Skip to main content

Time-Resolved Fluorescence Depolarization Techniques in Model Membrane Systems Effect of Sterols and Unsaturations

  • Chapter
Fluorescence Studies on Biological Membranes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 13))

  • 153 Accesses

Abstract

Application of time-resolved fluorescence depolarization techniques to the study of biological membrane structure and dynamics requires selective signal monitoring of specifically located intrinsic or extrinsic fluorophores. In such systems, at least to date, the fluorescence characteristics of the naturally occurring chromophores (e.g., aromatic amino acid residues, enzymatic reactional cofactors, polyenic fatty acids and sterols, chlorophyll, and retinal) are of limited use because of low and/or reabsorbed emitted intensities, low signal-to-noise ratio (e.g., light scattering), and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bangham, A. D., 1981, Introduction, in Liposomes: From Physical Structure to Therapeutic Applications (C. G. Knight, ed.), pp. 1–17, Elsevier/North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Barenholz, Y., Suurkuusk, J., Mountcastle, D., Thompson, T.E., and Biltonen, R. L., 1976, A calorimetric study of the thermotropic behaviour of aqueous dispersions of natural and synthetic sphingomyelins, Biochemistry 15: 2441–2447.

    PubMed  CAS  Google Scholar 

  • Barkley, M. D., Kowalczky, A. A., and Brand, L., 1981, Fluorescence decay studies of anisotropic rotations of small molecules, J. Chem. Phys. 75: 3581–3593.

    CAS  Google Scholar 

  • Barton, P. G., and Gunstone, F. O., 1975, Hydrocarbon chain packing and molecular motion in phospholipid bilayer formed from unsaturated lecithins, J. Biol. Chem. 250: 4470–4476.

    PubMed  CAS  Google Scholar 

  • Berkhout, T. A., Visser, A. J. W. G., and Wirtz, K. W. A., 1984, Static and time-resolved fluorescence studies of fluorescent phosphatidylcholine transfer protein of bovine liver, Biochemistry 23: 1505–1513.

    PubMed  CAS  Google Scholar 

  • Bloch, K. E., 1983, Sterol structure and membrane function, CRC Crit. Rev. Biochem. 47–92.

    Google Scholar 

  • Brand, L., Knutson, J. R., Davenport, L., Beechem, J. M., Dale, R. E., Waldbridge, D. G., and Kowalczyk, A. A., 1985, Time-resolved fluorescence spectroscopy: Some applications of associative behaviour to studies of proteins and membranes, in Spectroscopy and the Dynamics of Molecular Biological Systems (P. M. Bayley and R. E. Dale, eds.), pp. 259–305, Academic Press, London.

    Google Scholar 

  • Bush, S. F., Adams, R. G., and Levin, I. W., 1980, Structural reorganization in lipid bilayer systems: Effect of hydration and sterol addition on Raman spectra of dipalmitoylphospha-tidylcholine multilayers, Biochemistry 19: 4429–4436.

    PubMed  CAS  Google Scholar 

  • Cadenhead, D., Kellner, B. M. J., Jacobson, K., and Papahadjopoulos, D., 1977, Fluorescent probes in model membranes. 1. Anthroyl fatty acid derivatives in monolayers and liposomes of dipalmitoylphosphatidyl choline, Biochemistry 16: 5386–5392.

    PubMed  CAS  Google Scholar 

  • Chen, L. A., Dale, R. E., Roth, S., and Brand, L., 1977, Nanosecond time-dependent fluorescence depolarization of diphenylhexatriene in dimyristoyl lecithin vesicles and the determination of “microviscosity,” J. Biol. Chem. 252: 2163–2169.

    PubMed  CAS  Google Scholar 

  • Cranney, M., Cundall, R. B., Jones, G. R., Richards, J. T., and Thomas, E. W., 1983, Fluorescence lifetime and quenching studies on some interesting diphenylhexatriene membrane probes, Biochim. Biophys. Acta 735: 418–425.

    CAS  Google Scholar 

  • Cullis, P. R., and De Kruijff, B., 1979, Lipid polymorphism and the functional roles of lipids in biological membranes, Biochim. Biophys. Acta 559: 399–420.

    PubMed  CAS  Google Scholar 

  • Dahl, C. E., 1981, Effect of sterol on acyl chain ordering in phosphatidylcholine vesicles: A deuterium nuclear magnetic resonance and electron spin resonance study, Biochemistry 20: 7158–7161.

    PubMed  CAS  Google Scholar 

  • Davis, P. J., and Keough, K. M. W., 1983, Differential scanning calorimetry studies of aqueous dispersions of mixtures of cholesterol with some mixed-acid and single-acid phosphatidylcholines, Biochemistry 22: 6334–6340.

    CAS  Google Scholar 

  • Davis, P. J., Fleming, B. D., Coolbear, K. P., and Keough, K. M. W., 1981, Gel to liquid-crystalline transition temperature of water dispersions of two pairs of positional isomers of unsaturated mixed-acid phosphatidylcholine, Biochemistry 20: 3633–3636.

    PubMed  CAS  Google Scholar 

  • De Bony, J., and Tocanne, J. F., 1983, Synthesis and physical properties of phosphatidylcholine labeled with 9-(2-anthryl) nonanoic acid, a new fluorescent probe, Chem. Phys. Lipids 32: 105–121.

    Google Scholar 

  • De Bony, J., and Tocanne, J. F., 1984, Photo-induced dimerization of anthracene phospholipids for the study of the lateral distribution of lipids in membrane, Eur. J. Biochem. 143: 373–379.

    PubMed  Google Scholar 

  • De Bony, J., Martin, G., Welby, M., and Tocanne, J. F., 1984, Evidence for a homogeneous lateral distribution of lipids in a bacterial membrane, FEBS Lett. 174: 1–6.

    PubMed  Google Scholar 

  • De Foresta, B., Rogard, M., and Gallay, J., 1986, Temperature effects on adenylate cyclase activity and fluidity of bovine adrenal cortex plasma membranes, Biochem. Soc. Trans. 14: 1011–1012.

    Google Scholar 

  • De Kruijff, B., Cullis, P. R., Verkleij, A. J., Hope, M. J., Van Echteld, C. J. A., and Tarashi, T., 1985, Lipid polymorphism and membrane function, in The Enzymes of Biological Membranes (E. W. Martonosi, ed.), pp. 131–204, Plenum Press, New York.

    Google Scholar 

  • Demel, R. A., and De Kruijff, B., 1976, The function of sterols in membranes, Biochim. Biophys. Acta 457: 109–132.

    PubMed  CAS  Google Scholar 

  • Demel, R. A., Bruckdorfer, K. R., and Van Deenen, L. L. M., 1972a, Structural requirements of sterols for the interactions with lecithins at the air-water interface, Biochim. Biophys. Acta 255: 311–320.

    PubMed  CAS  Google Scholar 

  • Demel, R. A., Geurts Van Kessel, W. S. M., and Van Deenen, L. L. M., 1972b, The properties of polyunsaturated lecithins in monolayers and liposomes and the interactions of these lecithins with cholesterol, Biochim. Biophys. Acta 266: 26–40.

    CAS  Google Scholar 

  • De Paillerets, C., Gallay, J., Vincent, M., Rogard, M., and Alfsen, A., 1981, Membrane lipid dynamics and enzymic activity in bovine adrenal cortex microsomes, Biochim. Biophys. Acta 664: 134–142.

    Google Scholar 

  • De Paillerets, C., Gallay, J., and Alfsen, A., 1984, Effect of cholesterol and protein content on membrane fluidity and 3β-hydroxysteroid dehydrogenase activity in mitochondrial inner membranes of bovine adrenal cortex, Biochim. Biophys. Acta 111: 183–191.

    Google Scholar 

  • Devaux, P. F., and Seigneuret, M., 1985, Specificity of lipid-protein interactions as determined by spectroscopic techniques, Biochim. Biophys. Acta 822: 63–125.

    PubMed  CAS  Google Scholar 

  • Dufourc, E. J., Parish, E. J., Chotrakorn, S., and Smith, I. C. P., 1984, Structural and dynamic details of cholesterol-lipid interactions as revealed by deuterium NMR, Biochemistry 23: 6062–6071.

    CAS  Google Scholar 

  • Egli, U. H., Streuli, R. A., and Dubler, E., 1984, Influence of oxygenated sterol compounds on phase transitions in model membranes. A study with differential scanning calorimetry, Biochemistry 23: 148–152.

    PubMed  CAS  Google Scholar 

  • Engel, L. W., and Prendergast, F. G., 1981, Values for and significance of order parameters and “cone angles” of fluorophore rotation in lipid bilayers, Biochemistry 20: 7338–7345.

    PubMed  CAS  Google Scholar 

  • Fiorini, R., Valentino, M., Wang, S., Glaser, M., and Gratton, E., 1987, Fluorescence lifetime distributions of l,6-diphenyl-l,3,5-hexatriene in phospholipid vesicles, Biochemistry 26: 3864–3870.

    PubMed  CAS  Google Scholar 

  • Franks, N. P., 1976, Structural analysis of hydrated egg lecithin and cholesterol bilayers, J. Mol. Biol. 100: 345–358.

    PubMed  CAS  Google Scholar 

  • Gallay, J., and De Kruijff, B., 1982, Correlation between molecular shape and hexagonal H promoting ability of sterols, FEBS Lett. 143: 133–136.

    PubMed  CAS  Google Scholar 

  • Gallay, J., and Vincent, M., 1986, Cardiolipin-cholesterol interactions in the liquid-crystalline phase: A steady state and time-resolved fluorescence anisotropy study with cis- and trans-parinaric acids as probes, Biochemistry 25: 2650–2656.

    PubMed  CAS  Google Scholar 

  • Gallay, J., Vincent, M., and Alfsen, A., 1982, Dynamic structure of bovine adrenal cortex microsomal membranes studied by time-resolved fluorescence anisotropy of DPH, J. Biol. Chem. 257: 4038–4041.

    PubMed  CAS  Google Scholar 

  • Gallay, J., De Kruijff, B., and Demel, R., 1984, Sterol-phospholipid interactions in model membranes. Effect of polar group substitution in the cholesterol side-chain at C-20 and C-22, Biochim. Biophys. Acta 789: 96–104.

    Google Scholar 

  • Gallay, J., De Foresta, B., and Vincent, M., 1985, Cardiolipin vesicles can accommodate cholesterol up to 0.80 mole fraction, i.e. one molecule per cardiolipin fatty acid chain, FEBS Lett. 191: 13–16.

    PubMed  CAS  Google Scholar 

  • Gallay, J., Vincent, M., Nicot, C., and Waks, M., 1987, Conformational aspects and rotational dynamics of ACTH 1–24 and glucagon in reverse micelles, Biochemistry 26: 5738–5747.

    PubMed  CAS  Google Scholar 

  • Hagiwara, H., Nagasaki, T., Inada, Y., Saito, Y., Yasuda, T., Kojima, H., Morisaki, M., and Ikekawa, N., 1982, The interaction of cholesterol analogues with phospholipid — the effect of length of side-chain and configuration of a hydroxyl group introduced in the side chain, Biochem. Int. 5: 329–338.

    CAS  Google Scholar 

  • Haigh, E. A., Thulborn, K. R., and Sawyer, W. H., 1979, Comparison of fluorescence energy transfer and quenching methods to establish the position and orientation of components within the transverse plane of the lipid bilayer. Application to the gramicidin A-bilayer interaction, Biochemistry 18: 3525–3532.

    PubMed  CAS  Google Scholar 

  • Hare, F., 1983, Simplified derivation of angular order and dynamics of rodlike fluorophores in models and membranes, Biophys. J. 42: 205–218.

    PubMed  CAS  Google Scholar 

  • Hare, F., Amiell, J., and Lussan, C., 1979, Is an average viscosity tenable in lipid bilayers and membranes? A comparison of semi-empirical equivalent viscosities given by unbound probes: A nitroxide and a fluorophore, Biochim. Biophys. Acta 555: 388–408.

    PubMed  CAS  Google Scholar 

  • Heyn, M. P., 1979, Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments, FEBS Lett. 108: 359–364.

    PubMed  CAS  Google Scholar 

  • Hieter, H., Trifilieff, E., Richert, L., Beck, J. P., Luu, B., and Ourisson, G., 1984, Antagonistic action of cholesterol towards the toxicity of cholesterol on cultured hepatoma cells, Biochem. Biophys. Res. Commun. 120: 657–664.

    Google Scholar 

  • Hope, M. J., Bally, M. B., Mayer, L. D., Janoff, A. S., and Cullis, P. R., 1986, Generation of multilamellar and unilamellar phospholipid vesicles, Chem. Phys. Lipids 40: 89–107.

    Google Scholar 

  • Illsley, N. P., Liu, H. Y., and Verkman, A. S., 1987, Lipid domain structure correlated with membrane protein function in placental microvillus vesicles, Biochemistry 26: 446–454.

    PubMed  CAS  Google Scholar 

  • Imai, H., Werthessen, N. T., Subramanyam, V., LeQuesne, P. W., Soloway, A. H., and Kanisawa, M., 1980, Angiotoxicity of oxygenated sterols and possible precursors, Science 207: 651–653.

    PubMed  CAS  Google Scholar 

  • Israelashvili, J. N., and Mitchell, D. J., 1975, A model for the packing of lipids in bilayer membranes, Biochim. Biophys. Acta 389: 13–19.

    Google Scholar 

  • Israelashvili, J. N., Mitchell, D. J., and Ninnam, B. W., 1977, Theory of self-assembly of lipid bilayers and vesicles, Biochim. Biophys. Acta 470: 185–201.

    Google Scholar 

  • Jaehnig, F., 1979, Molecular theory of lipid membrane order, J. Chem. Phys. 70: 3279–3290.

    CAS  Google Scholar 

  • Jaehnig, F., Vogel, H., and Best, L., 1982, Unifying description of the effect of membrane proteins on lipid order. Verification for melittin/dimyristoyl phosphatidylcholine systems, Biochemistry 21: 6790–6798.

    CAS  Google Scholar 

  • Johns, S., Willing, R., Thulborn, K., and Sawyer, W. H., 1979, 13C-NMR studies on fluorescent probes: 13C chemical shifts and longitudinal relaxation times of n-hydroxy-fatty (n = 2,6,9, and 12) acids and n-(9-anthroyloxy)-stearic (n = 6,12) acids, Chem. Phys. Lipids 24: 11–16.

    CAS  Google Scholar 

  • Kandutsch, A. A., Chen, H. W., and Heiniger, H. J., 1978, Biological activity of some oxygenated sterols, Science 201: 498–501.

    PubMed  CAS  Google Scholar 

  • Kawato, S., Kinosita, K., and Ikegami, A., 1978, Effect of cholesterol on the molecular motion in the hydrocarbon region of lecithin bilayers studied by nanosecond fluorescence techniques, Biochemistry 17: 5026–5031.

    PubMed  CAS  Google Scholar 

  • Keh, E., and Valeur, B., 1981, Investigation of water-containing inverted micelles by fluorescence polarization. Determination of size and internal fluidity, J. Colloid Interface Sci. 79: 465–478.

    CAS  Google Scholar 

  • Kinosita, K., Kawato, S., and Ikegami, A., 1977, A theory of fluorescence polarization decay in membranes, Biophys. J. 20: 289–305.

    PubMed  CAS  Google Scholar 

  • Kintanar, A., Kunwar, A. C., and Oldfield, E., 1986, Deuterium nuclear magnetic resonance spectroscopic study of the fluorescent probe diphenylhexatriene in model membrane systems, Biochemistry 25: 6517–6524.

    PubMed  CAS  Google Scholar 

  • Kleinfeld, A. M., Dragsten, P., Klausner, R. D., Pjura, W. D., and Mayatoshi, E. D., 1981, The lack of relationship between fluorescence polarization and lateral diffusion in biological membranes, Biochim. Biophys. Acta 649: 471–480.

    PubMed  CAS  Google Scholar 

  • Kuroda, Y., Matsuzaki, K., Hanada, T., and Nakagaki, M., 1986, Mobility of fluorescent probe molecules in lipid bilayer vesicles as studied by steady-state and time-dependent nuclear Overhauser effect measurements in n-nuclear magnetic resonance spectroscopy, Biochim. Biophys. Acta 859: 171–179.

    CAS  Google Scholar 

  • Kutchai, H., Chandler, L. H., and Zavoico, G. B., 1983, Effects of cholesterol on acyl chain dynamics in multilamellar vesicles of various phosphatidylcholines, Biochim. Biophys. Acta 736: 137–149.

    PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., Gratton, E., Cherek, H., Maliwal, B. P., and Laczko, G., 1984, Determination of time-resolved fluorescence emission spectra and anisotropics of a fluorophore-protein complex using frequency-domain phase-modulation fluorometry, J. Biol. Chem. 259: 10967–10972.

    PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., Cherek, H., Gryczynski, I., Joshi, N., and Johnson, M. L., 1987, Enhanced resolution of fluorescence anisotropy decays by simultaneous analysis of progressively quenched samples, Biophys. J. 51: 755–768.

    PubMed  CAS  Google Scholar 

  • Lentz, B. R., Barenholz, Y., and Thompson, T. E., 1976, Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers: 1. Single component phosphatidylcholine liposomes, Biochemistry 15: 4521–4528.

    PubMed  CAS  Google Scholar 

  • Lipari, G., and Szabo, A., 1980, Effect of librational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes, Biophys. J. 30: 489–506.

    PubMed  CAS  Google Scholar 

  • Liu, B. M., Cheug, H. C., Chen, K. H., and Habercom, M. S., 1980, Fluorescence decay kinetics of pyrene in membrane vesicles, Biophys. Chem. 12: 341–355.

    PubMed  CAS  Google Scholar 

  • Livesey, A. K., and Brochon, J. C., 1987, Analysing the distribution of decay constants in pulse fluorometry using the maximum entropy method, Biophys. J. 52: 693–706.

    PubMed  CAS  Google Scholar 

  • Livesey, A. K., Delaye, M., Licinio, P., and Brochon, J. C., 1987, Maximum entropy analysis of dynamic parameters via the Laplace transform, Faraday Discuss. Chem. Soc. 83: paper 14.

    Google Scholar 

  • Luken, D. W., Esfahani, M., and Devlin, T. M., 1980, Effect of sterols on diphenylhexatriene fluorescence in lecithin vesicles, FEBS Lett. 114: 48–50.

    PubMed  CAS  Google Scholar 

  • Marsh, D., 1980, Molecular motion in phospholipid bilayers in the gel phase: Long axis rotation, Biochemistry 19: 1632–1637.

    PubMed  CAS  Google Scholar 

  • Mulders, F., Van Langen, H., Van Ginkel, G., and Levine, Y. K., 1986, The static and dynamic behaviour of fluorescent probe molecules in lipid bilayers, Biochim. Biophys. Acta 859: 209–218.

    CAS  Google Scholar 

  • Nakane, M., and Ikekawa, N., 1977, Studies on steroids. Part 41. Conformational analysis of steroidal side chains by proton magnetic resonance spectroscopy, J. Chem. Soc. Perkin I, 1426–1428.

    Google Scholar 

  • Nicot, C., Vacher, M., Vincent, M., Gallay, J., and Waks, M., 1985, Membrane proteins in reverse micelles: Myelin basic protein in a membrane-mimetic environment, Biochemistry 24: 7024–7032.

    PubMed  CAS  Google Scholar 

  • Oldfield, E., Meadows, M., Rice, D., and Jacobs, R., 1978, Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of the effects of cholesterol in model systems, Biochemistry 17: 2727–2740.

    PubMed  CAS  Google Scholar 

  • O’Leary, T., 1983, A simple theoretical model for the effect of cholesterol and polypeptides on lipid membranes, Biochim. Biophys. Acta 731: 47–53.

    Google Scholar 

  • Op den Kamp, J. A. F., 1979, Lipid asymmetry in membranes, Annu. Rev. Biochem. 48: 47–71.

    Google Scholar 

  • Owicki, J. C., and McConnell, H. M., 1980, Lateral diffusion in inhomogeneous membranes. Model membranes containing cholesterol, Biophys. J. 30: 383–398.

    PubMed  CAS  Google Scholar 

  • Parente, R. A., and Lentz, B. R., 1985, Advantages and limitations of 1-palmitoyl-2-((-2(4-(6-phenyl-trans-1,3,5-hexatrienyl)phenyl)ethyl)carbonyl)-3-phosphatidylcholine as a fluorescent membrane probe, Biochemistry 24: 6178–6185.

    PubMed  CAS  Google Scholar 

  • Pottel, H., Van der Meer, W., and Herreman, W., 1983, Correlation between the order parameter and the steady-state fluorescence anisotropy of 1,6-DPH and an evaluation of membrane fluidity, Biochim. Biophys. Acta 730: 181–186.

    CAS  Google Scholar 

  • Prendergast, F. G., Haughland, R. P., and Callahan, P. J., 1981, 1-(4-Trimethylamino)phenyl-6-phenylhexa-l,3,5-triene: Synthesis, fluorescence properties and use as a fluorescent probe of lipid bilayers, Biochemistry 20: 7333–7338.

    PubMed  CAS  Google Scholar 

  • Quinn, P. J., 1981, The fluidity of cell membranes and its regulation, Prog. Biophys. Mol. Biol. 38: 1–104.

    PubMed  CAS  Google Scholar 

  • Ranadive, G. N., and Lala, A. K., 1987, Sterol-phospholipid interaction in model membrane: Role of C5-C6 double bond in cholesterol, Biochemistry 26: 2426–2431.

    PubMed  CAS  Google Scholar 

  • Rehorek, M., Dencher, N. A., and Heyn, M. P., 1985, Long-range lipid-protein interactions. Evidence from time-resolved fluorescence depolarization and energy transfer experiments with bacteriorhodopsin-DML vesicles, Biochemistry 24: 5980–5988.

    CAS  Google Scholar 

  • Richert, L., Castagna, M., Beck, J. P., Rong, S., Luu, B., and Ourisson, G., 1984, Growth-rate-related and hydroxysterol-induced changes in membrane fluidity of culture hepatoma cells: Correlation with 3-OH-3-CH3 glutaryl Co-A reductase activity, Biochem. Biophys. Res. Commun. 120: 192–198.

    PubMed  CAS  Google Scholar 

  • Salesse, R., Brochon, J. C., and Gamier, J., 1981, Mesure des déclins de l’intensité et de l’anisotropie de fluorescence du pérylène en présence de membranes d’érythrocytes de pigeon, Biochimie 63: 915–920.

    PubMed  CAS  Google Scholar 

  • Schroeder, F., Barenholz, Y., Gratton, E., and Thompson, T. E., 1987, A fluorescence study of dehydroergosterol in phosphatidylcholine bilayer vesicles, Biochemistry 26: 2441–2448.

    PubMed  CAS  Google Scholar 

  • Seelig, A., and Seelig, J., 1977, Effect of a cis-double bond on the structure of a phospholipid bilayer, Biochemistry 16: 45–50.

    PubMed  CAS  Google Scholar 

  • Seelig, J., and Seelig, A., 1980, Lipid conformation in model membranes and biological membranes, Q. Rev. Biophys. 13: 19–61.

    PubMed  CAS  Google Scholar 

  • Seigneuret, M., and Devaux, P. F., 1984, ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: Relation to shape changes, Proc. Natl Acad. Sci. U.S.A. 81: 3751–3755.

    PubMed  CAS  Google Scholar 

  • Semer, R., and Gelerinter, E., 1979, A spin label study of the effects of sterols on egg lecithin bilayers, Chem. Phys. Lipids 23: 201–211.

    CAS  Google Scholar 

  • Shimshick, E. J., and McConnell, H. M., 1973, Lateral phase separation in binary mixture of cholesterol and phospholipids, Biochemistry 12: 2351–2360.

    PubMed  CAS  Google Scholar 

  • Shinitzky, M., and Barenholz, Y., 1974, Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate, J. Biol. Chem. 249: 2652–2657.

    PubMed  CAS  Google Scholar 

  • Shinitzky, M., and Barenholz, Y., 1978, Fluidity parameters of lipid region determined by fluorescence polarization, Biochim. Biophys. Acta 515: 367–394.

    PubMed  CAS  Google Scholar 

  • Shinitzky, M., and Yuli, I., 1982, Lipid fluidity at the submicroscopic level: Determination by fluorescence polarization, Chem. Phys. Lipids 30: 261–282.

    CAS  Google Scholar 

  • Shinitzky, M., Dianoux, A. C., Gitler, C., and Weber, G., 1971, Microviscosity and order in the hydrocarbon region of micelles and membranes determined with fluorescent probes. 1. Synthetic micelles, Biochemistry 10: 2106–2113.

    PubMed  CAS  Google Scholar 

  • Sklar, L. A., Hudson, B. S., and Simoni, R. D., 1977, Conjugated polyene fatty acids as fluorescent probes: Synthetic phospholipid membrane studies, Biochemistry 16: 819–828.

    PubMed  CAS  Google Scholar 

  • Sklar, L. A., Milijanich, G. P., and Dratz, E. A., 1979, Phospholipid lateral phase separation and the partition of cis-parinaric acid and trans-parinaric acid among aqueous, solid lipid and fluid lipid phases, Biochemistry 18: 1707–1716.

    PubMed  CAS  Google Scholar 

  • Stockton, G. W., Polnaszek, C. F., Leiten, L. G., Tulloch, A. P., and Smith, I. P. C., 1974, A study of mobility and order in model membranes using 2H-NMR relaxation rates and quadrupole splittings of specifically deuterated lipids, Biochem. Biophys. Res. Commun. 60: 844–850.

    PubMed  CAS  Google Scholar 

  • Stoffel, W., Tunggall, B. D., Zierenberg, O., Schreiber, E., and Binczek, E., 1974, 13C nuclear magnetic resonance studies of lipid interaction in single and multicomponent lipid vesicles, Hoppe-Seylerys Z. Physiol. Chem. 355: 1367–1380.

    CAS  Google Scholar 

  • Stubbs, C. D., Kouyama, T., Kinosita, K., and Ikegami, A., 1981, Effect of double bond on the dynamic properties of hydrocarbon region of lecithin bilayers, Biochemistry 20: 4257–4262.

    PubMed  CAS  Google Scholar 

  • Stubbs, C. D., Kinosita, K. J., Munkonge, F., Quinn, P. J., and Ikegami, A., 1984, The dynamics of lipid motion in sarcoplasmic reticulum membranes determined by steady-state and time-resolved fluorescence measurements on DPH and related molecules, Biochim. Biophys. Acta 775: 374–380.

    PubMed  CAS  Google Scholar 

  • Sune, A., Bette-Bobillo, P., Bienvenue, A., Fellman, P., and Devaux, P. F., 1987, Selective outside-inside translocation of aminophospholipids in human platelets, Biochemistry 26: 2972–2978.

    PubMed  CAS  Google Scholar 

  • Szabo, A., 1984, Theory of fluorescence depolarization in macromolecules and membranes, J. Chem. Phys. 81: 160–167.

    Google Scholar 

  • Teissié, J., 1987, Polar head molecular packing of dipalmitoylglycerophosphocholine in the gel state: A fluorescence investigation, Biochemistry 26: 840–846.

    PubMed  Google Scholar 

  • Theunissen, J. J. H., Jackson, R. L., Kempen, H. J. M., and Demel, R. A., 1986, Membrane properties of oxysterols, influence of water permeability and redistributions between membranes, Biochim. Biophys. Acta 860: 66–74.

    PubMed  CAS  Google Scholar 

  • Thulborn, K. R., 1981, The use of n-(9-anthroyloxy) fatty acids as fluorescent probes for biomembranes, in Fluorescent Probes (G. S. Beddard and M. A. West, eds.), pp. 113–139, Academic Press, London.

    Google Scholar 

  • Thulborn, K. R., and Beddard, G., 1982, The effects of cholesterol on the time-resolved emission anisotropy of 12-(9-anthroyloxy) stearic acid in dipalmitoylphosphatidylcholine bilayers, Biochim. Biophys. Acta 693: 246–252.

    PubMed  CAS  Google Scholar 

  • Thulborn, K. R., and Sawyer, W. R., 1978, Properties and location of a set of fluorescent probes sensitive to the fluidity gradient of the lipid bilayer, Biochim. Biophys. Acta 511: 125–140.

    PubMed  CAS  Google Scholar 

  • Thulborn, K. R., Treloar, F. E., and Sawyer, W. H., 1978, A microviscosity barrier in the lipid bilayer due to the presence of phospholipid containing unsaturated acyl chains, Biochem. Biophys. Res. Commun. 81: 42–49.

    PubMed  CAS  Google Scholar 

  • Tilley, L., Thulborn, K. R., and Sawyer, W. H., 1979, An assessment of the fluidity gradient of the lipid bilayer as determined by a set of n-(9-anthroyloxy) fatty acids (n = 2,6,9,12, and 16), J. Biol. Chem. 254: 2592–2594.

    PubMed  CAS  Google Scholar 

  • Van Blitterswijk, W. J., Van Hoeven, R. P., and Van der Meer, B. W., 1981, Lipid structural order parameters (reciprocal of fluidity) in biomembranes derived from steady-state fluorescence polarization measurements, Biochim. Biophys. Acta 644: 323–332.

    PubMed  Google Scholar 

  • Van Blitterswijk, W. J., Van der Meer, W., and Hilkmann, H., 1987, Quantitative contributions of cholesterol and the individual classes of phospholipids and their degree of fatty acyl (un)saturation to membrane fluidity measured by fluorescence polarization, Biochemistry 26: 1746–1756.

    PubMed  Google Scholar 

  • Van der Meer, W., Pottel, H., Herreman, W., Amelot, M., Hendrickx, H., and Schroeder, H., 1984, Effect of orientational order on the decay of the fluorescence anisotropy in membrane suspensions, Biophys. J. 46: 512–523.

    Google Scholar 

  • Van der Meer, W., Van Hoeven, R. P., and Blitterswijk, W. J., 1986, Steady-state fluorescence polarization data in membranes. Resolution into physical parameters by an extended equation for restricted rotation of fluorophores, Biochim. Biophys. Acta 854: 38–44.

    PubMed  Google Scholar 

  • Veatch, W. R., and Stryer, L., 1977, Effect of cholesterol on the rotational mobility of diphenylhexatriene in liposomes: A nanosecond fluorescence anisotropy study, J. Mol. Biol. 117: 1109–1113.

    PubMed  CAS  Google Scholar 

  • Vincent, M., and Gallay, J., 1983, Steroid-lipid interactions in sonicated dipalmitoylphosphatidylcholine vesicles: A steady-state and time-resolved fluorescence anisotropy study with all-trans-1,6-diphenyl-1,3,5-hexatriene as probe, Biochem. Biophys. Res. Commun. 113: 799–810.

    PubMed  CAS  Google Scholar 

  • Vincent, M., and Gallay, J., 1984, Time-resolved fluorescence anisotropy study of effect of a cis double bond on structure of lecithin and cholesterol-lecithin bilayers using n-(9-anthroyloxy) fatty acids as probes, Biochemistry 23: 6514–6522.

    CAS  Google Scholar 

  • Vincent, M., De Foresta, B., Gallay, J., and Alfsen, A., 1982a, Nanosecond fluorescence anisotropy decays of n-(9-anthroyloxy) fatty acids in dipalmitoylphosphatidyl vesicles with regard to isotropic solvents, Biochemistry 21: 708–716.

    PubMed  CAS  Google Scholar 

  • Vincent, M., De Foresta, B., Gallay, J., and Alfsen, A., 1982b, Fluorescence anisotropy decays of n-(9-anthroyloxy) fatty acids in dipalmitoylphosphatidylcholine vesicles. Localization of the effects of cholesterol addition, Biochem. Biophys. Res. Commun. 107: 914–921.

    PubMed  CAS  Google Scholar 

  • Vincent, M., Gallay, J., De Bony, J., and Tocanne, J. F., 1985, Steady-state and time-resolved fluorescence anisotropy study of phospholipid molecular motion in the gel phase using 1-palmitoyl-2-(9-(2-anthryl)-nonanoyl)-sn-glycero-3-phosphocholine as probe, Eur. J. Biochem. 150: 341–347.

    PubMed  CAS  Google Scholar 

  • Visser, A. J. W. G., Santema, J. S., and Van Hoek, A., 1984, Spectroscopic and dynamics characterization of FMN in reversed micelles entrapped water pools, Photochem. Photobiol. 39: 11–16.

    CAS  Google Scholar 

  • Vos, M. H., Kooyman, R. P. H., and Levine, Y. K., 1983, Angle-resolved fluorescence depolarization experiments on oriented membrane lipid system, Biochem. Biophys. Res. Commun. 116: 462–468.

    PubMed  CAS  Google Scholar 

  • Vos, K., Laane, C., and Visser, A. J. W. G., 1987, Spectroscopy of reversed micelles, Photochem. Photobiol. 45: 863–878.

    PubMed  CAS  Google Scholar 

  • Waggoner, A. S., and Stryer, L., 1970, Fluorescent probes of biological membranes, Proc. Natl. Acad. Sci. U.S.A. 67: 579–589.

    PubMed  CAS  Google Scholar 

  • Wahl, Ph., Kasai, M., and Changeux, J. P., 1971, A study on the motion of proteins in excitable membrane fragments by nanosecond fluorescence polarization spectroscopy, Eur. J. Biochem. 18: 332–341.

    PubMed  CAS  Google Scholar 

  • Weber, G., 1971, Theory of fluorescence depolarization by anisotropic Brownian rotations. Discontinuous distribution approach, J. Chem. Phys. 55: 2399–2407.

    CAS  Google Scholar 

  • Weber, G., 1978, Limited rotational motion: Recognition by differential phase fluorimetry, Acta Phys. Polon. A 54: 859–865.

    Google Scholar 

  • Welby, M., and Tocanne, J. F., 1982, Evidence for the incorporation of a fluorescent anthracene fatty acid into the membrane lipids of Micrococcus luteus, Biochim. Biophys. Acta 689: 173–176.

    CAS  Google Scholar 

  • Wolber, P. K., and Hudson, B. S., 1981, Fluorescence lifetime and time-resolved polarization anisotropy studies of acyl chain order and dynamics in lipid bilayers, Biochemistry 20: 2800–2810.

    PubMed  CAS  Google Scholar 

  • Yachnin, S., Streuli, R. A., Gordon, L. J., and Hsu, R. C., 1979, Alterations of peripheral blood cell membrane function and morphology by oxygenated sterols: A membrane insertion hypothesis, Curr. Top. Hematol. 2: 245–271.

    PubMed  CAS  Google Scholar 

  • Yeagle, P. L., 1985, Cholesterol and cell membranes, Biochim. Biophys. Acta 822: 267–287.

    PubMed  CAS  Google Scholar 

  • Zachowski, A., Fabvre, E., Cribier, S., Herve, P., and Devaux, P. F., 1986, Outside-inside translocation of amino phospholipids in the human erythrocyte membranes is mediated by a specific enzyme, Biochemistry 25: 2585–2590.

    PubMed  CAS  Google Scholar 

  • Zannoni, C., Arcioni, A., and Cavatorta, P., 1983, Fluorescence depolarization in liquid crystals and membrane bilayers, Chem. Phys. Lipids 32: 179–250.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Vincent, M., Gallay, J. (1988). Time-Resolved Fluorescence Depolarization Techniques in Model Membrane Systems Effect of Sterols and Unsaturations. In: Hilderson, H.J. (eds) Fluorescence Studies on Biological Membranes. Subcellular Biochemistry, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9359-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9359-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9361-0

  • Online ISBN: 978-1-4613-9359-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics