Skip to main content

Dynamic Structure of Membranes and Subcellular Components Revealed by Optical Anisotropy Decay Methods

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 13))

Abstract

Molecules in living organisms, as well as those in dead matter, undergo continual, irregular motions. It is thermal fluctuations, or the Brownian motions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison, S. A., and Schurr, J. M., 1979, Torsion dynamics and depolarization of fluorescence of linear macromolecules. I. Theory and application to DNA, Chem. Phys. 41: 35–59.

    Article  CAS  Google Scholar 

  • Ando, T., and Scales, D., 1985, Skeletal muscle myosin subfragment-1 induces bundle formation by actin filaments, J. Biol. Chem. 260: 2321–2327.

    PubMed  CAS  Google Scholar 

  • Ashikawa, I., Kinosita, K., Jr., Ikegami, A., Nishimura, Y., Tsuboi, M., Watanabe, K., Iso, K., and Nakano, T., 1983, Internal motion of deoxyribonucleic acid in chromatin. Nanosecond fluorescence studies of intercalated ethidium, Biochemistry 22: 6018–6026.

    Article  PubMed  CAS  Google Scholar 

  • Ashikawa, I., Kinosita, K., Jr., and Ikegami, A., 1984a, Dynamics of Z-form DNA, Biochim. Biophys. Acta 782: 87–93.

    PubMed  CAS  Google Scholar 

  • Ashikawa, I., Furuno, T., Kinosita, K., Jr., Ikegami, A., Takahashi, H., and Akutsu, H., 1984b, Internal motion of DNA in bacteriophages, J. Biol. Chem. 259: 8338–8344.

    PubMed  CAS  Google Scholar 

  • Ashikawa, I., Kinosita, K., Jr., Ikegami, A., Nishimura, Y., and Tsuboi, M., 1985, Increased stability of the higher order structure of chicken erythrocyte chromatin: Nanosecond anisotropy studies of intercalated ethidium, Biochemistry 24: 1291–1297.

    Article  PubMed  CAS  Google Scholar 

  • Ashikawa, I., Kinosita, K., Jr., Ikegami, A., and Tobita, T., 1987, Changes of the DNA packaging mode during boar sperm maturation, Biochim. Biophys. Acta 908: 263–267.

    PubMed  CAS  Google Scholar 

  • Badea, M. G., and Brand, L., 1979, Time-resolved fluorescence measurements, Methods Enzymol. 61: 378–425.

    Article  PubMed  CAS  Google Scholar 

  • Chan, S. S., and Austin, R. H., 1984, Laser photolysis in biochemistry, Methods Biochem. Anal. 30: 105–139.

    Article  PubMed  CAS  Google Scholar 

  • Cherry, R. J., 1979, Rotational and lateral diffusion of membrane proteins, Biochim. Biophys. Acta 559: 289–327.

    PubMed  CAS  Google Scholar 

  • Cone, R. A., 1972, Rotational diffusion of rhodopsin in the visual receptor membrane, Nature New Biol. 236: 39–43.

    PubMed  CAS  Google Scholar 

  • Egelman, E. H., Francis, N., and DeRosier, D. J., 1982, F-actin is a helix with a random variable twist, Nature 298: 131–135.

    Article  PubMed  CAS  Google Scholar 

  • Gut, J., Richter, C, Cherry, R. J., Winterhalter, K. H., and Kawato, S., 1983, Rotation of cytochrome P-450. Complex formation of cytochrome P-450 with NADPH-cytochrome P-450 reductase in liposomes demonstrated by combining protein rotation with antibody-induced cross-linking, J. Biol. Chem. 258: 8588–8594.

    PubMed  CAS  Google Scholar 

  • Heyn, M. P., Cherry, R. J., and Müller, U., 1977, Transient and linear dichroism studies on bacteriorhodopsin: Determination of the orientation of the 568 nm all-trans retinal chromophore, J. Mol. Biol. 117: 607–620.

    Article  PubMed  CAS  Google Scholar 

  • Ikegami, A., Kinosita, K., Jr., Kouyama, T., and Kawato, S., 1982, Structure and dynamics of biological membranes studied by nanosecond fluorescence spectroscopy, in Structure, Dynamics, and Biogenesis of Biomembranes (R. Sato and S. Ohnishi, eds.), pp. 1–32, Japan Scientific Societies Press, Tokyo.

    Google Scholar 

  • Ishiwata, S., Kinosita, K., Jr., Yoshimura, H., and Ikegami, A., 1987, Rotational motions of myosin heads in myofibril studied by phosphorescence anisotropy decay measurements, J. Biol. Chem. 262: 8314–8317.

    PubMed  CAS  Google Scholar 

  • Johnson, P., and Garland, P. B., 1981, Depolarization of fluorescence depletion. A microscopic method for measuring rotational diffusion of membrane proteins on the surface of a single cell, FEBS Lett. 132: 252–256.

    Article  PubMed  CAS  Google Scholar 

  • Jovin, T. M., Bartholdi, M., Vaz, W. L. C, and Austin, R. H., 1981, Rotational diffusion of biological macromolecules by time-resolved delayed luminescence (phosphorescence, fluorescence) anisotropy, Ann. N.Y. Acad. Sci. 366: 176–196.

    Article  PubMed  CAS  Google Scholar 

  • Kawato, S., Lehner, C, Müller, M., and Cherry, R. J., 1982, Protein-protein interactions of cyto-chrome oxidase in inner mitochondrial membranes. The effect of liposome fusion on protein rotational mobility, J. Biol. Chem. 257: 6470–6476.

    PubMed  CAS  Google Scholar 

  • Kinosita, K., Jr., Kawato, S., Ikegami, A., Yoshida, S., and Orii, Y., 1981, The effect of cytochrome oxidase on lipid chain dynamics. A nanosecond fluorescence depolarization study, Biochim. Biophys. Acta 647: 7–17.

    Article  PubMed  CAS  Google Scholar 

  • Kinosita, K., Jr., 1983, Nanosecond fluorometry, in Fluorometry. Applications to Biological Science (K. Kinosita, Jr. and K. Mihashi, eds.), pp. 99–159, Japan Scientific Societies Press, Tokyo (in Japanese).

    Google Scholar 

  • Kinosita, K., Jr., Ishiwata, S., Yoshimtira, H., Asai, H., and Ikegami, A., 1984a, Submicrosecond and microsecond rotational motions of myosin head in solution and in myosin synthetic filaments as revealed by time-resolved optical anisotropy decay measurements, Biochemistry 23: 5963–5975.

    Article  CAS  Google Scholar 

  • Kinosita, K., Jr., Kawato, S., and Ikegami, A., 1984b, Dynamic structure of biological and model membranes: Analysis by optical anisotropy decay measurement, Adv. Biophys. 17: 147–203.

    Article  PubMed  Google Scholar 

  • Kinosita, K., Jr., Mihashi, K., Ishiwata, S., Yoshimura, H., Nishio, T., Asai, H., and Ikegami, A., 1985, Optical anisotropy decay studies of the dynamics of muscle proteins, in Actin: Structure and Functions (Proceeding of the 11th Taniguchi International Symposium, Division of Biophysics) (T. Yanagida, ed.), pp. 32–45, The Taniguchi Foundation, Kyoto.

    Google Scholar 

  • Kornberg, R. D., and Klug, A., 1981, The nucleosome, Sci Am. 244: 52–64.

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., 1983, Principle of Fluorescence Spectroscopy, Plenum Press, New York.

    Google Scholar 

  • Meech, S. R., Stubbs, C. D., and Phillips, D., 1984, The application of fluorescence decay measurements in studies of biological systems, IEEE J. Quantum Electr. QE-20: 1343–1352.

    Article  CAS  Google Scholar 

  • Mihashi, K., Ooi, A., Suzuki, N., Yoshimura, H., and Kinosita, K., Jr., 1988, Dynamic polarity of F-Actin and its Ca-dependent regulation under the influence of tropomyosin-troponin system, Life Sci. Adv. 7 (in press).

    Google Scholar 

  • Nigg, E. A., and Cherry, R. J., 1980, Anchorage of a band 3 population at the erythrocyte cytoplasmic membrane surface: Protein rotational diffusion measurements, Proc. Natl. Acad. Sci. U.S.A. 77: 4702–4706.

    Article  PubMed  CAS  Google Scholar 

  • Osada, H., Nakanishi, M., Tsuboi, M., Kinosita, K., Jr., and Ikegami, A., 1984, Rotational dynamics of immunoglobulins with fluorescent haptens on a membrane surface, Biochim. Biophys. Acta 773: 321–324.

    Article  PubMed  CAS  Google Scholar 

  • Perrin, F., 1936, Mouvement Brownien d’un ellipsoide (II). Rotation libre et dépolarisation des fluorescenses. Translation et diffusion de molécules ellipsoidales, J. Phys. Radium 7:1–11.

    Article  CAS  Google Scholar 

  • Rigler, R., and Ehrenberg, M., 1973, Molecular interactions and structure as analyzed by fluorescence relaxation spectroscopy, Q. Rev. Biophys. 6: 139–199.

    Article  PubMed  CAS  Google Scholar 

  • Shinitzky, M., and Barenholz, Y., 1974, Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate, J. Biol. Chem. 249: 2652–2657.

    PubMed  CAS  Google Scholar 

  • Stubbs, C. D., Kouyama, T., Kinosita, K., Jr., and Ikegami, A., 1981, Effect of double bonds on the dynamic properties of the hydrocarbon region of lecithin bilayers, Biochemistry 20: 4257–4262.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D. D., 1986, Rotational diffusion of membrane proteins, in Techniques for the Analysis of Membrane Proteins (C. I. Ragan and R. J. Cherry, eds.), pp. 377–431, Chapman and Hall, London.

    Google Scholar 

  • Trauble, H., and Haynes, D. H., 1971, The volume change in lipid bilayer lamellae at the crystallineliquid crystalline phase transition, Chem. Phys. Lipids 1: 324–335.

    Article  Google Scholar 

  • Wahl, P., 1975, Nanosecond pulse fluorimetry, New Tech. Biophys. Cell Biol. 2: 233–285.

    CAS  Google Scholar 

  • Weber, G., 1953, Rotational Brownian motion and polarization of the fluorescence of solutions, Adv. Protein Chem. 8: 415–459.

    Article  PubMed  CAS  Google Scholar 

  • Yanagida, T., Arata, T., and Oosawa, F., 1985, Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle, Nature 316: 366–369.

    Article  PubMed  CAS  Google Scholar 

  • Yguerabide, J., 1972, Nanosecond fluorescence spectroscopy of macromolecules, Methods Enzymol. 26: 498–578.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura, H., Nishio, T., Mihashi, K., Kinosita, K., Jr., and Ikegami, A., 1984, Torsional motion of eosin-labeled F-actin as detected in the time-resolved anisotropy decay of the probe in the submillisecond time range, J. Mol. Biol. 179: 453–467.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Kinosita, K., Ikegami, A. (1988). Dynamic Structure of Membranes and Subcellular Components Revealed by Optical Anisotropy Decay Methods. In: Hilderson, H.J. (eds) Fluorescence Studies on Biological Membranes. Subcellular Biochemistry, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9359-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9359-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9361-0

  • Online ISBN: 978-1-4613-9359-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics