Skip to main content

Fluorescence Polarization to Evaluate the Fluidity of Natural and Reconstituted Membranes

  • Chapter
Fluorescence Studies on Biological Membranes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 13))

Abstract

Fluorescence polarization measurements assess movement of membrane constituents under near-normal conditions, as those membranes are challenged with toxic and/or nontoxic ions. Data interpretation of fluorescence polarization measurements are contingent upon an understanding of the interactions between the plasma membrane and other cellular constituents. Therefore, a brief summarization of a number of known interactions between the plasma membrane and other cellular components forms the basis of evaluations of membrane fluidity using fluorescence polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D., 1983, Molecular Biology of the Cell, pp. 255–317, Garland Publishing, New York.

    Google Scholar 

  • Alterbach, C., and Seelig, J., 1984, Ca2+ binding to phosphatidylcholine bilayers as studied by deuterium magnetic resonance. Evidence for the formation of a Ca2+ complex with two phospholipid molecules, Biochemistry 23: 3913–3920.

    Google Scholar 

  • Ashley, R. H., and Brammer, M. J., 1984, A fluorescence polarization study of calcium and phase behaviour in synaptosomal lipids, Biochim. Biophys. Acta 769: 363–369.

    PubMed  CAS  Google Scholar 

  • Bangham, A. D., 1975, Models of cell membranes, in Cell Membranes: Biochemistry Cell Biology and Pathology (G. Weissmann and R. Claiborne, eds.), pp. 24–34, Hospital Practice, New York.

    Google Scholar 

  • Bevan, D. R., Worrell, W. J., and Barfield, K. D., 1983, The interaction of Ca2+, Mg2+, Zn2+, Cd2+, and Hg2+ with phospholipid bilayer vesicles, Colloids and Surfaces 6: 365–376.

    CAS  Google Scholar 

  • Boyer, J. L., and Reno, D., 1975, Properties of (Na+ and K+)-activated ATPase in rat liver plasma membranes enriched with bile canaliculi, Biochim. Biophys. Acta 401: 59–72.

    PubMed  CAS  Google Scholar 

  • Blitzer, B. L., and Boyer, J. L., 1978, Cytochemical localization of Na+, K+-ATPase in the rat hepatocyte, J. Clin. Invest. 62: 1104–1108.

    PubMed  CAS  Google Scholar 

  • Brandts, J. F., Oliveira, R. J., and Westort, C., 1970, Thermodynamics of protein denaturation. Effect of pressure on the denaturation of ribonuclease A, Biochemistry 9: 1039–1047.

    Google Scholar 

  • Brasitus, T. A., and Schachter, D., 1980, Lipid dynamics and lipid-protein interactions in rat enterocyte basolateral and microvillus membranes, Biochemistry 19: 2763–2769.

    PubMed  CAS  Google Scholar 

  • Brétcher, M. S., 1973, Membrane structure: Some general principles, Science 181: 622–629.

    Google Scholar 

  • Brunette, D. M., and Till, J. E., 1971, A rapid method for the isolation of L-cell surface membranes using an aqueous two-phase polymer system, J. Membr. Biol. 5: 215–224.

    CAS  Google Scholar 

  • Casini, A. F., and Farber, J. L., 1981, Dependence of the carbon-tetrachloride-induced death of cultured hepatocytes on the extracellular calcium concentration, Am. J. Pathol. 105: 138–148.

    PubMed  CAS  Google Scholar 

  • Chapman, D., 1975, Lipid dynamics in cell membranes, in Cell Membranes: Biochemistry, Cell Biology and Pathology (G. Weissman and R. Claiborne, eds.), pp. 13–22, Hospital Practice, New York.

    Google Scholar 

  • Chenery, R., George M., and Krishna, G., 1981, The effect of ionophore A23187 and calcium on carbon tetrachloride-induced toxicity in cultured rat hepatocytes, Toxicol. Appl. Pharmacol. 60: 241–252.

    PubMed  CAS  Google Scholar 

  • Cooper, R. A., 1977, Abnormalities of cell-membrane fluidity in the pathogenesis of disease, N. Engl. J. Med. 297: 371–377.

    PubMed  CAS  Google Scholar 

  • CRC Handbook of Chemistry and Physics, Ed. 62, 1981, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Cullis, P. R., and De Kruijff, B., 1979, Lipid polymorphism and the functional roles of lipids in biological membranes, Biochim. Biophys. Acta 559: 399–420.

    PubMed  CAS  Google Scholar 

  • Dipple, L, and Houslay, M. D., 1978, The activity of glucagon-stimulated adenylate cyclase from rat liver plasma membranes is modulated by the fluidity of its lipid environment, Biochem J. 174: 179–190.

    PubMed  CAS  Google Scholar 

  • Edmondson, J. W., and Bang, N. U., 1981, Deleterious effects of calcium deprivation on freshly isolated hepatocytes, Am. J. Physiol. 241: C3–C8.

    PubMed  CAS  Google Scholar 

  • Eftink, M., 1983, Quenching-resolved emission anisotropy studies with single and multitryp-tophan-containing proteins, Biophys. J. 43: 323–326.

    Google Scholar 

  • Elrod, S. V., and Leslie, S. W., 1980, Acute and chronic effects of barbiturates on depolarization-induced calcium influx into synaptosomes from rat brain regions, J. Pharmacol. Exp. Ther. 212: 131–136.

    PubMed  CAS  Google Scholar 

  • Failla, M. L., Cousins, R. J., and Mascenik, M. J., 1979, Cadmium accumulation and metabolism by rat liver parenchymal cells in primary monolayer culture, Biochim. Biophys. Acta 583: 63–72.

    PubMed  CAS  Google Scholar 

  • Farber, J. L., and El-Mofty, S. K., 1975, The biochemical pathology of liver cell necrosis, Am. J. Pathol. 81: 237–250.

    PubMed  CAS  Google Scholar 

  • Farriss, M. W., Olafsdottir, K., and Reed, D. J., 1984, Extracellular calcium protects isolated hepatocytes from injury, Biochem. Biophys. Res. Commun. 121: 102–110.

    Google Scholar 

  • Faucon, J., and Lussan, C., 1973, Aliphatic chain transitions of phospholipid vesicles and phospholipid dispersions determined by polarization of fluorescence, Biochim. Biophys. Acta 307: 459–466.

    PubMed  CAS  Google Scholar 

  • Feigenson, G. W., 1982, Fluorescence quenching in model membranes, J. Biophys. Soc. 37: 165.

    CAS  Google Scholar 

  • Flick, D. F., Kraybill, H. F., and Dimitroff, J. M., 1971, Toxic effects of cadmium: A review, Environ. Res. 4: 71–91.

    PubMed  CAS  Google Scholar 

  • Fraley, R. T., Jameson, D. M., and Kaplan, S., 1978, The use of the fluorescent probe α-parinaric acid to determine the physical state of the intracytoplasmic membranes of the photosynthetic bacterium, Rhodopseudomonas sphaeroides, Biochim. Biophys. Acta 511: 52–69.

    CAS  Google Scholar 

  • Fukushima, H., Martin, C. E., Iida, H., Kitajima, Y., Thomson, G. A., Jr., and Nozawa, Y., 1976, Changes in membrane lipid composition during temperature adaptation by a thermoto-lerant strain of Tetrahymena pyriformis, Biochim. Biophys. Acta 431: 165–179.

    PubMed  CAS  Google Scholar 

  • Giraud, F., Claret, M., Bruckdor, K. R., and Chailley, B., 1981, The effects of membrane lipid order and cholesterol on the internal and external cationic sites of the Na+-K+ pump in erythrocytes, Biochim. Biophys. Acta 647: 249–258.

    PubMed  CAS  Google Scholar 

  • Gordon, L. M., Sauerheber, R. D., and Esgate, J. A., 1978, Spin label studies on rat liver and heart plasma membranes: Effects of temperature, calcium, and lanthanum on membrane fluidity, J. Supramol. Struct. 9: 229–310.

    Google Scholar 

  • Grunberger, D., Haimovitz, R., and Shinitzky, M., 1982, Resolution of plasma membrane lipid fluidity in intact cells labelled with diphenylhexatriene, Biochim. Biophys. Acta 688: 764–774.

    PubMed  CAS  Google Scholar 

  • Hanahan, D. J., and Ekholm, J. E., 1974, The preparation of red cell ghosts (membranes), in Methods in Enzymology (S. Fleischer and L. Packer, eds.), Vol. 31, pp. 168–172, Academic Press, New York.

    Google Scholar 

  • Harris, R. A., and Bruno, P., 1985, Membrane disordering by anesthetic drugs: Relationship to synaptosomal sodium and calcium fluxes, J. Neurochem. 44: 1274–1281.

    PubMed  CAS  Google Scholar 

  • Harris, R. A., and Schroeder, F., 1981, Effects of ethanol and related drugs on the physical and functional properties of brain membranes, Curr. Alcohol. 8: 461–468.

    PubMed  CAS  Google Scholar 

  • Harris, R. A., and Stokes, J. A., 1982, Effects of a sedative and a convulsant barbiturate on synaptosomal calcium transport, Brain Res. 242: 157–163.

    PubMed  CAS  Google Scholar 

  • Harris, R. A., Baxter, D. M., Mitchell, M. A., and Hitzemann, R. J., 1984, Physical properties and lipid composition of brain membranes from ethanol tolerant-dependent mice, Mol. Pharmacol. 25: 401–409.

    PubMed  CAS  Google Scholar 

  • Harrison, R., and Lunt, G. G., 1980, Membrane components, in Biological Membranes: Their Structure and Function, pp. 62–101, Wiley, New York.

    Google Scholar 

  • Hartmann, W., Galla, H. J., and Sackman, E., 1977, Direct evidence of charge-induced lipid domain structure in model membranes, FEBS Lett. 78: 169–172.

    PubMed  CAS  Google Scholar 

  • Hepp, K. D., Edel, R., and Wieland, 0., 1970, Hormone action on liver adenyl cyclase activity, Eur. J. Biochem. 17: 171–177.

    PubMed  CAS  Google Scholar 

  • Herreman, W., Van Tornout, P., Van Cauwelaert, F. H., and Hanssens, I., 1981, Interaction of α-lactalbumin with dimyristoyl phosphatidylcholine vesicles. II. A fluorescence polarization study, Biochim. Biophys. Acta 640: 419–429.

    PubMed  CAS  Google Scholar 

  • Houslay, M. D., Hesketh, T. R., Smith, G. A., Warren, G. B., and Metcalfe, J. C., 1976, The lipid environment of the glucagon receptor regulates adenylate cyclase activity, Biochim. Biophys. Acta 436: 495–504.

    PubMed  CAS  Google Scholar 

  • Huan, P. C., Smith, B., Bohdan, P., and Corrigan, A., 1980, Effect of zinc on cadmium influx and toxicity in cultured CHO cells, Biol. Trace Element Res. 2: 211–220.

    Google Scholar 

  • Inoue, M., Kinne, R., Tran, T., and Arias, I. M., 1982, Rat liver canalicular plasma membrane vesicles: Isolation and topological characterization, Fed. Proc. 41: 916.

    Google Scholar 

  • Itzhaki, R. F., and Gill, D. M., 1964, A micro-buret method for estimating proteins, Anal. Biochem. 9: 101–410.

    Google Scholar 

  • Jacobson, K., and Papahadjopoulos, D., 1975, Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations, Biochemistry 14: 152–161.

    PubMed  CAS  Google Scholar 

  • Jain, M. K., 1972, The Biomolecular Lipid Membrane: A System, pp. 383–409, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Jameson, D. M., 1984, Fluorescein hapten: An immunological probe, in Fluorescence: Principles, Methodologies, and Applications (E. W. Voss, Jr., ed.), pp. 23–48, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Judah, J. D., Ahmed, K., and McLean, A. E. M., 1964, Possible role of ion shifts in liver injury, in Ciba Foundation Symposium on Cellular Injury (A. V. S. de Reuck and J. Knight, eds.), pp. 187–205, Churchill, London.

    Google Scholar 

  • Keefe, E. B., Scharschmidt, B. F., Blankenship, N. M., and Okner, R. K., 1979, Studies of relationships among bile flow, liver plasma membrane Na+-K+-ATPase, and membrane mi-croviscosity in the rat. J. Clin. Invest. 64: 1590–1598.

    Google Scholar 

  • Kimelberg, H. K., 1977, The influence of membrane fluidity on the activity of membrane-bound enzymes, in Dynamic Aspects of Cell Surface Organization. Cell Surface Reviews (G. Poste and G. L. Nicolson, eds.), Vol. 3, pp. 205–293, Elsevier, Amsterdam.

    Google Scholar 

  • Kinosita, K., Jr., Kawato, S., Ikegami, A., Yoshida, S., and Orii, Y., 1981, The effect of cyto-chome oxidase on lipid chain dynamics: A nanosecond depolarization study, Biochim. Biophys. Acta 647: 7–17.

    PubMed  CAS  Google Scholar 

  • Kolb, H. A., and Adam, G., 1976, Regulation of ion permeabilities of isolated rat liver cells by external calcium concentration and temperature, J. Membr. Biol. 26: 121–151.

    PubMed  CAS  Google Scholar 

  • Kornberg, R. D., and McConnell, H. M., 1971, Lateral diffusion of phospholipids in a vesicle membrane, Proc. Natl. Acad. Sci. U.S.A. 68: 2564–2568.

    PubMed  CAS  Google Scholar 

  • Kasne, S., Eisenmann, G., and Szabo, G., 1971, Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin and gramicidin, Science 174: 412–415.

    Google Scholar 

  • Lakowicz, J. R., 1983, Principles of Fluorescence Spectroscopy, pp. 111–153, Plenum Press, New York.

    Google Scholar 

  • Latham, P. S., and Kashgarian, M., 1979, The ultrastructural localization of transport ATPase in the rat liver at nonbile canalicular plasma membranes, Gastroenterology 76: 988–996.

    PubMed  CAS  Google Scholar 

  • Lesko, L., Donlon, M., Marinetti, G. V., and Hare, J. D., 1973, A rapid method for the isolation of rat liver plasma membranes using an aqueous two-phase polymer system, Biochim. Biophys. Acta 311: 173–179.

    PubMed  CAS  Google Scholar 

  • Li, T. M., Hook, J. W., III, Drickamer, H. G., and Weber, G., 1976, Plurality of pressure-denatured forms in chymotrypsinogen and lysozyme, Biochemistry 15: 5571–5580.

    PubMed  CAS  Google Scholar 

  • Lis, L. J., Lis, W. T., Parsegian, V. A., and Rand, R. P., 1980, Adsorption of divalent cations to a variety of phosphatidylcholine bilayers, Biochemistry 20: 1771–1778.

    Google Scholar 

  • Livingstone, C. J., and Schachter, D., 1980, Calcium modulates the lipid dynamics of rat hepatocyte plasma membranes by direct and indirect mechanisms, Biochemistry 19: 4823–4827.

    PubMed  CAS  Google Scholar 

  • Lowe, P. J., and Coleman, R., 1981, Membrane fluidity and bile salt damage, Biochim. Biophys. Acta 640: 55–65.

    PubMed  CAS  Google Scholar 

  • Martin, C. E., and Thompson, G. A., Jr., 1978, Use of fluorescence polarization to monitor intracellular membrane changes during temperature acclimation. Correlation with lipid compositional and ultrastructural changes, Biochemistry 17: 3581–3591.

    PubMed  CAS  Google Scholar 

  • Nagle, J. F., 1973a, Theory of biomembrane phase transitions, J. Chem. Phys. 58: 252–264.

    CAS  Google Scholar 

  • Nagle, J. F., 1973b, Lipid bilayer phase transition: Density measurements and theory, Proc. Natl. Acad. Sci. U.S.A. 70: 3443–3444.

    PubMed  CAS  Google Scholar 

  • Nealon, D. G., Sorensen, E. M. B., and Acosta, D., 1984, A fluorescence polarization procedure for the evaluation of the effects of cadmium and calcium on plasma membrane fluidity, J. Tissue Culture Methods 9: 11–17.

    Google Scholar 

  • Ohnishi, S., and Ito, T., 1974, Calcium-induced phase separations in phosphatidylserine-phosphatidylcholine membranes, Biochemistry 13: 881–887.

    CAS  Google Scholar 

  • Oldfield, E., and Chapman, D., 1972, Dynamics of lipids in membranes: Heterogeneity and the role of cholesterol, FEBS Lett. 23: 285–297.

    PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., 1968, Surface properties of acidic phospholipids: Interaction of monolayers and hydrated liquid crystals with uni- and bi-valent metal ions, Biochim. Biophys. Acta 163: 204–254.

    Google Scholar 

  • Quinn, A. J., 1976, The Molecular Biology of Cell Membranes (A. J. Quinn, ed.), pp. 47–75, University Park Press, Baltimore.

    Google Scholar 

  • Quinn, A. J., and Chapman, D., 1980, The dynamics of membrane structure, CRC Crit. Rev. Biochem. 8: 1–117.

    PubMed  CAS  Google Scholar 

  • Ray, T. K., 1970, A modified method for the isolation of the plasma membrane from rat liver, Biochim. Biophys. Acta 196: 1–9.

    PubMed  CAS  Google Scholar 

  • Reynolds, E. S., 1963, Liver parenchymal cell injury. I. Initial alterations of the cell following poisoning with carbon tetrachloride, J. Cell Biol. 19: 139–157.

    PubMed  CAS  Google Scholar 

  • Rodan, S. B., Hintz, R. L., Sha’afi, R. I., and Rodan, G. A., 1974, The activity of membrane bound enzymes in muscular dystrophic chicks, Nature 252: 589–591.

    PubMed  CAS  Google Scholar 

  • Schachter, D., and Shinitzky, M., 1977, Fluorescence polarization studies of rat intestinal microvillus membranes, J. Clin. Invest. 59: 536–548.

    PubMed  CAS  Google Scholar 

  • Schanne, F. A. X., Kane, A. B., Young, E. E., and Farber, J. L., 1979, Calcium dependence of toxic cell death: A final common pathway, Science 206: 700–702.

    PubMed  CAS  Google Scholar 

  • Schlatz, L., and Marinetti, G. V., 1972, Calcium binding to the rat liver plasma membrane, Biochim. Biophys. Acta 290: 70–83.

    Google Scholar 

  • Sha’afi, R. I., Rodan, S. B., Hintz, R. L., Fernandez, S. M., and Rodan, G. A., 1975, Abnor-malities in membrane microviscosity and ion transport in genetic muscular dystrophy, Nature 254: 525–526.

    PubMed  Google Scholar 

  • Shinitzky, M., 1984, Membrane fluidity and cellular functions, in Physiology of Membrane Fluidity (M. Shinitzky, ed.), pp. 1—51, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Shinitzky, M., and Barenholz, Y., 1974, Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicertylphosphate, J. Biol. Chem. 249: 2652–2657.

    PubMed  CAS  Google Scholar 

  • Shinitzky, M., and Inbar, M., 1976, Microviscosity parameters and protein mobility in biological embranes, Biochim. Biophys. Acta 433: 133–149.

    PubMed  CAS  Google Scholar 

  • Shinitzky, M., and Yuli, I., 1982, Lipid fluidity at the submacroscopic level; determination by fluorescence polarization, Chem. Phys. Lipids 30: 261–282.

    CAS  Google Scholar 

  • Singer, S. J., 1971, The molecular organization of biological membranes, in Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 145–222, Academic Press, New York.

    Google Scholar 

  • Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175: 720–731.

    PubMed  CAS  Google Scholar 

  • Smith, M. T., Thor, H., and Orrenius, S., 1981, Toxic injury to isolated hepatocytes is not dependent on extracellular calcium, Science 213: 1257–1259.

    PubMed  CAS  Google Scholar 

  • Sorensen, E. M. B., and Acosta, D., 1982, Protective effect of calcium on cadmium-induced cytotoxicity in cultured rat hepatocyte, In Vitro 18: 288.

    Google Scholar 

  • Sorensen, E. M. B., and Acosta, D., 1983, Semiquantitative morphologic analysis to quantify the cytotoxicity of cadmium to cultured hepatocyte, In Vitro 19: 287.

    Google Scholar 

  • Sorensen, E. M. B., and Acosta, D., 1984a, Morphometric analysis of the protective effect of calcium on cadmium-challenged cultured rat hepatocytes, In Vitro 20: 284.

    Google Scholar 

  • Sorensen, E. M. B., and Acosta, D., 1984b, Morphometric analysis of cadmium-induced cytotoxicity in cultured hepatocyte, Toxicologist 4: 163.

    Google Scholar 

  • Sorensen, E. M. B., and Acosta, D., 1984c, Cadmium-induced hepatotoxicity as evaluated by morphometric analysis, In Vitro 20: 763–770.

    PubMed  CAS  Google Scholar 

  • Sorensen, E. M. B., and Acosta, D., 1985, Protective effects of calcium in the amelioration of cadmium-induced cytotoxicity in cultured murine parenchymal hepatocytes, in Alternative Methods in Toxicology (A. M. Goldberg, ed.), Vol. 3., pp. 101–139, Mary Ann Liebert, Inc., Publishers, New York.

    Google Scholar 

  • Sorensen, E. M. B., Smith, N. K. R., Boecker, C. S., and Acosta, D., 1984, Calcium amelioration of cadmium-induced cytotoxicity in cultured rat hepatocytes, In Vitro 20: 771–779.

    PubMed  CAS  Google Scholar 

  • Sorensen, E. M. B., Nealon, D. G., and Acosta, D., 1985, Effects of cadmium and calcium on the fluidity of plasma membranes, Toxicol. Lett. 25: 319–326.

    PubMed  CAS  Google Scholar 

  • Sorensen, E. M. B., 1988, Modulatory effect of calcium on the influx and binding of cadmium in primary cultures of neonatal rat hepatocytes, Toxicol. Lett. 41: 39–48.

    PubMed  CAS  Google Scholar 

  • Stacey, N. H., and Klaassen, C. D., 1982, Lack of protection against chemically induced injury to isolated hepatocytes by omission of calcium from the incubation medium, J. Toxicol. Environ. Health 9: 267–276.

    PubMed  CAS  Google Scholar 

  • Storch, J., Schachter, D., Inoue, M., and Wolkoff, A. W., 1983, Lipid fluidity of hepatocyte plasma membrane subfractions and their differential regulation by calcium, Biochim. Biophys. Acta 727: 209–212.

    PubMed  CAS  Google Scholar 

  • Storch, J., and Schachter, D., 1984, Dietary induction of acyl chain desaturases alters the lipid composition and fluidity of rat hepatocyte plasma membranes, Biochemistry 23: 1165–1170.

    PubMed  CAS  Google Scholar 

  • Tasaki, I., 1968, Nerve Excitation: A Macromolecular Approach, Charles C. Thomas, Springfield, IL.

    Google Scholar 

  • Thompson, G. A., Jr., and Nozawa, Y., 1977, Tetrahymena: A system for studying dynamic membrane alterations within the eukaryotic cell, Biochim. Biophys. Acta 472: 55–92.

    PubMed  CAS  Google Scholar 

  • Trauble, H., and Eibl, H., 1974, Electrostatic effects on lipid phase transitions; membrane structure and ionic environment, Proc. Natl. Acad. Sci. U.S.A. 71: 214–219.

    PubMed  CAS  Google Scholar 

  • Van Blitterswijk, W. J., Van Hoeven, R. P., and Van der Meer, B. W., 1981, Lipid structural order parameters (reciprocal of fluidity) in biomembranes derived from steady-state fluorescence polarization measurements, Biochim. Biophys. Acta 644: 323–332.

    PubMed  Google Scholar 

  • Verkleij, A. J., Zwaal, R. R. A., Roelofsen, B., Comfurius, P., Kastelign, D., and Van Deenen, L. L. M., 1973, The asymmetric distribution of phospholipids in the human red cell membranes, Biochim. Biophys. Acta 323: 178–193.

    PubMed  CAS  Google Scholar 

  • Weber, G., 1971, Theory of fluorescence depolarization by anisotropic Brownian rotations. Discontinuous distribution approach, J. Chem. Phys. 55: 2399–2407.

    CAS  Google Scholar 

  • Whetton, A. D., Houslay, M. D., Dodd, N. J. F., and Evans, W. H., 1983, The lipid fluidity of rat liver membrane subfractions, Biochem. J. 214: 851–854.

    PubMed  CAS  Google Scholar 

  • Wisher, M. H., and Evans, W. H., 1975, Functional polarity of the rat hepatocyte surface membrane, Biochem. J. 146: 375–388.

    PubMed  CAS  Google Scholar 

  • Yousef, I. M., 1983, Effect of Ca2+ ions on liver cell plasma membrane polypeptides, Can. J. Biochem. Cell Biol. 61: 293–300.

    CAS  Google Scholar 

  • Zwaal, R. F. A., Reolofsen, B., and Colley, C. M., 1973, Localization of red cell membrane constituents, Biochim. Biophys. Acta 300: 159–182.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Sorensen, E.M.B. (1988). Fluorescence Polarization to Evaluate the Fluidity of Natural and Reconstituted Membranes. In: Hilderson, H.J. (eds) Fluorescence Studies on Biological Membranes. Subcellular Biochemistry, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9359-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9359-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9361-0

  • Online ISBN: 978-1-4613-9359-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics