrial inner membrane. J. Biol. Chem. 262:3929–3931.PubMedGoogle Scholar
  459. Nguyen, M., Argan, C., Lusty, C. J., and Shore, G. C., 1986, Import and processing of hybrid proteins by mammalian mitochondria in vitro. J. Biol. Chem. 261:800–805.PubMedGoogle Scholar
  460. Nguyen, M., Argan, C., Sheffield, W. P., Bell, A. W., Shields, D., and Shore, G. C., 1987, A signal sequence domain essential for processing, but not import, of mitochondrial pre-ornithine carbamyltransferase. J. Cell Biol. 104:1193–1198.PubMedGoogle Scholar
  461. Nicholson, D. W., Koehler, H., and Neupert, W., 1987, Import of cytochrome c into mitochondria. Cytochrome c heme lyase. Eur. J. Biochem. 144:147–157.Google Scholar
  462. Niranjan, B. G., Raza, H., Shayiq, R. M., Jefcoate, C. R., and Avadhani, N. G., 1988, Hepatic mitochondrial cytochrome P-450 system. Identificatin and characterization of a precursor form of mitochondrial cytochrome P-450 induced by 3-methylcholanthrene, J. Biol. Chem. 262:575–580.Google Scholar
  463. Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ireka, T., Takahashi, H., Nakayama, H., Hanaoka, Y., Inayama, S., Hayashiba, H., Miyata, T., and Numa, S., 1984, Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature (London) 312:121–127.Google Scholar
  464. Noel, C., Nicolau, Y., Argan, C., Rachubinski, R. A., and Shore, G. C., 1985, In vitro synthesis and assembly of a 68 k Da outer membrane protein from rat liver. Biochim. Biophys. Acta 814:35–42.PubMedGoogle Scholar
  465. Oda, T., Ichiyama, A., Miura, S., and Mori, M., 1984, Uptake and processing of serine: Pyruvate aminotransferase precursor by rat liver mitochondria in vitro and In vivo. J. Biochem. (Tokyo) 95:815–824.Google Scholar
  466. Ogishima, T., Okada, Y., and Omura, T., 1985, Import and processing of the precursor of cytochrome P-450 (scc) by bovine adrenal cortex mitochondria. J. Biochem. 98:781–791.PubMedGoogle Scholar
  467. Ohashi, A., Gibson, J., Gregor, I., and Schatz, G., 1982, Import of proteins into mitochondria. The precursor of cytochrome cx is processed in two steps one of them heme dependent. J. Biol. Chem. 257:13042–13047.PubMedGoogle Scholar
  468. Ohba, M., and Schatz, G., 1987, Disruption of the outer membrane restores protein import to trypsin treated yeast mitochondria. EMBO J. 6:2117–2122.PubMedGoogle Scholar
  469. Ohkawa, I., and Webster, R. E., 1981, The orientation of the major coat protein of bacteriophage fi in the cytoplasmic membrane of Escherichia coli. J. Biol. Chem. 256:9951–9958.PubMedGoogle Scholar
  470. Ohno-Iwashita, Y., and Wickner, W., 1983, Reconstitution of rapid and asymmetrric assembly of Mb procoat protein into liposomes which have bacterial leader peptidase. J. Biol. Chem. 258:1895–1900.PubMedGoogle Scholar
  471. Okada, Y., Frey, A. B., Guenthner, T. M., Oesh, F., and Sabatini, D. D., 1982, Sites of synthesis and mode of insertion of cytochrome b5, cytochrome b5 reductase, cytochrome P-450 reductase and epoxide hydrolase. Eur. J. Biochem. 122:393–402.PubMedGoogle Scholar
  472. Oliver, D. B., 1985, Identification of five new essential genes involved in the synthesis of a secreted protein in Escherichia coli. J. Bacteriol. 161:285–291.PubMedGoogle Scholar
  473. Oliver, D. B., and Beckwith, J., 1981, E. coli mutant pleiotropically defective in the export of secreted proteins. cell 25:765–772.PubMedGoogle Scholar
  474. Oliver, D. B., and Beckwith, J., 1982a, Identification of a new gene (sec A) and gene product involved in the secretion of the envelope proteins in Escherichia coli. J. Bacteriol. 150:686–691.PubMedGoogle Scholar
  475. Oliver, D. B., and Beckwith, J., 1982b, Regulation of a membrane component is required for protein secretion in Escherichia coli. cell 30:311–319.PubMedGoogle Scholar
  476. Oliver, D. B., and Liss, L. R., 1985, PrlA-mediated suppression of signal sequence mutations is modulated by the sec A gene product of Escherichia coli K-12. J. Bacteriol. 161:817–819.PubMedGoogle Scholar
  477. Ono, H., and Ito, A., 1984a, Transport of the precursor of sulfite oxidase into intermembrane space of liver mitochondria: Characterization of import and processing activities. J. Biochem. (Tokyo) 95:345–352.Google Scholar
  478. Ono, H., and Ito, A., 1984b, Transport of the precursor for sulfite oxidase into intermembrane space of liver mitochondria: Binding of the precursor to outer mitochondrial membrane. J. Biochem. (Tokyo) 95:353–358.Google Scholar
  479. Ono, H., and Tuboi, S., 1985, Partial purification of the receptor protein for import of preornithine aminotransferase into mitochondria. Biochem. Int. 10:351–357.PubMedGoogle Scholar
  480. Ono, H., and Tuboi, S., 1986, Translocation of proteins into rat liver mitochondria. The precursor polypeptides of a large subunit of succinate dehydrogenase and ornithine aminotransferase and their import into their own locations of mitochondria. Eur. J. Biochem. 155:543–549.PubMedGoogle Scholar
  481. Ono, H., and Tuboi, S., 1988, The cytosolic factor required for import of precursors of mitochondrial proteins into mitochondria, J. Biol. Chem. 263:3188–3193.PubMedGoogle Scholar
  482. Ono, H., Yoshimura, N., Sato, M., and Tuboi, S., 1985, Translocation of proteins into rat liver mitochondria. Existence of two different precursor polypeptides of liver fumarase and import of the precursor into mitochondrria. J. Biol. Chem. 260:3402–3407.PubMedGoogle Scholar
  483. Op den Kamp, J. A. ¥., 1979, Lipid asymmetry in membranes, Ann. Rev. Biochem. 48:47–71.PubMedGoogle Scholar
  484. Osumi, T., Ishii, N., Hijikata, M., Kamijo, K., Ozasa, H., Furuta, S., Miyazawa, S., Kondo, K., and Inoue, K., 1985, Molecular cloning and nucleotide sequence of cDNA for rat peroxisomal enoyl CoA: Hydrarase-3-hydroxyacyl-CoA dehydrogenase bifimctional enzyme. J. Biol. Chem. 260:8905–8910.PubMedGoogle Scholar
  485. Otha, S., and Schatz, G., 1984, A purified precursor polypeptide requires a cytosolic protein fraction for import into mitochondria. EMBO J. 3:651–657.Google Scholar
  486. Ou, W., Ito, A., Morohashi, K., Fujii-Kuriyama, Y., and Omura, T., 1986, Processing-independent in vitro translocation of cytochrome P-450 (scc) precursor across mitochondrial membranes. J. Biochem. (Tokyo) 100:1287–1296.Google Scholar
  487. Ovchinnikov, Yu. A., 1982, Rhodopsin and bacteriorhodopsin: Structure function relationship, FEBSLett. 148:179–191.Google Scholar
  488. Ovchinnikov, Yu. A., Abdulaev, N. G., Feigina, M. Y., Artamonov, I. D., Bogachuk, A. S., Zolotarev, A. S., Egamian, E. R., and Kostetsky, P. V., 1983, Visual rhodopsin III. Total amino acid sequence and arrangement in the membrane, Bioorg. Khim 9:1331–1340.PubMedGoogle Scholar
  489. Ozasa, H., Furuta, S., Miyazawa, S., Osumi, T., Hashimoto, T., Mori, M., Miura, S., and Tatibana, M., 1984, Biosynthesis of enzymes of rat liver mitochondrial β-oxidation. Eur. J. Biochem. 144:453–458.PubMedGoogle Scholar
  490. Pain, D., and Blobel, G., 1987, Protein import into chloroplasts requires a chloroplast ATPase. Proc. Natl. Acad. Sci. U.S.A. 84:3288–3292.PubMedGoogle Scholar
  491. Pain, D., Kanwar, Y. S., and Blobel, G., 1988, Identification of a receptor for protein import into chloroplasts and its localization to envelope contact zones, Nature 311:232–237.Google Scholar
  492. Palade, G. E., 1975, Intracellular aspects of the process of protein synthesis. Science 189:347–358.PubMedGoogle Scholar
  493. Palade, G. E., and Siekevitz, P., 1956a, Liver microsomes. An integrated morphological and biochemical study. J. Biophys. Biochem. Cytol. 2:171–200.PubMedGoogle Scholar
  494. Palade, G. E., and Siekevitz, P., 1956b, Pancreatic microsomes. An integrated morphological and biochemical study. J. Biophys. Biochem. Cytol. 2:671–690.PubMedGoogle Scholar
  495. Palmiter, R. D., Gagnon, J., and Walsh, K. A., 1978, Ovalbumin, a secreted protein without a transient hydrophobic leader sequence. Proc. Natl. Acad. Sci. U.S.A. 75:94–98.PubMedGoogle Scholar
  496. Palva, E. T., Hirst, T. R., Hardy, S. J. S., Holmgren, J., and Randall, L. L., 1981, Synthesis of a precursor of the B subunit of heat-labile enterotoxin in Escherichia coli. J. Bacteriol. 146:325–330.PubMedGoogle Scholar
  497. Parimoo, S., Rao, N., and Padmanaban, C., 1982, Cytochrome c oxidase is preferably synthesized in the rough endoplasmic reticulum-mitochondria complex in rat liver. Biochem. J. 208:505–507.PubMedGoogle Scholar
  498. Park, K. S., Frost, B., Tuck, M., Ho, L. L., Kim, S., and Paik, W. K., 1987, Enzymatic metabolism of in vitro synthesized apocytochrome c enhances its transport into mitochondria, J. Biol. Chem. 262:14702–14708.PubMedGoogle Scholar
  499. Park, S., Liu, G., Topping, T. B., Cover, W. H., and Randall, L. L., 1988, Modulation of folding pathways of exported proteins by the leader sequence, Science 239:1033–1035.PubMedGoogle Scholar
  500. Paul, D. L., and Goodenough, D. A., 1983, In vitro synthesis and membrane insertion of bovine MP 26, an integral protein from lens fiber plasma membrane. J. Cell Biol. 96:633–638.PubMedGoogle Scholar
  501. Perara, E. and Lingappa, R., 1986, A former aminoterminal signal sequence engineered to an internal location directs translocation of both flanking protein domains. J. Cell Biol. 101:2292–2301.Google Scholar
  502. Perara, E., Rothman, R. E., and Lingappa, R., 1986, Uncoupling translocation from translation implication for transport of proteins across membrane. Science 232:348–352.PubMedGoogle Scholar
  503. Perlman, D., and Halvorson, H. O., 1983, A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J. Mol. Biol. 167:633–638.Google Scholar
  504. Pfaller, R., and Neupert, W., 1987, High affinity binding sites involved in the import of porin into mitochondria. EMBO J. 6:2635–2642.PubMedGoogle Scholar
  505. Pfanner, N., and Neupert, W., 1985, Transport of proteins into mitochondria: a potassium diffusion potential is able to drive the import of ADP/ATP carrier. EMBO J. 4:2819–2825.PubMedGoogle Scholar
  506. Pfanner, N., and Neupert, W., 1986, Transport of FrATPase subunit jS into mitochodria depends on both a membrane potential and nucleotide triphosphates. FEBS Lett. 209:152–156.PubMedGoogle Scholar
  507. Pfanner, N., and Neupert, W., 1987, Distinct steps in the import of ADP/ATP carrier into mitochondria. J. Biol. Chem. 262:7528–7536.PubMedGoogle Scholar
  508. Pfanner, N., Tropschug, M., and Neupert, W., 1987a, Mitochondrial protein import: Nucleotide triphosphates are involved in conferring import competence to precursors. cell 49:815–823.PubMedGoogle Scholar
  509. Pfanner, N., Hartl, F. U., Bernard, G., and Neupert, W., 1987b, Mitochondrial precursor proteins are imported through a hydrophilic membrane environment, Eur. J. Biochem. 169:289–293.PubMedGoogle Scholar
  510. Pfanner, N., Hoeben, P., Tropschug, M., and Neupert, W., 1987c, The carboxyl-terminal two third of the ADP/ATP carrier polypeptide contains sufficient information to direct translocation into mitochondria, J. Biol. Chem. 262:14851–14854.PubMedGoogle Scholar
  511. Pfanner, N., Müller, H. K., Harmey, M. A., and Neupert, W., 1987d, Mitochondrial protein import: involvement of the mature part of a cleavable precursor protein in the binding to receptor sites, EMBO J. 6:3449–3454.PubMedGoogle Scholar
  512. Pfanner, N., Pfaller, R., Kleene, R., Ito, M., Tropschug, M., and Neupert, W., 1988, Role of ATP in mitochondrial protein import. Conformational alteration of a precursor protein can substitute for ATP requirement, J. Biol. Chem. 63:4049–4051.Google Scholar
  513. Pfisterer, J., Lachman, P., and Kloppstech, K., 1982, Transport of proteins into chloroplasts. Binding of nuclear-coded chloroplast proteins to the chloroplast envelope. Eur. J. Biochem. 126:143–148.PubMedGoogle Scholar
  514. Pilon, M., Jordi, W., De Kruijff, B., and Domel, R. A., 1987, Interaction of mitochondrial precursor protein apocytochrome c with phosphatidylserine in model membranes, Biochim. Biophys. Acta 902:207–216.PubMedGoogle Scholar
  515. Pollit, S., and Zalkin, H., 1983, Role of primary structure and disulfide bound formation in β-lactamase secretion. J. Bacteriol. 153:27–32.Google Scholar
  516. Poulis, M. I., Sham, D. C., Campbell, H. D., and Young, I. G., 1981, In vitro synthesis of respiratory NADU dehydrogenase of Escherichia coli. Role of UUG as initiation codon. Biochemistry 20:4178–4185.PubMedGoogle Scholar
  517. Prehn, S., Tsamaloukas, A., and Rapoport, T. A., 1980, Demonstration of specific receptors of the rough endoplasmic membrane for the signal sequence of carp preproinsulin. Eur. J. Biochem. 107:185–195.PubMedGoogle Scholar
  518. Prehn, S., Nürnberg, P., and Rapoport, T. A., 1981, A receptor for signal segments of secretory proteins in rough endoplasmic reticulum membrane. FEBS Lett. 123:79–84.PubMedGoogle Scholar
  519. Prehn, S., Wiedmann, M., Rapoport, T. A., and Zwieb, C., 1987, Protein translocation across wheat germ microsomal membranes requires an SRP-like component. EMBO J. 6:2093–2097.PubMedGoogle Scholar
  520. Rachubinski, R. A., Verma, D. P. S., and Bergeron, J. J. M., 1980, Synthesis of rat liver microsomal cytochrome b5 by free ribosomes. J. Cell Biol. 85:705–716.Google Scholar
  521. Racker, E., 1979, Reconstitution of membrane processes, in Methods in Enzymology (S. P. Colowick and D. Kaplan, eds.), Vol. 55, pp. 699–711. Academic Press, New York.Google Scholar
  522. Randall, L. L., 1983, Translocation of domains of nascent periplasmic proteins across the cytoplasmic membrane is independent of elongation. cell 33:231–240.PubMedGoogle Scholar
  523. Randall, L. L., and Hardy, S. J. S., 1977, Synthesis of exported proteins by membrane bound polysomes from Escherichia coli. Eur. J. Biochem. 75:43–53.PubMedGoogle Scholar
  524. Randall, L. L., and Hardy, S. J. S., 1986, Correlation of competence for export with lack of tertiary structure of the mature species: A study In vivo of maltose-binding protein in E. coli. cell 46:921–928.PubMedGoogle Scholar
  525. Randall, L. L., Hardy, S. J. S., and Josefsson, L. G., 1978, Precursors of three exported proteins in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 75:1209–1212.PubMedGoogle Scholar
  526. Rasmussen, B. A., and Bassford, P. J. Jr., 1985, Both linked and unlinked mutations can alter the intracellular site of synthesis of exported proteins of Escherichia coli. J. Bacteriol. 161:258–264.PubMedGoogle Scholar
  527. Rasmussen, B. A., and Silhavy, T. J., 1987, The first 28 amino acids of mature lam B are required for rapid and efficient export from the cytoplasm, Genes Dev. 1: 185–196.PubMedGoogle Scholar
  528. Redman, C. M., and Sabatini, D. D., 1966, Vectorial discharge of peptides released by puromycin from attached ribosomes. Proc. Natl. Acad. Sci. U.S.A. 56:608–615.PubMedGoogle Scholar
  529. Rees-Jones, R., and Alawqati, O., 1984, Proton-translocating adenosine triphosphatase in rough and smooth microsomes from rat liver. Biochemistry 23:2236–2240.PubMedGoogle Scholar
  530. Reid, G. A., and Schatz, G., 1982, Import of proteins into mitochondria. Extramitochondrial pool and post-translational import of mitochondrial proteins precursors In vivo. J. Biol. Chem. 257:13062–13067.PubMedGoogle Scholar
  531. Reid, G. A., Yonetani, T., and Schatz, G., 1982, Import of proteins into mitochondria. Import and maturation of mitochondrial intermembrane space enzymes cytochrome b2 and cytochrome c peroxidase in intact yeast cells. J. Biol. Chem. 257:13068–13074.PubMedGoogle Scholar
  532. Reiss, B., Wasmann, C. C., and Bohnert, H. J., 1987, Regions in the transit peptide of SSU essential for transport into chloroplasts, Mol. Gen. Genet. 209:116–121.PubMedGoogle Scholar
  533. Rhoads, D. B., Tai, P. C., and Davis, B. D., 1984, Enefgy requiring translocation of OmpA protein and alkaline phosphatase of Escherichia coli into inner membrane vesicle. J. Bacteriol. 159:63–70.PubMedGoogle Scholar
  534. Richter, J. D., Lorenz, L. J., and Andet, R. G., 1985, Membrane-bound mRNAs are recruited from preinitiated ribonucleoprotein particles in injected Xenopus oocytes. J. Biol. Chem. 260:4448–4454.PubMedGoogle Scholar
  535. Rietveld, A., Jordi, W., and De Kruijff, B., 1986, Studies on the lipid dependency and mechanism of the translocation of the mitochondrial precursor protein apocytochrome c across model membranes. J. Biol. Chem. 261:3846–3856.PubMedGoogle Scholar
  536. Riezman, H., 1982, Binding of precursors of cytoplasmically-synthesized mitochondrial proteins to isolated outer membranes of yeast mitochondria. Prog. Clin. Res. 102b: 161–170.Google Scholar
  537. Riezman, H., Weir, E. M., Leaver, C. J., Titus, D. E., and Becker, W. M., 1980. Regulation of glyoxysomal enzymes during germination of cucumber. Plant Physiol. 65:40–46.PubMedGoogle Scholar
  538. Riezman, H., Hay, R., Witte, C., Nelson, N., and Schatz, G., 1983a, Yeast mitochondrial outer membrane specifically binds cytoplasmically synthesized precursors of mitochondrial proteins. EMBO J. 2:1113–1118.PubMedGoogle Scholar
  539. Riezman, H., Hase, T., Van Loon, A. P. G. M., Grivell, L. A., Suda, K., and Schatz, G., 1983b, Import of proteins into mitochondria: A 70-kilodalton outer membrane protein with a large carboxy-terminal deletion is still transported to the outer membrane. EMBO J. 2:2161–2168.PubMedGoogle Scholar
  540. Riggs, P. D., Derman, A. I., and Beckwith, J., 1988, A mutation affecting the regulation of a sec A-lac Z fusion defines a new sec gene, Genetics 118:1571–579.Google Scholar
  541. Rizzolo, L. J., Finidori, J., Gonzalez, A., Arpin, M., Ivanov, I. E., Adesnik, M., and Sabatini, D. D., 1985, Biosynthesis and intracellular sorting of growth hormone-viral envelope glycoprotein hybrids. J. Cell Biol. 101:1351–1356.PubMedGoogle Scholar
  542. Roa, M., and Blobel, G., 1983, Biosynthesis of peroxisomal enzymes in the methylotropic yeast Hansenula polymorpha. Proc. Natl. Acad. Sci. U.S.A. 80:6872–6876.PubMedGoogle Scholar
  543. Robbi, M., and Lazarow, P. B., 1978, Synthesis of catalase in two cell free protein synthesizing systems in rat liver. Proc. Natl. Acad. Sci. U.S.A. 75:4344–4348.PubMedGoogle Scholar
  544. Robinson, A., Kaderbhai, M. A., and Austen, B. M., 1987, Identification of signal binding proteins integrated into the rough endoplasmic reticulum membrane. Biochem. J. 242:767–777.PubMedGoogle Scholar
  545. Rodriguez-Garcia, M. F., and Sievers, A., 1977, Membrane contacts of the endoplasmic reticulum with plastids and with the plasmalemma in the endothecium of Scilla non-scripta. Cytobiologie 15:85–95.Google Scholar
  546. Roggenkamp, R., Janiwicz, Z., Stanikowski, B., and Hollenberg, C. P., 1984, Biosynthesis and regulation of the peroxisomal methanol oxidase from methylotropic yeast Hansenula polymorpha. Mol. Gen. Genet. 194:489–493.PubMedGoogle Scholar
  547. Roise, D., Horvath, S. J., Tomich, J. M., Richards, J. H., and Schatz, G., 1986, A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. EMBO J. 5:1327–1334.PubMedGoogle Scholar
  548. Roise, D., Theiler, F., Horvath, S., Tomich, J. M., Richards, J. H., Allison, D. S., and Schatz, C., 1988, Amphiphilicity is essential for mitochondrial presequence function, EMBO J. 7:649–653.PubMedGoogle Scholar
  549. Rose, J. K., and Bergman, J. E., 1982, Expression from cloned cDNA of cell surface and secreted forms of the glycoprotein of vesicular stomatitis virus in eukaryotic cells. Cell 30:753–762.PubMedGoogle Scholar
  550. Rosenblatt, M., Habener, J. F., Tyler, F. A., Shepard, G. L., and Potts, J. T. Jr., 1979, Chemical synthesis of precursor-specific region of pre-proparathyroid hormone. J. Biol. Chem. 254:1414–1421.PubMedGoogle Scholar
  551. Rosenblatt, M., Beaudett, N. V., and Fasman, G. D., 1980, Conformational studies on the synthetic precursor specific region of pre-proparathyroid hormone. Proc. Natl. Acad. Sci. U.S.A. 77:3983–3987.PubMedGoogle Scholar
  552. Rosenkrantz, A., Alam, T., Kim, K. S., Clark, B., Srere, P. A., Garante, L. P., 1986, Mitochondrial and nonmitochondrial citrate synthases in Saccharomyces cerevisiae are encoded by distinct homologous genes, Mol. Cell. Biol. 6:4509–4515.Google Scholar
  553. Rothblatt, J. A., and Meyer, D. I., 1986a, Secretion in yeast: Reconstitution of translocation and glycosylation of α-factor and invertase in homolgous cell free systems. Cell 44:619–628.PubMedGoogle Scholar
  554. Rothblatt, J. A., and Meyer, D. I., 1986b, Secretion in yeast: Translocation and glycosylation of pre-pro α-factor in vitro can occur via an ATP dependent post-translational mechanism. EMBO J. 5:1031–1036.PubMedGoogle Scholar
  555. Rothblatt, J. A., Webb, J. R., Ammerer, G., and Meyer, D. I., 1987, Secretion in yeast: structural features influencing the post-translational translocation of prepro α-factor in vitro, EMBO J. 6:3455–3468.PubMedGoogle Scholar
  556. Rothman, J. E., and Lenard, J., 1977, Membrane asymmetry, the nature of membrane asymmetry provides clues to the puzzle of how membranes are assembled. Science 195:743–753.PubMedGoogle Scholar
  557. Rothstein, S. J., Lazarus, C. M., Smith, W. E., Baulcombe, D. C., and Gatenby, A. A., 1984, Secretion of a wheat α-amylase expressed in yeast. Nature (London) 308:662–665.Google Scholar
  558. Rothstein, S. J., Gatenby, A. A., Wiley, D. L., and Gray, J. C., 1985, Binding of pea cytochrome/to the inner membrane of Escherichia coli requires the bacterial sec A gene product. Proc. Natl. Acad. Sci. U.S.A. 82:7955–7959.PubMedGoogle Scholar
  559. Rottier, P., Armstrong, J., and Meyer, D. I., 1985, Signal recognition particle-dependent insertion of coronavirus E1? an intracellular membrane glycoprotein. J. Biol. Chem. 260:4648–4652.PubMedGoogle Scholar
  560. Russel, M., and Model, P., 1981, A mutant downstream from the signal peptidase cleaving site affects cleavage but not membrane insertion of phage coat protein. Proc. Natl. Acad. Sci. U.S.A. 78:1717–1721.PubMedGoogle Scholar
  561. Ryan, J. P., Duncan, M. C., Bankaitis, Y. A., and Bassford, P. J. Jr., 1986, Intragenic reversion mutations that improve export of maltose-binding protein in Escherichia coli mal E signal sequence mutants. J. Biol. Chem. 261:3389–3395.Google Scholar
  562. Rzepecki, L. M., Strittmatter, P., and Herbette, L. G., 1986, X-ray diffraction analysis of cytochrome b5 reconstituted in egg phosphatidylcholine vesicles, Biophys. J. 49:829–838.PubMedGoogle Scholar
  563. Sakaguchi, M., Mihara, K., and Sato, R., 1984, Signal recognition particle is required for co-translational insertion of cytochrome P-450 into microsomal membrane. Proc. Natl. Acad. Sci. U.S.A. 81:3361–3364.PubMedGoogle Scholar
  564. Sakaguchi, M., Mihara, K., and Sato, R., 1987, A short amino terminal segment of microsomal cytochrome P-450 functions both as an insertion signal and as a stop-transfer sequence. EMBO J. 6:2425–2431.PubMedGoogle Scholar
  565. Sakakibara, R., Horio, Y., Ishiguro, M., Kanagawa, K., Matsuo, H., and Wada, H., 1987, An antibody and anti-idiotypic antibody against the extra signal peptide of pre-aspartate aminotransferase, Biochem. Biophys. Res. Commun. 148:979–988.Google Scholar
  566. Sakakibara, R., Kamisaki, Y., Horio, Y., and Wada, H., 1983, Precursor of mitochondrial glutamic oxaloacetic transaminase isoenzyme exits as dimer. Biochem. Int. 6:231–238.PubMedGoogle Scholar
  567. Santos, E., Kung, H., Young, I. G., and Kaback, H. R., 1982, In vitro synthesis of membrane bound D-lactate dehydrogenase of Escherichia coli. Biochemistry 21:2085–2091.PubMedGoogle Scholar
  568. Sautter, C., Keller, G., and Hock, B., 1988, Glyoxysomal citrate synthase from watermelon cotyledons: immunocytochemical localization and heterologous translation in Xenopus oocytes, Planta 173:289–297.Google Scholar
  569. Schatz, G., 1979, How mitochondria import proteins from the cytoplasm. FEBS Lett. 103:203–211.PubMedGoogle Scholar
  570. Schatz, G., and Butow, R. A., 1983, How are proteins imported into mitochondria. cell 32:316–318.PubMedGoogle Scholar
  571. Schechter, I., Burstein, Y., Zemell, R., Ziv, E., Kantor, F., and Papermaster, D. S., 1979, Messenger RNA for opsin from bovine retina: Isolation and partial sequence of the in vitro translation product. Proc. Natl. Acad. Sci. U.S.A. 76:2654–2658.PubMedGoogle Scholar
  572. Scheele, G. A., Jacoby, R., and Carne, T., 1980, Mechanism of compartmentation of secretory proteins: Transport of exocrine pancreatic proteins across the microsomal membrane. J. Cell Biol. 87:611–628.PubMedGoogle Scholar
  573. Schleyer, M., and Neupert, W., 1985, Transport of proteins into mitochondria: Translational intermediates spanning contact sites between outer and inner membranes. cell 43:339–350.PubMedGoogle Scholar
  574. Schleyer, M., Schmidt, B., and Neupert, W., 1982, Requirements of a membrane potential for the post-translational transfer of proteins into mitochondria. Eur. J. Biochem. 125:109–116.PubMedGoogle Scholar
  575. Schmidt, B., Henning, B., Zimmermann, R., and Neupert, W., 1983, Biosynthetic pathway of mitochondrial ATPase subunit 9 in Neuropsora crassa. J. Cell Biol. 96:248–255.PubMedGoogle Scholar
  576. Schmidt, G. W., Devillers-Thiery, A., Desruisseaux, H., Blobel, G., and Chua, N. H., 1979, Amino terminal amino acid sequences of precursor and mature forms of the ribulose 1,5-bisphosphate carboxylase small subunit from Chlamydomonas reinhardtii. J. Cell Biol. 83:615–623.PubMedGoogle Scholar
  577. Schmidt, R. J., Gillham, N. W., and Boynton, J. E., 1985, Processing of the precursor to a chloroplast ribosomal protein made in the cytosol occurs in two steps, one of which depends on a protein made in the chloroplast. Mol. Cell. Biol. 5:1093–1099.PubMedGoogle Scholar
  578. Schreier, P., Seftor, E. A., Schell, J., and Bohnert, H. J., 1985, The use of nuclear-encoded sequences to direct the light-regulated synthesis and transport of a foreign protein into plant chloroplasts. EMBO J. 4:25–32.PubMedGoogle Scholar
  579. Schwaiger, M., Herzog, V., and Neupert, W., 1987, Characterization of translocation contact sites involved in the import of mitochondrial proteins. J. Cell Biol. 105:235–246.PubMedGoogle Scholar
  580. Scotto, A. W., Goodwyn, D., and Zakim, D., 1987, Reconstitution of membrane proteins: Sequential incorporation of integral membrane proteins into preformed lipid bilayers. Biochemistry 26:833–839.PubMedGoogle Scholar
  581. Scoulica, E., Krause, E., Meese, K., and Dobberstein, B., 1987, Disassembly and domain structure of the proteins in the signal recognition particle. Eur. J. Biochem. 163:519–528.PubMedGoogle Scholar
  582. Seeburg, P. H., Shine, J., Martial, J. A., Ivarie, R. D., Morris, J. A., Ullrich, A., Baxter, J. D., and Goodman, H. M., 1978, Synthesis of growth hormone by bacteria. Nature (London) 276:795–798.Google Scholar
  583. Seehara, J. S., and Khorana, H. G., 1984, Bacteriorhodopsin precursor characterization and its integration into the purple membrane. J. Biol. Chem. 259:4187–4193.Google Scholar
  584. Sekizawa, J., Inouye, S., Halegoua, S., and Inouye, M., 1977, Precursors of major outer membrane proteins of Escherichia coli. Biochem. Biophys. Res. Commun. 77:1126–1133.PubMedGoogle Scholar
  585. Severina, I. I., and Skulachev, V. P., 1984, Ethylrhodamine as a fluorescent penetrating cation and a membrane potential sensitive probe in cyanobacterial cells. FEBS Lett. 165:61–71.Google Scholar
  586. Sharma, C. P., and Gehring, H., 1986, The precursor of mitochondrial aspartate aminotransferase is translocated into mitochondria as apoprotein. J. Biol. Chem. 261:11146–11149.PubMedGoogle Scholar
  587. Shiba, K., Ito, K., Yura, T., and Cerretti, D. P., 1984, A defined mutation in the protein export gene within the spc ribosomal protein operon of Escherichia coli: Isolation and characterization of a new temperature-sensitive sec γ mutant. EMBO J. 3:631–635.PubMedGoogle Scholar
  588. Shiba, K., Ito, K., and Yura, T., 1986, Suppressors of the sec γ 24 mutation: Identification and characterization of additional ssy genes in Escherichia coli. J. Bacteriol. 166:849–856.PubMedGoogle Scholar
  589. Sidhu, A., and Beattie, D., 1983, Kinetics of assembly of complex III into the yeast mitochondrial membrane. Evidence for a precursor to the iron-sulfur protein. J. Biol. Chem. 256:10649–10656.Google Scholar
  590. Siegel, V., and Walter, P., 1985, Elongation arrest is npt a prerequisite for secretory protein translocation across the microsomal membrane. J. Cell Biol. 100:1913–1921.PubMedGoogle Scholar
  591. Siegel, V., and Walter, P., 1986, Removal of the Alu structural domain from signal recognition particle leaves its protein translocation activity intact. Nature (London) 320:81–84.Google Scholar
  592. Siegel, V., and Walter, P., 1988a, Each of the activities of signal recognition particle (SRP) is contained within a distinct domain: Analysis of biochemical mutants of SRP, cell 52:39–49.PubMedGoogle Scholar
  593. Siegel, V., and Walter, P., 1988b, The affinity of signal recognition particle for presecretory proteins is dependent on nascent chain length, EMBO J. 7:1769–1775.PubMedGoogle Scholar
  594. Simon, K., Perara, E., and Lingappa, V. R., 1987, Translocation of globin fusion proteins across the endoplasmic reticulum membrane in Xenopus laevis oocytes. J. Cell Biol. 104:1165–1172.PubMedGoogle Scholar
  595. Singer, S. J., 1977, The fluid mosaic model of membrane structure, in Structure of Biological Membranes (S. Abrahamsson and I. Pascher, eds.), pp. 443–461. Plenum Press, New York.Google Scholar
  596. Singer, S. J., Maher, P. A., and Yaffe, M., 1987a, On the translocation of proteins across membranes. Proc. Natl. Acad. Sci. U.S.A. 84:1015–1019.PubMedGoogle Scholar
  597. Singer, S. J., Maher, P. A., and Yaffe, M. P., 1987b, On the transfer of integral proteins into membranes. Proc. Natl. Acad. Sci. U.S.A. 84:1960–1964.PubMedGoogle Scholar
  598. Skerjanc, I. S., Shore, G. C., and Silvius, J. R., 1987, The interaction of a synthetic mitochondrial signal peptide with lipid membranes is independent of transbilayer potential, EMBO J. 6:3117–3123.PubMedGoogle Scholar
  599. Small, G. M., and Lazarow, P. B., 1987, Import of the carboxy-terminal portion of acyl-CoA oxidase into peroxisomes of Candida tropicalis. J. Cell Biol. 105:247–250.PubMedGoogle Scholar
  600. Smeekens, S., Bauerle, C., Hageman, J., Keegstra, K., and Wasbeek, P., 1986, The role of the transit peptide in the routing of precursors towards different chloroplast comparttments. cell 46:365–375.PubMedGoogle Scholar
  601. Smeekens, S., van Steeg, H., Bauerle, C., Bettenbroek, H., Keegstra, K., and Weisbeek, P., 1987, Import into chloroplasts of a yeast mitochondrial protein directed by ferredoxin and plastocyanin transit peptides, Plant Mol. Biol. 9:377–388.Google Scholar
  602. Smith, H., Bron, S., Van Ee, J., and Venema, G., 1987, Construction and use of signal sequence selection vectors in Escherichia coli and Bacillus subtilis. J. Bacteriol. 169:3321–3328.PubMedGoogle Scholar
  603. Smith, W. P., 1980, Co-translational secretion of diphtheria toxin and alkaline phosphatase in vitro: Involvement of membrane protein(s). J. Bacteriol. 141:1142–1147.PubMedGoogle Scholar
  604. Smith, W. P., Tai, P. C., and Davis, B. D., 1978a, Nascent peptides as sole attachment of polysomes to membranes in bacteria. Proc. Natl. Acad. Sci. U.S.A. 75:814–817.PubMedGoogle Scholar
  605. Smith, W. P., Tai, P. C., and Davis, B. D., 1978b, Interaction of secreted nascent chains with surrounding membrane in Bacillus subtilis. Proc. Natl. Acad. Sci. U.S.A. 75:5921–5925.Google Scholar
  606. Smith, W. P., Tai, P. C., and Davis, B. D., 1979, Extracellular labeling of growing secreted polypeptide chains with surrounding membrane with diazoiodosulfanilic acid. Biochemistry 18:198–202.PubMedGoogle Scholar
  607. Smith, W. P., Tai, P. C., and Davis, B. D., 1981, Bacillus licheniformis penicillinase: Cleavage and attachment of lipid during co-translational secretion. Proc. Natl. Acad. Sci. U.S.A. 78:3501–3505.PubMedGoogle Scholar
  608. Soellner, T., Pfanner, N., and Neupert, W., 1988, Mitochondrial protein import: differential recognition of various transport intermediates by antibodies, FEBS. Lett. 229:25–29.Google Scholar
  609. Spiess, M., and Lodish, H. F., 1985, The sequene of a second human asialoglycoprotein receptor: Conservation of two receptors during evolution. Proc. Natl. Acad. Sci. U.S.A. 82:6465–6469.PubMedGoogle Scholar
  610. Spiess, M., and Lodish, H. F., 1986, An internal signal sequence; the asialoglycoprotein receptor membrane anchor is necessary. cell 44:177–185.PubMedGoogle Scholar
  611. Spiess, M., and Handschin, C., 1987, Deletion analysis of the internal signal-anchor domain of the human asialoglycoprotein receptor H. EMBO J. 6:2683–2691.PubMedGoogle Scholar
  612. Spiess, M., Schwartz, A. L., and Lodish, H. F., 1985, Sequence of human asialoglycoprotein receptor cDNA, an internal signal sequence for membrane insertion. J. Biol. Chem. 260:1979–1982.PubMedGoogle Scholar
  613. Strauch, K. L., Kumamoto, C. A., and Beckwith, J., 1986, Does sec A mediate coupling between secretion and translation in Escherichia coli? J. Bacteriol. 166:505–512.PubMedGoogle Scholar
  614. Strittmatter, P., Thiede, M. A., Hackett, C. S., and Ozols, J., 1988, Bacterial synthesis of active rat stearyl-CoA desaturase lacking the 26-residue amino-terminal amino acid sequence, J. Biol. Chem. 262:2532–2535.Google Scholar
  615. Strom, M. S., and Lory, S., 1987, Mapping of export signals of Pseudomonas aeruginosa pili with alkaline phosphatase fusions. J. Bacteriol. 169:3181–3188.PubMedGoogle Scholar
  616. Strubin, M., Mach, B., and Long, E. O., 1984, The complete sequence of the mRNA for HLADR associated invariant chain reveals a polypeptide chain with an unusual transmembrane polarity. EMBO J. 3:869–872.PubMedGoogle Scholar
  617. Stuart, R. A., Neupert, W., and Tropschug, M., 1987, Deficiency in mRNA splicing in a cytochrome c mutant of Neurospora crassa: Importance of carboxy terminus for import of apocytochrome c into mitochondria. EMBO J. 6:2131–2137.PubMedGoogle Scholar
  618. Sugimoto, K., Sugisaki, H., Okamoto, T., and Takanami, M., 1977, Studies on the bacteriophage fd DNA. IV. The sequence of messenger RNA for the major coat protein gene. J. Mol. Biol. 111:487–507.PubMedGoogle Scholar
  619. Sugita, H., Tobe, T., Sakamoto, T., and Higashi, T., 1982, Immature precursor catalase in subcellular fractions of rat liver. J. Biochem. (Tokyo) 92:509–515.Google Scholar
  620. Suissa, M., and Schatz, G., 1982, Import of proteins into mitochondria. Translatable mRNA for imported mitochondrial proteins are present in free as well as mitochondrial-bound cytoplasmic polysomes. J. Biol. Chem. 257:13048–13055.PubMedGoogle Scholar
  621. Sutcliffe, J. G., 1978, Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmide PBR 322. Proc. Natl. Acad. Sci. U.S.A. 75:3737–3741.PubMedGoogle Scholar
  622. Suzuki, Y., Orii, T., Takiguchi, M., Mori, M., Hijikata, M., and Hashimoto, T., 1987, Biosynthesis of membrane polypeptides of rat liver peroxisomes. J. Biochem. 101:491–496.PubMedGoogle Scholar
  623. Sveda, M. M., Markoff, L. J., and Lai, C. J., 1982, cell surface expression of the influenza virus hemagglutinin requires the hydrophobic carboxy terminal sequences. Cell 30:649–656.PubMedGoogle Scholar
  624. Swinkels, B. W., Evers, R., and Borst, P., 1988, The topogenic signal of glycosomal (microbody) phosphoglycerate kinase of Crithidia fasciaculata resides in a carboxy-terminal extension, EMBO J. 7:1159–1165.PubMedGoogle Scholar
  625. Sztul, E. S., Hendrick, J. P., Kraus, J. P., Wall, D., Kalousek, F., and Rosenberg, L. E., 1987, Import of rat ornithine transcarbamylase precursor into mitochondria: two-step processing of the leader peptide, J. Cell. Biol. 105:2631–2639.PubMedGoogle Scholar
  626. Tabe, L., Krieg, P., Strachan, R., Jackson, D., Wallis, E., and Colman, A., 1984, Segregation of mutant ovalbumins and ovalbumin-globin proteins in Xenopus oocytes. J. Mol. Biol. 180:645–666.PubMedGoogle Scholar
  627. Tadashi, J., Hisayuki, N., Shuichiro, M., Kazunori, S., and Yoshimasa, M., 1985, Cloning and sequence analysis of a cDNA encoding porcine mitochondrial aspartate aminotransferase precursor, Proc. Natl. Acad. Sci. USA 82:6065–6069.Google Scholar
  628. Tajima, S., Lauffer, L., Rath, V. L., and Walter, P., 1986, The signal recognition particle receptor is a complex that contains two distinct polypeptide chains. J. Cell Biol. 103:1167–1178.PubMedGoogle Scholar
  629. Takagaki, Y., Radhakrishnan, R., Gupta, C. M., and Khorana, H. G., 1983a, The membrane embedded segment of cytochrome b5 as studied by cross-linking with photoactivable phospholipids. I. Transferable form. J. Biol. Chem. 258:9128–9135.Google Scholar
  630. Takagaki, Y., Radhakrishnan, R., Wirtz, K. W. A., and Khorana, H. G., 1983b, The membrane embedded segment of cytochrome b5 as studied by cross-linking with photoactivable phospholipids. II. Nontransferable form. J. Biol. Chem. 258:9136–9143.PubMedGoogle Scholar
  631. Takiguchi, M., Miura, S., Mori, M., and Tatibana, M., 1983, Transport of proteins into mitochondria: A high conservation of precursor uptake and processing systems. Comp. Biochem. Physiol. B 75B:227–231.Google Scholar
  632. Taldmage, K., Stahl, S., and Gilbert, W., 1980a, Eukaryotic signal sequence transports insulin antigen in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 77:3369–3373.Google Scholar
  633. Talmadge, K., Kaufman, S., and Gilbert, W., 1980b, Bacteria mature preproinsulin to proinsulin. Proc. Natl. Acad. Sci. U.S.A. 77:3988–3992.PubMedGoogle Scholar
  634. Taldmadge, K., Brosius, J., and Gilbert, W., 1981, An “internal” signal sequence directs secretion and processing of proinsulin in bacteria. Nature (London) 294:176–178.Google Scholar
  635. Teintze, M., Slaughter, M., Weiss, H., and Neupert, W., 1982, Biogenesis of mitochondrial ubiquinol: Cytochrome creductase (cytochrome bcx complex). Precursor proteins and their transfer into mitochondria. J. Biol. Chem. 257:10364–10371.PubMedGoogle Scholar
  636. Thiede, M. A., Ozols, J., and Strittmatter, P., 1986, Construction and sequence of cDNA for rat liver stearyl coenzyme A desaturase. J. Biol. Chem. 261:13230–13235.PubMedGoogle Scholar
  637. Thibodeau, S. N., Lee, D. C., and Palmiter, R. D., 1978, Identical precursors for serum transferrin and egg white conalbumin. J. Biol. Chem. 253:3771–3774.PubMedGoogle Scholar
  638. Turn, N. J., and Silhavy, T. J., 1987, Characterization and In vivo cloning of prl C, a suppressor of signal sequence mutation in Escherichia coli, Genetics 116:513–521.Google Scholar
  639. Tweten, R. K., and Iandolo, J. J., 1983, Transport and processing of staphylococcal enterotoxin B. J. Bacteriol. 153:297–303.PubMedGoogle Scholar
  640. Valusek, G. P., Inouye, S., and Inouye, M., 1984, Effects of replacing serine and threonine residues within the signal peptide on the secretion of the major outer membrane lipoprotein of Escherichia coli. J. Biol. Chem. 259:6195–6200.Google Scholar
  641. Van Deenen, L. L. M., 1981, Topology and dynamics of phosopholipids in membranes, FEBS Lett. 123:3–15.PubMedGoogle Scholar
  642. Van Den Broek, G., Timko, M. P., Kausch, A. P., Cashmore, A. R., Montagu, M. V., and Herrera-Estrella, L., 1985, Targeting of a foreign protein to chloroplasts by fusion to the transit peptide from the small subunit of ribulose 1,5-bisphosphate carboxylase. Nature (London) 313:358–363.Google Scholar
  643. Van Loon, A. P. G. M., and Schatz, G., 1987, Transport of proteins to mitochondrial intermembrane space: The “sorting” domain of cytochrome c presequence is a stop-transfer sequence specific for mitochondrial inner membrane. EMBO J. 6:2441–2448.PubMedGoogle Scholar
  644. Van Loon, A. P. G. M., and Young, E. T., 1986, Intracellular sorting of alcohol dehydrogenase isoenzymes in yeast: A cytosolic location reflects absence of an aminoterminal targeting sequence for the mitochondria. EMBO J. 5:161–165.PubMedGoogle Scholar
  645. Van Loon, A. P. G. M., De Groot, R. J., De Haan, M., Dekker, A., and Grivell, L. A., 1984, The DNA sequence of the nuclear gene coding for the 17 kd subunit VI of the yeast ubiquinol-cytochrome c reductase: A protein with an extremely high content of acidic amino acid. EMBO J. 3:1039–1043.PubMedGoogle Scholar
  646. Van Loon, A. P. G. M., Brändli, A. W., and Schatz, G., 1986, The presequence of two imported mitochondrial proteins contains information for intracellular and intramitochondrial sorting. Cell 44:801–812.Google Scholar
  647. Van Loon, A. P. G. M., Brädli, A. W., Pesold-Hurt, B., Blank, D., and Schatz, G., 1987, Transport of proteins into the mitochondrial intermembrane space: “Matrix targeting” and the sorting domains in cytochrome cx presequence. EMBO J. 6:2433–2439.PubMedGoogle Scholar
  648. Van Steeg, H., Oudshoorn, P., Van Hell, B., Polman, J. E. M., and Grivell, L. A., 1986, Targeting efficiency of a mitochondrial presequence is dependent on the passenger protein. EMBO J. 5:3643–3650.PubMedGoogle Scholar
  649. Vassarotti, A., Chen, W. J., Smagula, C., and Douglas, M. G., 1987a, Sequences distal to mitochondrial targeting sequence are necessary for the maturation of F1-ATPase β-subunit precursor in mitochondria. J. Biol. Chem. 262:411–418.PubMedGoogle Scholar
  650. Vassarotti, A., Stroud, R., and Douglas, M., 1987b, Independent mutations at the amino terminus of a protein act as surrogate signals for mitochondrial import. EMBO J. 6:705–711.PubMedGoogle Scholar
  651. Verner, K., and Schatz, G., 1987, Import of an incompletely folded precursor protein into isolated mitochondria requires an energized inner membrane, but no added ATP. EMBO J. 6:2449–2456.PubMedGoogle Scholar
  652. Vestweber, D., and Schatz, G., 1988, Point mutations destabilizing a precursor protein enhance its post-translational import into mitochondria, EMBO J. 7:1147–1151.PubMedGoogle Scholar
  653. Viebrock, A., Perz, A., and Sebald, W., 1982, The imported preprotein of the proteolipid subunit of the mitochondrial ATP synthase from Neurospora crassa. Molecular cloning and sequencing of the mRNA. EMBO J. 1:565–571.PubMedGoogle Scholar
  654. Von Heijne, G., 1980, Transmembrane translocation of proteins. A detailed physicochemical analysis. Eur. J. Biochem. 103:431–438.Google Scholar
  655. Von Heijne, G., 1984, How signal sequences maintain cleavage specificity. J. Mol. Biol. 173:243–251.Google Scholar
  656. Von Heijne, G., 1985, Signal sequences. The limits of variation. J. Mol. Biol. 134:99–105.Google Scholar
  657. Von Heijne, G., 1986, Mitochondrial targeting sequences may form amphiphilic helices. EMBO J. 5:1335–1342.Google Scholar
  658. Von Heijne, G., and Blomberg, C., 1979, Transmembrane translocation of proteins. The direct transfer model. Eur. J. Biochem. 97:175–181.Google Scholar
  659. Von Heijne, G., and Segrest, J. P., 1987, The leader peptides from bacteriorhodopsin and halorhodopsin are potential membranes spanning amphiphilic helixes. FEBS Lett. 213:238–240.Google Scholar
  660. Walk, R. A., and Hock, B., 1978, Cell-free synthesis of glyoxysomal malate dehydrogenase. Biochem. Biophys. Res. Commun. 81:636–645.PubMedGoogle Scholar
  661. Walter, A., Margolis, D., Mohan, R., and Blumenthal, R., 1986, Apocytochrome c induces pH-dependent vesicle fusion. Membr. Biochem. 6:217–237.PubMedGoogle Scholar
  662. Walter, P., and Blobel, G., 1980, Purification of a membrane-associated protein complex required for translocation across the endoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 77:7112–7116.PubMedGoogle Scholar
  663. Walter, P., and Blobel, G., 1981a, Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in vitro assembled polysomes synthesizing secretory proteins. J. Cell Biol. 91:551–556.PubMedGoogle Scholar
  664. Walter, P., and Blobel, G., 1981b, Translocation of proteins across the endoplasmic reticulum. III. Signal recognition protein (SRP) causes signal sequence dependent and site specific arrest of chain elongation that is released by microsomal membranes. J. Cell Biol. 91:557–561.PubMedGoogle Scholar
  665. Walter, P., and Blobel, G., 1983, Disassembly and reconstitution of signal recognition particle. cell 34:525–533.PubMedGoogle Scholar
  666. Walter, P., Jackson, R. C., Marcus, M. M., Lingappa, V. R., and Blobel, G., 1979, Tryptic dissection of receptor(s) for the translocation of presecretory proteins across the microsomal membrane and reconstitution of translocation activity. Proc. Natl. Acad. Sci. U.S.A. 76:1795–1799.PubMedGoogle Scholar
  667. Walter, P., Ibrahimi, I., and Blobel, G., 1981, Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in vitro assembled polysomes synthesizing secretory protein. J. Cell Biol. 91:545–551.PubMedGoogle Scholar
  668. Wandinger-Ness, A. U., and Weiss, R. L., 1987, A single precursor protein for two separate mitochondrial enzymes in Neurospora crassa, J. Biol. Chem. 262:5823–5830.PubMedGoogle Scholar
  669. Wanner, B. L., Sarthy, A., and Beckwith, J. R., 1979, Escherichia coli periplasmic mutant that reduces amounts of several periplasmic and outer meimbrane proteins. J. Bacteriol. 140:229–239.PubMedGoogle Scholar
  670. Warren, T. G., and Dobberstein, B., 1978, Protein transfer across microsomal membrane reassembled from separated membrane components, Nature 273:569–571.PubMedGoogle Scholar
  671. Wasmann, C. C., Reis, B., Bartlett, S. G., and Bohnert, H., 1987, The importance of the transit peptide and the transported protein for import into chloroplasts, MGG. Mol. Gen. Genet. 205:445–453.Google Scholar
  672. Watanabe, K., and Kubo, S., 1982, Mitochondrial adenylate kinase from chicken liver. Purification, characterization and its cell-free synthesis. Eur. J. Biochem. 123:587–592.PubMedGoogle Scholar
  673. Watanabe, M., Hunt, J. F., and Blobel, G., 1986, In vitro synthesized outer membrane protein is integrated into bacterial inner membrane but translocated across microsomal membranes. Nature 323:71–73.PubMedGoogle Scholar
  674. Waters, M. G., and Blobel, G., 1986, Secretory protein translocation in a yeast cell free system can occur post-translationally and requires ATP hydrolysis. J. Cell Biol. 102:1543–1550.PubMedGoogle Scholar
  675. Waters, M. G., Chirico, W. J., and Blobel, G., 1986, Protein translocation across yeast microsomal membranes is stimulated by a soluble factor. J. Cell Biol. 103:2629–2636.PubMedGoogle Scholar
  676. Watson, E. E., 1984, Compilation of published signal sequences. Nucleic Acids Res. 12:5145–5164.PubMedGoogle Scholar
  677. Watts, C., Silver, P., and Wickner, W., 1981, Membrane assembly from purified components. II. Assembly of M13 procoat into liposomes reconstituted with purified leader peptides. cell 25:347–353.PubMedGoogle Scholar
  678. Webster, K. A., Patel, H. V., Freeman, K. B., and Papahadjopoulos, D., 1979, Interaction of mitochondrial malate dehydrogenase monomer with phospholipid vesicles. Biochem. J. 178:147–158.PubMedGoogle Scholar
  679. White, J. A., and Scandalios, J. G., 1987, In vitro synthesis and processing of Mn-superoxide dismutase (SOD-3) into maize mitochondria, Biochim. Biophys. Acta 226:16–25.Google Scholar
  680. Wickner, W., 1979, The assembly of proteins into biological membranes. The membrane trigger hypothesis. Annu. Rev. Biochem. 49:23–45.Google Scholar
  681. Wiedmann, M., Huth, A., and Rapoport, T. A., 1986a, A signal sequence is required for the functions of the signal recognition particle. Biochem. Biophys. Res. Commun. 134:790–796.PubMedGoogle Scholar
  682. Wiedmann, M., Huth, A., and Rapoport, T. A., 1986b, Internally transposed signal sequence of carp preproinsulin retains its function with the signal recognition particle. FEBS Lett. 194:139–145.PubMedGoogle Scholar
  683. Wiedmann, M., Kurzchalia, T. V., Bielka, H., and Rapoport, T. A., 1987, Direct probing of the interaction between the signal sequence of nascent preprolactin and the signal recognition particle by specific cross-linking. J. Cell Biol. 104:201–208.PubMedGoogle Scholar
  684. Wiedmann, M., Kurzchalia, T. V., Hartmann, E., and Rapoport, T. A., 1987, A signal sequence receptor in the endoplasmic reticulum membrane, Nature 328:830–833.PubMedGoogle Scholar
  685. Wiedmann, M., Wiedmann, B., Voigt, S., Wachter, E., Müller, H. G., and Rapport, T. A., 1988, Post-translational transport of proteins into microsomal membranes of Candida maltosa, EMBO J. 7:1763–1768.PubMedGoogle Scholar
  686. Wolfe, P. B., and Wickner, W., 1984, Bacterial leader peptidase, a membrane protein without a leader peptide uses the same export pathway as presecretory proteins, cell 36:1067–1072.PubMedGoogle Scholar
  687. Wolfe, P. B., Wickner, W., and Goodman, J. M., 1983, Sequence of the leader peptidase gene of Escherichia coli and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258:12073–12080.PubMedGoogle Scholar
  688. Wu, H. C., Hou, C., Lin, J. J. C., and Yem, D. W., 1977, Biochemical characterization of a mutant lipoprotein of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 74:1388–1392.PubMedGoogle Scholar
  689. Yaffe, M. P., and Schatz, G., 1984, Two nuclear mutations that block mitochondrial protein import in yeast. Proc. Natl. Acad. Sci. U.S.A. 81:4819–4823.PubMedGoogle Scholar
  690. Yamaguchi, J., Mori, H., and Nishimura, M., 1987, Biosynthesis and intracellular transport of glyoxysomal malate dehydrogenase in germinating pumpkin cotyledons. FEBS Lett. 213:329–332.Google Scholar
  691. Yamaguchi, J., Nishimura, M., and Akazawa, T., 1986, Purification and characterization of heme containing low-affinity form of catalase from seeding cotyledons, Eur. J. Biochem. 159:315–322.PubMedGoogle Scholar
  692. Yamamoto, K., and Fahimi, H. D., 1987, Three-dimensional reconstruction of a peroxisomal reticulum in regenerating rat liver. J. Cell Biol. 105:713–722.PubMedGoogle Scholar
  693. Yamamoto, M., Hayashi, N., and Kikuchi, G., 1981, Regulation of synthesis and intracellular translocation of β-aminolevulinate synthase by heme and its relation to the heme saturation of tryptophan pyrolase in rat liver, Arch. Biochem Biophys. 209:451–459.Google Scholar
  694. Yamane, K., Ichihara, S., and Mizushima, S., 1987, Transloction of protein across Escherichia coli membrane vesicles requires both the proton motive force and ATP. J. Biol. Chem. 262:2358–2362.PubMedGoogle Scholar
  695. Yazgu, M., Shiota-Nüya, S., Shimamoto, T., Kanazawa, H., Futai, M., and Tsuchiya, T., 1984, Nucleotide sequence of mel B gene and characteristics of deduced amino acid sequence of melibiose carrier in Escherichia coli. J. Biol. Chem. 259:4320–4326.Google Scholar
  696. Yoshida, Y., Hashimoto, T., Kimura, H., Sakakibara, S., and Tagawa, K., 1985, Interaction with mitochondrial membranes of a synthetic peptide with a sequence common to extra peptides of mitochondrial precursor protein. Biochem. Biophys. Res. Commun. 128:775–780.PubMedGoogle Scholar
  697. Yost, S. C., Hedgpeth, J., and Lingappa, V. R., 1983, A stop transfer sequence confers predictable transmembrane orientation to a previously secreted protein in cell free systems. Cell 34:759–766.PubMedGoogle Scholar
  698. Young, E. T., and Pilgrim, D., 1985, Isolation and DNA sequence of ADH3, a nuclear gene encoding the mitochondrial isoenzyme of alcohol dehydrogenase in Saccharomyces cerevisiae. Mol. Cell. Biol. 5:3024–3034.PubMedGoogle Scholar
  699. Yu, L. M., Merchant, S., Theg, S. M., and Selman, B. R., 1988, Ioslation of cDNA clone for the γ subunit of the chloroplast ATP synthase of Chlamydomonas reinhardtii: import and cleavage of the precursor, Proc. Natl. Acad. Sci. USA 85:1369–1373.PubMedGoogle Scholar
  700. Zaar, K., Volkl, A., and Fahimi, H. D., 1986, Isolation and characterization of peroxisomes from the renal cortex of beef, sheep, and cat. Eur. J. Cell Biol. 40:16–24.PubMedGoogle Scholar
  701. Zaar, K., Volkl, A., and Fahimi, H. D., 1987, Association of isolated bovine kidney cortex peroxisomes with endoplasmic reticulum. Biochim. Biophys. Acta 897:135–142.PubMedGoogle Scholar
  702. Zerial, M., Melancon, P., Schneider, C., and Garoff, H., 1986, The transmembrane segment of the human transferrin receptor functions as a signal peptide. EMBO J. 5:1543–1550.PubMedGoogle Scholar
  703. Zerial, M., Huylebroeck, D., and Garoff, H., 1987, Foreign transmembrane peptides replacing the internal signal sequences of transferrin receptor allow its translocation and membrane binding. cell 48:147–155.PubMedGoogle Scholar
  704. Zimmermann, R., and Neupert, W., 1980a, Transport of proteins into mitochondria. Post-translational transfer of ADP/ATP carrier into mitochondria in vitro. Eur. J. Biochem. 109:217–229.PubMedGoogle Scholar
  705. Zimmermann, R., and Neupert, W., 1980b, Biogenesis of glyoxysomes. Synthesis and intracellular transfer of isocitrate lyase. Eur. J. Biochem. 112:225–233.PubMedGoogle Scholar
  706. Zimmermann, R., and Neupert, W., 1981, Different transport pathways of individual precursor proteins in mitochondria. Eur. J. Biochem. 116:455–460.PubMedGoogle Scholar
  707. Zimmermann, R., and Wickner, W., 1983, Energetics and intermediates of the assembly of protein OmpA into the outer membrane of Escherichia coli. J. Biol. Chem. 258:3920–3925.PubMedGoogle Scholar
  708. Zimmermann, R., Watts, C., and Wickner, W., 1982, The biosynthesis of membrane bound M13 coat protein. Energetics and assembly intermediates. J. Biol. Chem. 257:6529–6536.PubMedGoogle Scholar
  709. Zwizinski, C., and Neupert, W., 1983, Precursor proteins are transported into mitochondria in the absence of proteolytic cleavage of the additional sequences. J. Biol. Chem. 258:13340–13346.PubMedGoogle Scholar
  710. Zwizinski, C., Schleyer, M., and Neupert, W., 1983, Transport of proteins into mitochondria. Precursor to the ADP/ATP carrier binds to receptor sites on isolated mitochondria. J. Biol. Chem. 258:4071–4074.PubMedGoogle Scholar
  711. Zwizinski, C., Schleyer, M., and Neupert, W., 1984, Proteinaceous receptor for the import of mitochondrial precursor proteins. J. Biol. Chem. 259:7850–7856.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  1. 1.Laboratory of Biochemistry and Molecular Biology of Bacterial LipidsFaculty of Sciences of the University of Paris VIParisFrance

Personalised recommendations