Fluorescence Studies on Prokaryotic Membranes

  • P. Proulx
Part of the Subcellular Biochemistry book series (SCBI, volume 13)


Some of the more common techniques used to study the physical properties of biological membranes include electron microscopy, x-ray and neutron diffraction, Raman spectroscopy, electron spin resonance (ESR), nuclear magnetic resonance (NMR), infrared spectroscopy, fluorescence spectroscopy, and differential scanning calorimetry (DSC). The uses and limitations of these various analytical tools were examined in a number of recent reviews (Ax-elrodet al., 1976; Andersen, 1978; Seelig and Seelig, 1980; Jacobs and Oldsfield, 1981; Yguerabide and Foster, 1981; Amey and Chapman, 1983; Bach, 1983; Davis, 1983; Devaux, 1983,1985; Hoffmann and Restall, 1983; Verma and Wallach, 1983; Chapman and Benga, 1984; Makowski and Li, 1984; Bergelson et al., 1985; Blaurock, 1985; Bloom and Smith, 1985; Mühlethaler and Jay, 1985; McElhaney, 1986; Restall and Chapman, 1986).


Electron Spin Resonance Outer Membrane Fluorescence Study Polarization Ratio Exogenous Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





n-(9-anthroyloxy) stearic acid


carboxyl cyanide m-chlorophenylhydrazone


1,6-diphenyl-l trans, 3 trans, 5 trans -hexatriene








N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamin

cis- or trans-PA

cis- or trans-parinaric acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ames, G. F., Spudish, E. N., and Nikaido, H., 1974, Protein composition of the outer membrane of Salmonella typhimurium: Effect of lipopolysaccharide mutations, J. Bacteriol. 117: 406–416.PubMedGoogle Scholar
  2. Amey, R. L., and Chapman, D., 1983, Infrared spectroscopic studies of model and natural bio-membranes, in Biomembrane Structure and Function (D. Chapman, ed.), pp. 199–256, Macmillan, London.Google Scholar
  3. Andersen, H. C., 1978, Probes of membrane structure, Annu. Rev. Biochem. 47: 359–583.PubMedGoogle Scholar
  4. Andrich, M. P., and Vanderkooi, J. M., 1976, Temperature dependence of l,6-diphenyl-l,3,5- hexatriene fluorescence in phospholipid artificial membranes, Biochemistry 15: 1257–1261.PubMedGoogle Scholar
  5. Ashe, G. B., and Steim, J. M., 1971, Membrane transitions in Gram-positive bacteria, Biochim. Biophys. Acta. 233: 810–814.PubMedGoogle Scholar
  6. Axelrod, D., Koppell, D. E., Schlessinger, J., Elson, E., and Webb, W. W., 1976, Mobility measurement by analysis of fluorescence photobleaching recovery kinetics, Biophys. J. 16: 1055–1069.PubMedGoogle Scholar
  7. Azzi, A., 1975, The application of fluorescent probes in membrane studies, Q. Rev. Biophys. 8: 237–316.PubMedGoogle Scholar
  8. Bach, D., 1983, Calorimetric studies of model and natural biomembranes, in Biomembrane Structure and Function (D. Chapman, ed.), pp. 1–41, Macmillan, London.Google Scholar
  9. Baldassare, J. J., McAfee, A. G., and Ho, C., 1973, A spin label study of Escherichia coli membrane vesicles, Biochem. Biophys. Res. Commun. 53: 617–623.PubMedGoogle Scholar
  10. Baldassare, J. J., Rhinehart, K. B., and Silbert, D. F., 1976, Modification of membrane lipid: Physical properties in relation to fatty acid structure, Biochemistry 15: 2986–2994.PubMedGoogle Scholar
  11. Bashford, C. L., and Smith, J. C., 1979, The use of optical probes to monitor membrane potential, Methods Enzymol. 55: 569–588.PubMedGoogle Scholar
  12. Bell, R. M., Mavis, R. D., Osborn, M. J., and Vagelos, P. R., 1971, Enzymes of phospholipid metabolism: Localization in the cytoplasmic and outer membrane of the cell envelope of Escherichia coli and Salmonella typhimurium, Biochim. Biophys. Acta. 249: 628–635.PubMedGoogle Scholar
  13. Bergelson, L. D., Molotkovsky, J. G., and Manevich, Y. M., 1985, Lipid-specific fluorescent probes in studies of biological membranes, Chem. Phys. Lipids. 37: 165–195.PubMedGoogle Scholar
  14. Blaurock, A. E., 1985, X-ray and neutron diffraction by membranes: How great is the potential for defining the molecular interactions?, in Progress in Protein-Lipid Interactions (A. W. Watts and J. J. H. H. M. Depont, eds.), pp. 1–43, Elsevier Science Publishers, Amsterdam.Google Scholar
  15. Bloom, M., and Smith, I. C. P., 1985, Manifestations of lipid-protein interactions in deuterium NMR, in Progress in Protein-lipid Interactions (A. W. Watts and J. J. H. H. M. DePont, eds.), pp. 61–88, Elsevier Science Publishers, Amsterdam.Google Scholar
  16. Boos, W., 1972, Structurally defective galactose-binding protein isolated from a mutant negative in the α-methylgalactoside transport system of Escherichia coli, J. Biol. 247: 5415–5424.Google Scholar
  17. Borle, F., and Seelig, J., 1983,Structure of Escherichia coli membranes. Deuterium magnetic resource studies of the phosphoglycerol head group in intact cells and model membranes, Biochemistry 22: 5536–5544.Google Scholar
  18. Boulanger, P., Labedan, B., and Letellier, L., 1985, Involvement of calcium in the transient depolarization of Escherichia coli cytoplasmic membrane induced by phase adsorption: A study with the fluorescent calcium indicator Quin 2, Biochem. Biophys. Res. Commun. 131: 856–862.PubMedGoogle Scholar
  19. Brass, J. M., Higgins, C. F., Foley, M., Rugman, P. A., Birmingham, J., and Garland, P., 1986, Lateral diffusion of proteins in the periplasma of Escherichia coli, J. Bacteriol. 165: 789–794.Google Scholar
  20. Braun, V., 1975, Covalent lipoprotein from the outer membrane of Escherichia coli, Biochim. Biophys. Acta. 415: 335–377.PubMedGoogle Scholar
  21. Brewer, G. J., 1976, The state of energization of the membrane of Escherichia coli as affected by physiological conditions and colicin K, Biochemistry 15: 1387–1392.PubMedGoogle Scholar
  22. Burnell, E. L., Van Alphen, L., Verkleij, A., De Kruijff, B., and Lugtenberg, B., 1980, 31P- nuclear magnetic resonance and freeze-fracture electron microscopy studies on Escherichia coli. 1. Cytoplasmic membrane and total phospholipids, Biochim. Biophys. Acta. 597: 492–501.PubMedGoogle Scholar
  23. Buttke, J. M., and Ingram, L. O., 1978, Mechanism of ethanol-induced changes in lipid composition of Escherichia coli. Inhibition of fatty acid synthesis in vivo, Biochemistry 17: 637–644.PubMedGoogle Scholar
  24. Buttke, T. M., and Ingram, L. O., 1980, Ethanol-induced changes in lipid composition of Escherichia coli: Inhibition of saturated fatty acid synthesis in vitro, Arch. Biochem. Biophys. 203: 465–471.Google Scholar
  25. Cain, B. D., Deal, C. D., Fraley, R. T., and Kaplan, S., 1981, in vivo intermembrane transfer of phospholipids in the photosynthetic bacterium, Rhodopseudomonas sphaeroides, J. Bacteriol. 145: 1154–1166.PubMedGoogle Scholar
  26. Cain, B. D., Donohue, T. J., Shepherd, W. D., and Kaplan, S., 1984, Localization of phospholipid biosynthetic enzyme activities in cell-free fractions derived from Rhodopseudomonas sphaeroides, J. Biol. Chem. 259: 942–948.PubMedGoogle Scholar
  27. Casal, H. L., Cameron, D. G., Smith, I. C. P., and Mantsch, H. H., 1980, Acholeplasma laidlawii membranes: A Fourier transform infrared study of the influence of protein on lipid organization and dynamics, Biochemistry 19: 444–451.PubMedGoogle Scholar
  28. Chapman, D., and Benga, G., 1984, Biomembrane fluidity—Studies of model and natural bio-membranes, in Biological Membranes (D. Chapman, ed.), pp. 1–56, Academic Press, London.Google Scholar
  29. Chapman, D., Goni, F. M., and Pink, D. A., 1983, On the interactions of probes and integral proteins in lipid bilayers, in Liposomal Letters (A. D. Bangham, ed.), pp. 169–179, Academic Press, London.Google Scholar
  30. Cheng, S., Thomas, J. K., and Kulpa, C. F., 1974, Dynamics of pyrene fluorescence in Escherichia coli membrane vesicles, Biochemistry 13: 1135–1139.PubMedGoogle Scholar
  31. Clejan, S., and Bittman, R., 1984, Decreases in rates of lipid exchange between Mycoplasma gallisepticum cells and unilamellar vesicles by incorporation of sphingomyelin, J. Biol. Chem. 259: 10823–10826.PubMedGoogle Scholar
  32. Cohen, L. K., Leuking, D. R., and Kaplan, S., 1979, Intermembrane phospholipid transfer mediated by cell-free extracts of Rhodopseudomonas sphaeroides, J. Biol. Chem. 254: 721–728.PubMedGoogle Scholar
  33. Colley, C. M., and Metcalfe, J. C., 1972, The localization of small molecules in lipid bilayers, FEBS Lett. 24: 241–246.PubMedGoogle Scholar
  34. Cossins, A. R., 1977, Adaptation of biological membranes to temperature. The effect of temperature acclimation of goldfish upon the viscosity of synaptosomal membranes, Biochim. Biophys. Acta. 470: 395–411.PubMedGoogle Scholar
  35. Coughlin, R. T., Haug, A., and McGroarty, E. J., 1983, Electron spin resonance probing of lipopolysaccharide domains in the outer membrane of Escherichia coli, Biochim. Biophys. Acta. 729: 161–166.Google Scholar
  36. Davenport, L., Dale, R. E., Bisby, R. H., and Cundall, R. B., 1985, Transverse location of the fluorescent probe l,6-diphenyl-l,3,5-hexatriene in model lipid membrane systems by resonance excitation energy transfer, Biochemistry 24: 4097–4108.PubMedGoogle Scholar
  37. Davis, J. H., 1983, The description of membrane lipid conformation, order and dynamics by 2H- NMR, Biochim. Biophys. Acta. 737: 117–171.PubMedGoogle Scholar
  38. Davis, J. H., Nichol, C. P., Weeks, G., and Bloom, M., 1979, Study of the cytoplasmic and outer membrane of Escherichia coli by deuterium magnetic resonance, Biochemistry 18: 2103–2112.PubMedGoogle Scholar
  39. Devaux, P. F., 1983, ESR and NMR studies of lipid-protein interactions in membranes, in Biological Magnetic Resonance (L. J. Berliner and J. Reuben, eds.), Vol. V, pp. 183–299, Plenum Press, New York.Google Scholar
  40. Devaux, P. F., 1985, Conventional ESR spectroscopy of membrane proteins: Recent applications, in The Enzyme of Biological Membranes; 2nd ed. (A. N. Martonosi, ed.), Vol. 1, pp. 259–285, Plenum Press, New York.Google Scholar
  41. Dombek, K. M., and Ingram, L. O., 1984, Effect of ethanol on Escherichia coli plasma membranes, J. Bacteriol. 157: 233–239.PubMedGoogle Scholar
  42. Driessen, A. J. M., Hoekstra, D., Scherphof, G., Kalicharan, R. D., and Wilchut, J., 1985, Low pH-induced fusion of liposomes with membrane vesicles derived from Bacillus subtilis, J. Biol. Chem. 260: 10880–10887.PubMedGoogle Scholar
  43. Dupont, G., Gabriel, A., Chabre, M., Gulik-Krzywicki, T., and Schechter, E., 1972, Use of a new detector for x-ray diffraction and kinetics of the ordering of the lipids of Escherichia coli: Membranes and model systems, Nature 238: 331–333.PubMedGoogle Scholar
  44. Emmerling, G., Henning, U., and Gulik-Kzywicki, T., 1977, Order-disorder conformational transition of hydrocarbon chains in lipopolysaccharide from Escherichia coli, Eur. J. Biochem. 78: 503–509.PubMedGoogle Scholar
  45. Fiil, A., and Branton, D., 1968, Changes in the plasma membrane of Escherichia coli during magnesium starvation, J. Bacteriol. 98: 1320–1327.Google Scholar
  46. Finne, G., and Matches, J. R., 1976, Spin-labelling studies on the lipids of psychrophilic, psychotropic and mesophilic Clostridia, J. Bacteriol. 125: 211–219.PubMedGoogle Scholar
  47. Fraley, R. T., Jameson, D. M., and Kaplan, S., 1978, The use of the fluorescent probe α-parinaric acid to determine the physical state of the intracytoplasmic membranes of the photosynthetic bacterium R. sphaeroides, Biochim. Biophys. Acta. 511: 52–69.PubMedGoogle Scholar
  48. Fraley, R. T., Jameson, D. M., and Kaplan, S., 1978, The use of the fluorescent probe α-parinaric acid to determine the physical state of the intracytoplasmic membranes of the photosynthetic bacterium R. sphaeroides, Biochim. Biophys. Acta. 511: 52–69.PubMedGoogle Scholar
  49. Fraley, R. T., Fornari, C. S., and Kaplan, S., 1979a, Entrapment of a bacterial plasmid in phospholipid vesicles: Potential for gene transfer, Proc. Natl. Acad. Sci. U.S.A. 76: 3348–3352.PubMedGoogle Scholar
  50. Fraley, R. T., Lueking, D. R., and Kaplan, S., 1979b, The relationship of intracytoplasmic membrane assembly to the cell division cycle in Rhodopseudomonas sphaeroides, J. Biol. Chem. 254: 1980–1986.PubMedGoogle Scholar
  51. Fraley, R. T., Yen, G. S. L., Lueking, D. R., and Kaplan, S., 1979c, The physical state of the intracytoplasmic membrane of Rhodopseudomonas sphaeroides and its relationship to the cell division cycle, J. Biol. Chem. 245: 1987–1991.Google Scholar
  52. Franklin, T. J., and Snow, G. A., 1981, Biochemistry of Antimicrobial Action, 3rd ed., Chapman and Hall, London.Google Scholar
  53. Funahara, Y., and Nikaido, H., 1980, Asymmetric localization of lipopolysaccharide on the outer membrane of Salmonella typhimurium, J. Bacteriol. 141: 1463–1465.PubMedGoogle Scholar
  54. Gallay, J., and Vincent, M., 1986, Cardiolipin-cholesterol interactions in the liquid-crystalline phase: A steady-state and time-resolved fluorescent anisotropy study with eis- and trans-pmnaric acids as probes, Biochemistry 25: 2650–2656.PubMedGoogle Scholar
  55. Gaily, H. U., Pluschke, G., Overath, P., and Seelig, J., 1979, Structure of Escherichia coli membranes. Phospholipid composition in model membranes and cells as studied by deuterium magnetic resonance, Biochemistry 18: 5605–5609.Google Scholar
  56. Gaily, H. U., Pluschke, G., Overath, P., and Seelig, J., 1980, Structure of Escherichia coli membranes. Fatty acid chain order parameters of inner and outer membranes and derived liposomes, Biochemistry 19: 1638–1643.Google Scholar
  57. Gaily, H. U., Pluschke, G., Overath, P., and Seelig, P., 1981, Structure of Escherichia coli membranes. Glycerol auxotrophs as a tool for the analysis of the phospholipid head-group region by deuterium magnetic resonance, Biochemistry 20: 1826–1831.Google Scholar
  58. Ghazi, A., Shechter, E., Letellier, L., and Labedan, B., 1981, Probes of membrane potential in Escherichia coli cells, FEBS Lett. 125: 197–200.PubMedGoogle Scholar
  59. Gilliland, S. E., Nelson, C.R., and Maxwell, C., 1985, Assimilation of cholesterol by Lactobacillus acidophilus, Appl. Environ. Microbiol. 49: 377–381.PubMedGoogle Scholar
  60. Gmeiner, J., and Schlecht, S., 1979, Molecular organization of the outer membrane of Salmonella typhimurium, Eur. J. Biochem. 93: 609–620.PubMedGoogle Scholar
  61. Gmeiner, J., and Schlecht, S., 1980, Molecular composition of the outer membrane of Escherichia coli and the importance of protein-lipopolysaccharide interactions, Arch. Microbiol. 127: 81–86.PubMedGoogle Scholar
  62. Gray, G. W., and Wilkinson, S. G., 1965, The action of ethylenediaminetetraacetic acid on Pseudomonas aeruginase, J. Appl. Bacteriol. 28: 153–164.Google Scholar
  63. Gross, Z., Rottem, S., and Bittman, R., 1982, Phospholipid interconversions in Mycoplasma capricolum, Eur. J. Biochem. 122: 169–174.PubMedGoogle Scholar
  64. Grossowicz, N., and Ariel, M., 1963, Mechanism of protection of cells by spermine against ly-sozyme-induced lysis, J. Bacteriol. 85: 293–300.PubMedGoogle Scholar
  65. Gunstone, F. D., and Subbarao, R., 1967, New tropical seed oils. Part 1. Conjugated trienoic and tetraenoic acids and their oxo derivatives in the seed oils of C. iaco and P. laurinum, Chem. Phys. Lipids. 1: 349–359.Google Scholar
  66. Haest, C. W. M., Verkleij, A. J., deGier, J., Scheek, R., Ververgaert, P. H. J., and VanDeenen, L. L. M., 1974, The effect of lipid phase transitions in the architecture of bacterial membranes, Biochim. Biophys. Acta. 356: 17–26.PubMedGoogle Scholar
  67. Hancock, R. E. W., 1984, Alterations in outer membrane permeability, Annu. Rev. Microbiol. 38: 237–264.PubMedGoogle Scholar
  68. Hancock, R. E. W., and Wong, P. G. W., 1984, Compounds which increase the permeability of the Pseudomonas aeruginosa outer membrane, Antimicrob. Agents Chemother. 26: 48–52.PubMedGoogle Scholar
  69. Hancock, R. E. W., Raffle, V. J., and Nicas, T. I., 1981, Involvement of the outer membrane in gentamicin and streptomycin uptake and killing in Pseudomonas aeruginosa, Antimicrob. Agents Chemother. 19: 777–785.PubMedGoogle Scholar
  70. Häuser, H., Hazlewood, G. P., and Dawson, R. M. C., 1979, Membrane fluidity of a fatty acid auxotroph grown with palmitic acid, Nature 279: 536–538.PubMedGoogle Scholar
  71. Häuser, H., Hazlewood, G. P., and Dawson, R. M. C., 1979, Membrane fluidity of a fatty acid auxotroph grown with palmitic acid, Nature 279: 536–538.PubMedGoogle Scholar
  72. Häuser, H., Hazlewood, G. P., and Dawson, R. M. C., 1985, Characterization of membrane lipids of a general fatty acid auxotrophic bacterium by electron spin resonance spectroscopy and differential scanning calorimetry, Biochemistry 24: 5247–5253.PubMedGoogle Scholar
  73. Helgerson, S. L., and Cramer, W. A., 1977, Changes in Escherichica coli cell envelope structure and the sites of fluorescence probe binding caused by carbonyl cyanine /7-trifluoromethoxy-phenylhydrazone, Biochemistry 16: 4109–4117.PubMedGoogle Scholar
  74. Helgerson, S. L., Cramer, W. A., Harris, J. M., and Lytle, F. E., 1974, Evidence for a micro-viscosity increase in the Escherichia coli cell envelope caused by colicin El, Biochemistry 13: 3057–3061.PubMedGoogle Scholar
  75. Hellion, P., Landry, F., Subbaiah, P. V., and Proulx, P., 1980, The uptake and acylation of exogenous lysophosphatidylethanolamine by Escherichia coli cells, Can. J. Biochem. 58: 1381–1386.PubMedGoogle Scholar
  76. Henson, J. M., aand Walker, J. R., 1982, Genetic analysis of acr A and lir mutations of Escherichia coli, J. Bacteriol. 152: 1301–1302.PubMedGoogle Scholar
  77. Herring, F. G., Krisman, A., Sedgwick, E. G., and Bragg, P. D., 1985, Electron spin resonance studies of lipid fluidity changes in membranes of an uncouple-resistant mutant of Escherichia coli, Biochim. Biophys. Acta. 819: 231–240.PubMedGoogle Scholar
  78. Heyn, M. P., 1979, Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments, FEBS Lett. 108: 359–364.PubMedGoogle Scholar
  79. Hobot, J. A., Carlemalm, E., Villiger, W., and Killenberger, E., 1984, Periplasmic gel: New concept resulting from the reinvestigation of bacterial cell envelope ultrastructure by new methods, J. Bacteriol. 160: 143–152.PubMedGoogle Scholar
  80. Hoffman, W., and Restall, C. J., 1983, Rotational and lateral diffusion of membrane proteins as determined by laser techniques, in Biomembrane Structure and Function (D. Chapman, ed.), pp. 257–318, Macmillan, London.Google Scholar
  81. Ingram, L. O., 1976, Adaptation of membrane lipids to alcohols, J. Bacteriol. 125: 670–678.PubMedGoogle Scholar
  82. Ingram, L. O., 1977, Preferential inhibition of phosphatidylethanolamine synthesis in Escherichia coli by alcohols, Can. J. Microbiol. 23: 779–789.PubMedGoogle Scholar
  83. Ingram, L. O., 1982, Regulation of fatty acid composition in Escherichia coli: A proposed common mechanism for changes induced by ethanol, chaotropic agents and a reduction of growth temperature, J. Bacteriol. 149: 166–172.PubMedGoogle Scholar
  84. Ingram, L. O., and Buttke, J. M., 1984, Effects of alcohols on microorganisms, Adv. Microbiol. Physiol. 25: 253–300.Google Scholar
  85. Ingram, L. O., and Vreeland, N. S., 1980, Differential effects of ethanol and hexanol on the Escherichia coli cell envelope, J. Bacteriol. 144: 481–488.PubMedGoogle Scholar
  86. Inouye, M., 1979, Bacterial Outer Membranes. Biogenesis and Functions, Wiley-Interscience, New York.Google Scholar
  87. Inouye, M., Shaw, J., and Shen, C., 1972, The assembly of a structural lipoprotein in the envelope of Escherichia coli, J. Biol. Chem. 247: 8154–8159.PubMedGoogle Scholar
  88. Irvin, R. T., MacAlister, T. J., Chan, R., and Costerton, J. W., 1981, Citrate-Tris (Hydroxymethyl) aminomethane-mediated release of outer membrane sections from the cell envelope of a deep-rough (heptose-deficient lipopolysaccharide) strain of Escherichia coli 08, J. Bacteriol. 145: 1386–1396.PubMedGoogle Scholar
  89. Ishinaga, M., Kanamoto, R., and Kito, M., 1979, Distribution of phospholipid molecular species in outer and cytoplasmic membranes of Escherichia coli, J. Biochem. (Tokyo) 86: 161–165.Google Scholar
  90. Jackson, M. B., and Cronan, J. E., 1978, An estimate of the minimum amount of fluid lipid required for the growth of Escherichia coli, Biochim. Biophys. Acta. 512: 472–479.PubMedGoogle Scholar
  91. Jackson, M. B., and Sturtevant, J. M., 1977, Studies of the lipid phase transitions of Escherichia coli by high sensitivity differential scanning calorimetry, J. Biol. Chem. 252: 4749–4751.PubMedGoogle Scholar
  92. Jacobs, R. E., and Old field, E., 1981, NMR of membranes, Progr. NMR Spectrosc. 14: 113–136.Google Scholar
  93. Jähnig, F., 1979, Structural order of lipids and proteins in membranes: Evaluation of fluorescence anisotropy data, Proc. Natl. Acad. Sci. U.S.A. 76: 6361–6365.PubMedGoogle Scholar
  94. Jain, M. K., and Wu, N. M., 1977, Effect of small molecules on the dipalmitoyl lecithin liposomal bilayer: III. Phase transition in lipid bilayer, J. Membr. Biol. 34: 157–201.Google Scholar
  95. Janoff, A. S., Haug, A., and McGroarty, E. J., 1979, Relationship of growth temperature and thermotropic lipid phase changes in cytoplasmic and outer membrane from Escherichia coli K12, Biochim. Biophys. Acta. 555: 56–66.PubMedGoogle Scholar
  96. Janoff, A. S., Gupte, S., and McGroarty, E. J., 1980, Correlation between temperature range of growth and structural transitions in membranes and lipids of Escherichia coli K12, Biochim. Biophys. Acta. 598: 641–644.PubMedGoogle Scholar
  97. Jones, N. C., and Osborn, M. J., 1977a, Interaction of Salmonella typhimurium with phospholipid vesicles: Incorporation of exogenous lipids into intact cells, J. Biol. Chem. 252: 7398–7404.PubMedGoogle Scholar
  98. Jones, N. C., and Osborn, M. J. 1977b, Translocation of phospholipids between the outer and inner membranes of Salmonella typhimurium, J. Biol. Chem. 252: 7405–7412.PubMedGoogle Scholar
  99. Kamio, Y., and Nikaido, H., 1976, Outer membrane of Salmonella typhimurium: Accessibility of phospholipid head groups to phospholipase C and cyanogen bromide activated dextran in the external medium, Biochemistry 15: 2561–2570.PubMedGoogle Scholar
  100. Kamio, Y., and Nikaido, H., 1977, Outer membranes of Salmonella typhimurium. Identification of proteins exposed on cell surface, Biochim. Biophys. Acta. 464: 589–601.PubMedGoogle Scholar
  101. Kang, S. Y., Gutowsky, H. S., and Old field, E., 1979, Spectroscopic studies of specifically deuterium labelled membrane systems. Nuclear magnetic resonance investigation of protein-lipid interactions of Escherichia coli membranes, Biochemistry 18: 3268–3272.PubMedGoogle Scholar
  102. Kang, S. Y., Kinsey, R. A., Rajan, S., Gutowsky, H. S., Gubridge, M. G., and Oldfield, E., 1981, Protein-lipid interactions in biological and model membrane systems. Deuterium NMR of Acholeplasma laidlawii B, Escherichia coli and cytochrome oxidase systems containing specifically deuterated lipids, J. Biol. Chem. 256: 1155–1159.PubMedGoogle Scholar
  103. Kates, M., Kushner, D. J., and James, A. T., 1962, The lipid composition of Bacillus cereus as influenced by the presence of alcohols in the culture medium, Can. J. Biochem. Physiol. 40: 83–93.PubMedGoogle Scholar
  104. Kleeman, W., and McConnell, H. M., 1974, Lateral phase separations in Escherichia coli membranes, Biochim. Biophys. Acta. 345: 220–230.Google Scholar
  105. Kleeman, W., Grant, C. W. M., and McConnell, H. M., 1974, Lipid phase separations and protein distribution in membranes, J. Supramol. Struct. 2: 609–616.Google Scholar
  106. Knacker, T., Harwood, J. L., Hunter, C. N., and Russell, N. J., 1985, Lipid biosynthesis in synchronized culture of the photosynthetic bacterium Rhodopseudomonas sphaeroides, Biochem. J. 229: 701–709.PubMedGoogle Scholar
  107. Koplow, J., and Goldfine, H., 1974, Alterations in the outer membrane of the cell envelope of heptose-deficient mutants of Escherichia coli, J. Bacteriol. 117: 527–543.PubMedGoogle Scholar
  108. Labedan, B., and Letellier, L., 1981, Membrane potential changes during the first steps of coliphage infection, Proc. Natl. Acad. Sci. U.S.A. 78: 215–219.PubMedGoogle Scholar
  109. Ladbrooke, M. D., and Chapman, D., 1969, Thermal analysis of lipids, proteins and biological membranes, Chem. Phys. Lipids. 3: 304–367.PubMedGoogle Scholar
  110. Legendre, S., Letellier, L., and Shechter, 1980, Influence of lipids with branched-chain fatty acids on the physical, morphological and functional properties of Escherichia coli cytoplasmic membrane, Biochim. Biophys. Acta. 602: 491–505.PubMedGoogle Scholar
  111. Le Grimellec, C., Cardinal, J., Giocondi, M.-C, and Carriere, S., 1981, Control of membrane lipids of Mycoplasma gallisepticum: Effect on lipid order, J. Bacteriol. 146: 155–162.PubMedGoogle Scholar
  112. Leive, L., 1965, Release of lipopolysaccharide by EDTA treatment of Escherichia coli, Biochem. Biophys. Res. Commun. 21: 290–296.PubMedGoogle Scholar
  113. Leive, L., 1974, The barrier function of the Gram-negative envelope,Ann. N.Y. Acad. Sci. 235: 109–127.PubMedGoogle Scholar
  114. Leive, L., Telesetsky, S., Coleman, W. G., Jr., and Carr, D., 1984, Tetracyclines of various hydrophobicities as a probe for permeability of Escherichia coli outer membranes, Antimicrob. Agents Chemother. 25: 539–544.PubMedGoogle Scholar
  115. Lelkes, P. I., Klein, L., Marikovsky, Y., and Eisenbach, M., 1984, Liposome-mediated transfer of macromolecules into flagellated cell envelopes from bacteria, Biochemistry 23: 563–568.PubMedGoogle Scholar
  116. Lentz, R. B., Barenholz, Y., and Thompson, T. E., 1976, Fluorescence depolarization studies of phase transition and fluidity in phospholipid bilayers. 1. Single component phosphatidylcholine liposomes, Biochemistry 15: 4521–4528.PubMedGoogle Scholar
  117. Lesslauer, W., Cain, J., and Blaisie, J. K., 1971, On the location of l-anilino-8-naphthylene-sulfonate in lipid model systems. An x-ray diffraction study, Biochim. Biophys. Acta. 24: 547–566.Google Scholar
  118. Letellier, L., and Labedan, B., 1984, Involvement of envelope-bound calcium on the transient depolarization of the Escherichia coli cytoplasmic membrane induced by bacteriophage T4 and T5 adsorption, J. Bacteriol. 157: 789–794.PubMedGoogle Scholar
  119. Letellier, L., and Labedan, B., 1985, Release of respiratory control in Escherichia coli after bacteriophage adsorption: Process independent of DNA injection, J. Bacteriol. 16: 179–182.Google Scholar
  120. Letellier, L., and Shechter, E., 1979, Cyanine dye as monitor of membrane potentials in Escherichia coli cells and membrane vesicles, Eur. J. Biochem. 102: 441–447.PubMedGoogle Scholar
  121. Letellier, L., Moudden, H., and Shechter, E., 1977, Lipid and protein segregation in Escherichia coli membrane: Morphological and structural study of different cytoplasmic membrane fractions, Proc. Natl. Acad. Sci. U.S.A. 74: 452–456.PubMedGoogle Scholar
  122. Linden, C. D., Keith, A. D., and Fox, C. F., 1973a, Correlations between fatty acid distribution in phospholipids and the temperature dependence of membrane physical state, J. Supramol. Struct. 1: 523–534.PubMedGoogle Scholar
  123. Linden, C. D., Wright, K. L., McConnell, H. M., and Fox, C. F., 1973b, Lateral phase separations in membrane lipids and the mechanism of sugar transport in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 70: 2271–2275.PubMedGoogle Scholar
  124. Loh, B., Grant, C., and Hancock, R. E. W., 1984, Use of the fluorescent probe 1-N-phenyl-naphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa, Antimicrob. Agents Chemother. 26: 546–551.PubMedGoogle Scholar
  125. Lugtenberg, E. J. J., and Peters, R., 1976, Distribution of lipids in cytoplasmic and outer membranes of Escherichia coli K12, Biochim. Biophys. Acta. 441: 38–47.PubMedGoogle Scholar
  126. Lugtenberg, B., and Van Alphen, L., 1983, Molecular architecture and functioning of the outer membranes of Escherichia coli and Gram-negative bacteria, Biochim. Biophys. Acta. 737: 51–115.PubMedGoogle Scholar
  127. Mackay, A. L., Nichol, C. P., Weeks, G., and Davis, J. H., 1984, A proton and deuterium nuclear magnetic resonance study of orientational order in aqueous dispersions of lipopolysaccharide and lipopolysaccharide/dipalmitoylphosphatidylcholine mixtures, Biochim. Biophys. Acta. 774: 181–187.Google Scholar
  128. Makowski, L., and Li, J., 1983, X-ray diffraction and electron microscopy studies of the molecular structure of biological membranes, in Biomembrane Structure and Function (D. Chapman, ed.), pp. 43–166, Macmillan, London.Google Scholar
  129. Matayoshi, E. D., and Kleinfeld, A. M., 1981, Emission wavelength-dependent decay of the 9- anthroyloxy-fatty acid membrane probes, Biophys. J. 35: 215–235.PubMedGoogle Scholar
  130. McElhaney, R. N., 1984, The structure and function of the Acholeplasma laidlawii plasma membrane, Biochim. Biophys. Acta. 779: 1–42.PubMedGoogle Scholar
  131. McElhaney, R. N., 1986, Differential scanning calorimetry studies of lipid-protein interactions in model membrane systems, Biochim. Biophys. Acta. 864: 361–421.PubMedGoogle Scholar
  132. McGibbon, L., Cossins, A. R., Quinn, P. J., and Russell, N. J. 1985, A differential scanning calorimetry and fluorescence polarization study of membrane lipid fluidity in a psychrophilic bacterium, Biochim. Biophys. Acta. 820: 115–121.Google Scholar
  133. Mclntyre, T. M., and Bell, R. M., 1978, Escherichia coli mutants defective in membrane phospholipid synthesis: Binding and metabolism of 1-oleoylglycerol 3-phosphate by a pis B deep rough mutant, J. Bacteriol. 135: 215–226.Google Scholar
  134. Melchior, D. L., 1982, Lipid phase transitions and regulation of membrane fluidity in prokaryotes, in Current Topics in Membranes and Transport (S. Razin and S. Rottem, eds.), Vol. 17, pp. 263–316, Academic Press, New York.Google Scholar
  135. Melchior, D. L., and Steim, J. M., 1976, Thermotropic transitions in biomembranes, Annu. Rev. Biophys. Bioeng. 5: 205–238.PubMedGoogle Scholar
  136. Mely-Goubert, B., and Freedman, M. H., 1980, Lipid fluidity and membrane protein monitoring using l,6-diphenyl-l,3,5-hexatriene, Biochim. Biophys. Acta. 601: 315–327.PubMedGoogle Scholar
  137. Merrill, A. R., Aubry, H., Proulx, P., and Szabo, A. G., 1987, Relation between Ca2+ uptake and fluidity of brush-border membranes isolated from rabbit small intestine and incubated with fatty acids and methyl oleate, Biochim. Biophys. Acta. 896: 89–95.PubMedGoogle Scholar
  138. Michel, S. P. F., Cisse, M., and Starka, J., 1984, Interactions of liposomes with Zymomonas mobilis cells, FEMS Microbiol. Lett. 24: 127–131.Google Scholar
  139. Morrisett, J. D., Pownall, H. J., Plumlee, R. T., Smith, L. C., Lehner, Z. E., Esfahani, M., and Wakil, S. J., 1975, Multiple thermotropic phase transitions on Escherichia coli membranes and membrane lipids: Comparison of results obtained by nitroxyl stearate paramagnetic resonance, pyrene excimer fluorescence and enzyme, J. Biol. Chem. 250: 6969–6982.PubMedGoogle Scholar
  140. Muhlethaler, K., and Jay, J., 1985, Electron microscopy of biological membranes, in The Enzymes of Biological Membranes, 2nd ed. (A. N. Martonosi, ed.), Vol. 1, pp. 1–28, Plenum Press, New York.Google Scholar
  141. Mühlradt, P. F., and Golecki, J. R., 1975, Asymmetrical distribution and artifactual reorientation of lipoporysaccharide in the outer membrane bilayer of Salmonella typhimurium, Eur. J. Biochem. 51: 343–352.PubMedGoogle Scholar
  142. Munford, C. A., and Osborn, M. J., 1983, An intermediate step in translocation of lipoporysaccharide to the outer membrane of Salmonella typhimurium, Proc. Natl. Acad. Sci. U.S.A. 80: 1159–1163.Google Scholar
  143. Nakae, T., 1986, Outer membrane permeability of bacteria, CRC Crit. Rev. Microbiol. 13: 1–62.Google Scholar
  144. Nakamura, H., 1968, Genetic determination of resistance to acriflavine, phenylethyl alcohol, and sodium dodecyl sulfate in Escherichia coli, J. Bacteriol. 96: 987–996.PubMedGoogle Scholar
  145. Nakayama, H., Mitsui, T., Nishihara, M., and Kito, M., 1980, Relation between growth temperature of Escherichia coli and phase transition temperatures of its cytoplasmic and outer membranes, Biochim. Biophys. Acta. 601: 1–10.PubMedGoogle Scholar
  146. Nichol, C. P., Davis, J. H., Weeks, G., and Bloom, M., 1980, Quantitative study of the fluidity of Escherichia coli membranes using deuterium magnetic resonance, Biochemistry 19: 451–457.PubMedGoogle Scholar
  147. Nicolau, C., and Rottem, S., 1982, Expression of a β-lactamase activity in Mycoplasma capricolum transfected with the liposome-encapsulated E. coli pBR 322 plasmid, Biochem. Biophys. Res. Commun. 108: 982–984.PubMedGoogle Scholar
  148. Nievα-Gomez, D., Konisky, J., and Gennis, R. B., 1976, Membrane changes in Escherichia coli induced by colicin la and agents known to disrupt energy transduction, Biochemistry 15: 2747–2753.Google Scholar
  149. Nievα-Gomez, D., and Gennis, R. B., 1977, Affinity of the intact Escherichia coli for hydrophobic membrane probes is a function of the physiological state of the cells, Proc. Natl. Acad. Sci. U.S.A. 74: 1811–1815.Google Scholar
  150. Nikaido, H., 1976, Outer membrane of Salmonella typhimurium transmembrane diffusion of some hydrophobic substances, Biochim. Biophys. Acta. 433: 118–132.PubMedGoogle Scholar
  151. Nikaido, H., and Nakae, T., 1979, The outer membrane of Gram-negative bacteria, Adv. Microb. Physiol. 20: 163–250.PubMedGoogle Scholar
  152. Nikaido, H., and Vaara, M., 1985, Molecular basis of bacterial outer membrane permeability, Microbiol. Rev. 49: 1–31.PubMedGoogle Scholar
  153. Nikaido, H., Takeuchi, Y., Ohnishi, S.-L, and Nakae, T., 1977, Outer membrane of Salmonella typhimurium. Electron spin resonance studies, Biochim. Biophys. Acta. 465: 152–154.PubMedGoogle Scholar
  154. Nossal, N. G., and Heppel, L. A., 1966, The release of enzyme by osmotic shock from Escherichia coli in exponential phase, J. Biol. Chem. 241: 3055–3062.PubMedGoogle Scholar
  155. Nurminen, M., Lounatmaa, K., Sarvas, M., Makela, P. H., and Nakae, T., 1976, Bacteriophage-resistant mutants of Salmonella typhimurium deficient in two major outer membrane proteins, J. Bacteriol. 127: 941–955.PubMedGoogle Scholar
  156. Oldmixon, E., and Braun, V., 1978, Changes in fluorescence of 8-anilino-l-naphthalene sulfonate after bacteriophage T5 infection of Escherichia coli. Initial fluorescence rise coincides with onset of rubidium efflux, Biochim. Biophys. Acta. 506: 111–118.PubMedGoogle Scholar
  157. Osborn, M. J., and Wu, H. C. P., 1980, Proteins of the outer membrane of Gram-negative bacteria, Annu. Rev. Microbiol. 34: 369–422.PubMedGoogle Scholar
  158. Osborn, M. J., Gander, J.-E., Parisi, E., and Carson, J., 1972, Mechanism and assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane, J. Biol. Chem. 247: 3962–3972.PubMedGoogle Scholar
  159. Overath, P., and Thilo, L., 1978, Structural and functional aspects of biological membranes revealed by lipid phase transitions. MTP Int. Rev. Sci. Biochem. Ser Two 19: 1–44.Google Scholar
  160. Overath, P., and Traüble, H., 1973, Phase transitions in cells, membranes and lipids of Escherichia coli. Detection by fluorescent probes, light scattering and dilatometry, Biochemistry 12: 2625–2633.PubMedGoogle Scholar
  161. Overath, P., Brenner, M., Gulik-Krzywicki, T., Shechter, E., and Letellier, L., 1975, Lipid phase transitions in cytoplasmic and outer membranes of Escherichia coli, Biochim. Biophys. Acta. 389: 358–369.PubMedGoogle Scholar
  162. Overath, P., Schairer, H. U., and Stoffel, W., 1970, Correlations in vivo and in vitro phase transitions of membrane lipids in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 67: 606–612.PubMedGoogle Scholar
  163. Pagano, R. E., Schroit, A. J., and Struck, D. K., 1981, Interactions of phospholipid vesicles with mammalian cells in vitro: Studies of mechanism, in Liposomes: From Physical Structure to Therapeutic Applications (C. G. Knight, ed.), pp. 323–347, Elsevier/North-Holland Biomedical Press, Amsterdam.Google Scholar
  164. Parassassi, T., Conti, F., and Gratton, E., 1984, Study of heterogeneous emission of parinaric acid isomers using multifrequency phase fluorometry, Biochemistry 23: 5660–5664.Google Scholar
  165. Parton, R., 1975, Envelope proteins in Salmonella minnesota mutants, J. Gen. Microbiol. 89: 113–123.PubMedGoogle Scholar
  166. Peterson, A. A., Hancock, R. E. W., and McGroarty, E. J., 1985, Binding of polycationic antibiotics and polyamines to lipopolysaccharides of Pseudomonas aeruginosa, J. Bacteriol. 164: 1256–1261.PubMedGoogle Scholar
  167. Podo, F., and Blasie, J. K., 1977, Nuclear magnetic resonance studies of lecithin bimolecular leaflets with incorporated fluorescence probes, Proc. Natl. Acad. Sci. U.S.A. 74: 1032–1036.PubMedGoogle Scholar
  168. Pottel, H., Van der Meer, W., and Herreman, W., 1983, Correlation between order parameter and the steady-state fluorescent anisotropy of l,6-diphenyl-l,3,5-hexatriene and an evaluation of membrane fluidity, Biochim. Biophys. Acta. 730: 181–186.Google Scholar
  169. Proulx, P., 1985, Interaction of lipid vesicles with a heptoseless strain of Escherichia coli, Exp. Biol. 43: 191–199.PubMedGoogle Scholar
  170. Proulx, P., and Szabo, A. G., 1985, The effect of exogenous glycerophospholipids on the fluorescence polarization ratios of Escherichia coli cells labelled with diphenylhexatriene, Biochim. Biophys. Acta. 815: 102–108.Google Scholar
  171. Proulx, P., Hellion, P., and Mackenzie, J., 1982, Studies on the uptake of exogenous phospho-glycerides by Escherichia coli B cells, Can. J. Biochem. 60: 980–986.PubMedGoogle Scholar
  172. Radda, G., 1975, Fluorescent probes in membrane studies, in Methods in Membrane Biology (E. D. Korn, ed.), pp. 97–188, Plenum, New York.Google Scholar
  173. Ranck, J. L., Letellier, L., Shechter, E., Krop, B., Pernot, P., and Tardieu, A., 1984, X-ray analysis of the kinetics of Escherichia coli lipid and membrane structural transitions, Biochemistry 23: 4955–4961.PubMedGoogle Scholar
  174. Ray, P. H., White, D. C., and Brock, T. D., 1971, Effect of temperature on the fatty acid composition of Thermus aquaticus, J. Bacteriol. 106: 25–30.PubMedGoogle Scholar
  175. Razin, S., 1973, Cholesterol uptake is dependent on membrane fluidity in mycoplasmas, Biochim. Biophys. Acta. 513: 401–404.Google Scholar
  176. Razin, S., Kutner, S., Efrati, H., and Rottem, S., 1980, Phospholipid and cholesterol uptake by Mycoplasma cells and membranes, Biochim. Biophys Acta 598: 628–640.PubMedGoogle Scholar
  177. Reizer, J., Grossowicz, N., and Barenholz, Y., 1985, The effect of growth temperature on the thermotropic behavior of the membranes of a thermophilic Bacillus. Composition-structure-function relationships, Biochim. Biophys. Acta. 815: 268–280.PubMedGoogle Scholar
  178. Restall, C. J., and Chapman, D., 1986, Spectroscopic and calorimetric studies of lipids and bio-membranes, in Lipids and Membranes, Past, Present and Future (J. A. F. Op den Kamp, B. Roelofsen, and K. W. A. Wirtz, eds.), pp 61–92, Elsevier Science Publishers, Amsterdam.Google Scholar
  179. Rottem, S., and Leive, L., 1977, Effect of variations of lipopolysaccharide on the fluidity of the outer membrane of Escherichia coli, J. Biol. Chem. 252: 2077–2081.PubMedGoogle Scholar
  180. Rottem, S., and Verkleij, A. J., 1982, Possible association of segregated lipid domains of Mycoplasma gallisepticum membranes with cell resistance to osmotic lysis, J. Bacteriol. 149: 338–345.PubMedGoogle Scholar
  181. Rottem, S., Hasin, M., and Razin, S., 1975, The outer membrane of Proteus microbilis II. The extractable lipid fraction and electron-paramagnetic resonance analysis of the outer and cytoplasmic membranes, Biochim. Biophys. Acta. 375: 395–405.PubMedGoogle Scholar
  182. Rottenberg, H., 1975, The measurement of transmembrane electrochemical protein gradients, Bioenergetics 7: 61–64.Google Scholar
  183. Rottenberg, H., 1979, The measurement of membrane potential and pH in cells, organelles, and vesicles, Methods Enzymol. 55: 547–568.PubMedGoogle Scholar
  184. Russell, N. J., 1984, Mechanisms of thermal adaptation in bacteria: Blueprints for survival, Trends Biochem. Sci. 9: 108–112.Google Scholar
  185. Sackmann, E., and Traüble, H., 1972, Studies of the crystalline-liquid crystalline phase transition of lipid model membranes I. Use of spin labels and optical probes as indicators of the phase transition, J Am. Chem. Soc. 94: 4482–4491.PubMedGoogle Scholar
  186. Sackmann, E., Traüble, H., Galla, H., and Overath, P, 1973, Lateral diffusion, protein mobility and phase transitions in Escherichia coli membranes. A spin label study, Biochemistry 12: 5360–5369.PubMedGoogle Scholar
  187. Samra, Z., Krausz-Steinmetz, J., and Sompolinaky, 1979, Transport of tetracyclines through the bacteria cell membranes assayed by fluorescence: A study with susceptible and resistant strains of Staphylococcus aureus and Escherichia coli, Microbios 21: 7–21.Google Scholar
  188. Schindler, M., Osborn, M. J., and Koppel, D. E., 1980, Lateral mobility in reconstituted membranes—comparisons with diffusion in polymers, Nature 283: 346–350.PubMedGoogle Scholar
  189. Schroeder, F., 1983, Liquid domains in plasma membranes from rat liver, Eur. J. Biochem. 132: 509–516.PubMedGoogle Scholar
  190. Schroeder, F., 1985, Fluorescence probes unravel asymmetric structure of membranes, in Subcellular Biochemistry (D. B. Roodyn, ed.), Vol. 11, pp. 51–101, Plenum Press, New York.Google Scholar
  191. Schroeder, F., and Soler-Argilaga, 1983, Ca++ modulates fatty acid dynamics in rat liver plasma membranes, Eur. J. Biochem. 132: 517–524.PubMedGoogle Scholar
  192. Schweizer, M., and Henning, U., 1977, Action of a major outer envelope membrane protein in conjugation of Escherichia coli K-12, J. Bacteriol. 129: 1651–1652.PubMedGoogle Scholar
  193. Seelig, J., and Seelig, A., 1980, Lipid conformation in model membranes and biological membranes, Q. Rev. Biophys. 13: 19–61.PubMedGoogle Scholar
  194. Schechter, E., Gulik-Krzywicki, T., and Kaback, H. R., 1972, Correlations between fluorescence, x-ray diffraction, and physiological properties in cytoplasmic membrane vesicles isolated from Escherichia coli, Biochim. Biophys. Acta. 274: 466–477.Google Scholar
  195. Shechter, E., Letellier, L., and Gulik-Krzywicki, T., 1974, Relations between structure and function in cytoplasmic membrane vesicles isolated from an Escherichia coli fatty acid auxotroph, Eur. J. Biochem. 49: 61–76.PubMedGoogle Scholar
  196. Shinitzky, M., and Barenholz, Y., 1978, Fluidity parameters of lipid regions determined by fluorescence polarization, Biochim. Biophys. Acta. 515: 367–394.PubMedGoogle Scholar
  197. Sinensky, M., 1974, Homeoviscous adaptation — a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 71: 522–525.PubMedGoogle Scholar
  198. Sklar, L. A., Hudson, B. S., and Simoni, R. D., 1975, Conjugated polyene fatty acids as membrane probes: Preliminary characterization, Proc. Natl. Acad. Sci. U.S.A. 72: 1649–1654.PubMedGoogle Scholar
  199. Sklar, L. A., Hudson, B. S., and Simoni, R. D., 1976, Conjugated polyene fatty acids as fluorescent membrane probes: Model system studies, J. Supramol. Struct. 4: 449–465.PubMedGoogle Scholar
  200. Sklar, L. A., Hudson, B. S., and Simoni, R. D., 1977b, Conjugated polyene fatty acids as fluorescent probes: Synethetic phospholipid membrane studies, Biochemistry 16: 819–828.PubMedGoogle Scholar
  201. Sklar, L. A., Miljanich, G. P., and Dratz, E. A., 1979a, Phospholipid lateral phase separation and the partition of cis-parinaric acid and trans-parinaric acid among aqueous, solid lipid and fluid lipid phases, Biochemistry 18: 1707–1716.PubMedGoogle Scholar
  202. Sklar, L. A., Miljanich, G. P., Bürsten, S. L., and Dratz, E. A., 1979b, Thermal lateral phase separations in bovine retinal rat outer segment membranes and phospholipids as evidenced by parinaric acid fluorescence polarization and energy transfer, J. Biol. Chem. 254: 9583–9591.PubMedGoogle Scholar
  203. Sklar, L. A., Miljanich, G. P., and Dratz, E. A., 1979c, A comparison of the effects of Ca++ on the structure of bovine retinal rod outer segment membranes, phospholipids, and bovine brain phosphatidylserine, J. Biol. Chem. 254: 9592–9597.PubMedGoogle Scholar
  204. Slavik, J., 1982, Anilinonaphthalene sulfonate as a probe of membrane composition and function, Biochim. Biophys. Acta. 694: 1–25.PubMedGoogle Scholar
  205. Smit, J., Kamio, Y., and Nikaido, H., 1975, Outer membrane of Salmonella typhimurium: Chemical analyses and freeze-fracture studies with lipopolysaccharide mutants, J. Bacteriol. 124: 942–958.PubMedGoogle Scholar
  206. Smith, M. C. M., and Chopra, I., 1983, Limitations of a fluorescence assay for studies on tetracycline transport into Escherichia coli, Antimicrob. Agents Chemother. 23: 175–178.PubMedGoogle Scholar
  207. Smith, R. L., and Oldfield, C., 1984, Dynamic structure of membranes by deuterium NMR, Science 225: 280–288.PubMedGoogle Scholar
  208. Snozzi, M., and Crofts, A. R., 1984, Electron transport in chromatophores from Rhodopseudomonas sphaeroides fused with liposomes, Biochim. Biophys. Acta. 766: 451–463.PubMedGoogle Scholar
  209. Souzu, H., 1982, Escherichia coli B membrane stability related to cell growth phase: Measurement of temperature dependent physical state change of the membrane over a wide range, Biochim. Biophys. Acta. 691: 161–170.PubMedGoogle Scholar
  210. Souzu, H., 1986a, Fluorescence polarization studies on Escherichia coli membrane stability and its relation to resistance of the cell to freeze-thawing. I. Membrane stability in cells of differing growth phase, Biochim. Biophys. Acta. 861: 353–360.PubMedGoogle Scholar
  211. Souzu, H., 1986b, Fluorescence polarization studies in Escherichia coli membrane stability and its relation to the resistance of the cell to freeze-thawing. II. Stabilization of the membranes by polyamines, Biochim. Biophys. Acta. 861: 361–367.PubMedGoogle Scholar
  212. Steim, J. M., 1970, Thermal phase transitions in biomembranes, Liq. Cryst. Ordered Fluids 1: 1–11.Google Scholar
  213. Stockton, G. W., Johnson, K. G., Buttler, K., Tulloch, A. P., Boulanger, Y., Smith, I. C. P., Davis, J. H., and Bloom, M., 1977, Deuterium NMR study of lipid organization in Acholeplasma laidlawii membranes, Nature 269: 268–269.Google Scholar
  214. Sullivan, K. H., Hageman, G. D., and Cordes, E. H., 1979, Alteration of the fatty acid composition of Escherichia coli by growth in the presence of normal alcohols, J. Bacteriol. 138: 133–138.PubMedGoogle Scholar
  215. Tabor, C. W., 1962, Stabilization of protoplasts and spheroplasts by spermine and other polyamines, J. Bacteriol. 83: 1101–1111.PubMedGoogle Scholar
  216. Tabor, C. W., and Tabor, H., 1976, 1,4-Diaminobutane (putrescine), spermidine, and spermine, Annu. Rev. Biochem. 45: 285–306.PubMedGoogle Scholar
  217. Tai, S. P., Hoger, J. H., and Kaplan, S., 1986, Phospholipid transfer activity in synchronous populations of Rhodobacter sphaeroides, Biochim. Biophys. Acta. 859: 198–208.PubMedGoogle Scholar
  218. Takeuchi, Y., and Nikaido, H., 1981, Persistance of segregated phospholipid domains in phospho-lipid-lipopolysaccharide mixed bilayers: Studies with spin-labeled phospholipids, Biochemistry 20: 523–529.PubMedGoogle Scholar
  219. Takeuchi, Y., Ohnishi, S.-L, Ishinaga, M., and Kito, M., 1978, Spin-labelling of Escherichia coli membrane by enzymatic synthesis of phosphatidylglycerol and divalent cation-induced interaction of phosphatidylglycerol with membrane proteins, Biochim. Biophys. Acta. 506: 54–63.PubMedGoogle Scholar
  220. Takeuchi, Y., Ohnishi, S.-I., Ishivaga, M., and Kito, M., 1981, Dynamic states of phospholipids in Escherichia coli B. membranes. Electron spin resonance studies with biosynthetically generated phospholipid spin labels, Biochim. Biophys. Acta. 646: 119–125.PubMedGoogle Scholar
  221. Takemoto, J. Y., Schonhardt, T., Golecki, J. R. and Drews, G., 1985, Fusion of liposomes and chromatophores of Rhodopseudomonas capsulata: Effect of photosynthetic energy transfer between B875 and reaction center complexes, J. Bacteriol. 162: 1126–1134.PubMedGoogle Scholar
  222. Taneja, R., and Khuller, G. K., 1980. Ethanol-induced alterations in phospholipids and fatty acids of Mycobacterium smegmatis ATCC 607, FEMS Microbiol. Lett. 8: 83–85.Google Scholar
  223. Tecoma, E. S., and Wu, D., 1980, Membrane deenergization by colicin K affects fluorescence of exogenously added but not biosynthetically esterified parinaric acid probes in Escherichia coli, J. Bacteriol. 142: 931–938.PubMedGoogle Scholar
  224. Tecoma, E. S., Sklar, C. A., Simoni, R. D., and Hudson, B. S., 1977, Conjugated polyene fatty acids as fluorescent probes: Biosynthetic incorporation of parinaric acid by Escherichia coli and studies of phase transition, Biochemistry 16: 829–835.PubMedGoogle Scholar
  225. Thilo, L., and Overath, P., 1976, Randomization of membrane lipids in relation to transport system assembly in Escherichia coli, Biochemistry 15: 328–334.PubMedGoogle Scholar
  226. Thulborn, K. R., 1981, The use of n-(9-anthroyloxy) fatty acids as fluorescent probes for biom-embranes, in Fluorescent Probes (G. S. Beddard and M. A. West, eds.), pp. 113–139, Academic Press, London.Google Scholar
  227. Thulborn, K. R., and Sawyer, W. H., 1978, Properties and the location of a set of fluorescent probes sensitive to the fluidity gradient of the lipid bilayer, Biochim. Biophys. Acta. 511: 125–140.PubMedGoogle Scholar
  228. Thulborn, K. R., Tilley, L. M., Sawyer, W. H., and Treloar, F. E., 1979, The use of n-(9-anthroyloxy) fatty acids to determine fluidity and polarity gradients in phospholipid bilayers, Biochim. Biophys. Acta. 558: 166–178.PubMedGoogle Scholar
  229. Tornabene, T. G., Hölzer, G., Bittnar, A. S., and Grohmann, G., 1982, Characterization of the total extractable lipids of Zymomonas mobilis var. mobilis, Can. J. Microbiol. 28: 1107–1118.Google Scholar
  230. Traüble, H., 1971, Phasenumi vandlungen in Lipiden Mögliche Schaltprozesse in biologischen Membranen, Naturwissenschaften 58: 277–284.PubMedGoogle Scholar
  231. Traüble, H., and Overath, P., 1973, The structure of Escherichia coli membranes studied by fluorescence measurements of lipid phase transitions, Biochim. Biophys. Acta. 307: 491–512.PubMedGoogle Scholar
  232. Ueki, T., Mitsui, T., and Nikaido, H., 1970, X-ray diffraction studies of outer membrane of Salmonella typhimurium, J. Biochem. (Tokyo) 85: 173–182.Google Scholar
  233. Urbaneja, M. A., Villena, A., and Goni, F. M., 1984, The interaction of Bacillus properties with sonicated phosphatidylcholine liposomes, FEBS Lett. 169: 40–44.PubMedGoogle Scholar
  234. Van Alphen, L., Verkleij, A., Leunissen-Bijvelt, J., and Lugtenberg, B., 1978, Architecture of the outer membrane of Escherichia coli. III. Protein-lipopolysaccharide complexes in intrα-membranous particles, J. Bacteriol. 134: 1089–1098.PubMedGoogle Scholar
  235. Van Alphen, L., Verkleij, A., Burnell, F., and Lugtenberg, B., 1980,31P nuclear magnetic resonance and freeze fracture electron microscopy studies on Escherichia coli. II Lipopolysac-charide and lipopolysaccharide complexes, Biochim. Biophys. Acta. 591: 502–517.Google Scholar
  236. Vanderkooi, J. M., 1979, Effect of ethanol on membranes: A fluorescent probe study, Alcohol Clin. Exp. Res. 3: 60–63.Google Scholar
  237. Van der Meer, B. W., Van Hoeven, R. P., and Van Blitterswijk, W. J., 1986, Steady-state fluorescence polarization data in membranes. Resolution into physical parameters by an extended Perrin equation for restricted rotation of fluorophores, Biochim. Biophys. Acta. 854: 38–44.PubMedGoogle Scholar
  238. Van Golde, L. M. G., Schulmann, H., and Kennedy, E. P., 1973, Metabolism of membrane lipids and its relation to a novel class of oligosaccharides in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 70: 1368–1372.PubMedGoogle Scholar
  239. Van Gool, A. P., and Nanninga, N., 1971, Fracture faces in the cell envelope of Escherichia coli, J. Bacteriol. 108: 474–481.PubMedGoogle Scholar
  240. Verkleij, A. J., and Ververgaert, P. H. J. Th., 1978, Freeze-fracture morphology of biological membranes, Biochim. Biophys. Acta. 515: 303–327.PubMedGoogle Scholar
  241. Verma, G. P., and Wallach, D. F. H., 1983, Raman spectroscopy of lipids and biomembranes, in Biomembrane Structure and Function (D. Chapman, ed.), Macmillan, London.Google Scholar
  242. Waggoner, A., 1976, Fluorescent probes of membranes, in The Enzymes of Biological Membranes, Vol. 1, Physical and Chemical Techniques (A. Martonosi, ed.), pp. 119–137, Plenum, New York.Google Scholar
  243. Waggoner, A. S., 1979, The use of cyanine dyes for the determination of membrane potentials in cells, organelles and vesicles, Methods Enzymol. 55: 689–695.PubMedGoogle Scholar
  244. Wakayama, N., and Oshima, T., 1978, Membrane properties of an extreme thermophile I. Detection of phase transition and its dependence on growth temperature, J. Biochem. 83: 1687–1692.PubMedGoogle Scholar
  245. White, D. A., Albright, F. R., Lennarz, W. J., and Schnaitman, C. A., 1971, Distribution of phospholipid-synthesizing enzymes in the wall and membrane subfractions of the envelope of Escherichia coli, Biochim. Biophys. Acta. 249: 236–243.Google Scholar
  246. Wolf, M. K., and Konisky, J., 1981, Increased binding of a hydrophobic, photolabile probe to Escherichia coli inversely correlates to membrane-potential but not adenosine 5’-triphosphate levels, J. Bacteriol. 145: 341–347.PubMedGoogle Scholar
  247. Wolf, M. K., and Konisky, J., 1984, Membrane potential independent binding of azidopyrene to LPS mutants of Salmonella typhimurium, FEMS Microbiol. Lett. 21: 59–62.Google Scholar
  248. Yang, L. L., and Haug, A., 1979, Structure of membrane lipids and physicobiochemical properties of the plasma membrane from Thermoplasma acidophilum, adapted to growth at 37°C, Biochim. Biophys. Acta. 573: 308–320.PubMedGoogle Scholar
  249. Yguerabide, J., and Foster, M. C., 1981, Fluorescence spectroscopy of biological membranes, in Molecular Biology, Biochemistry and Biophysics. Vol. 31, Membrane Spectroscopy (Ernst Grell, ed.), pp. 199–269, Springer-Verlag, Berlin.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • P. Proulx
    • 1
  1. 1.Department of Biochemistry, School of Medicine, Faculty of Health SciencesUniversity of OttawaOttawaCanada

Personalised recommendations