Advertisement

Structural Basis and Physiological Control of Membrane Fluidity in Normal and Tumor Cells

  • Wim J. van Blitterswijk
Part of the Subcellular Biochemistry book series (SCBI, volume 13)

Abstract

Mammalian cell membranes basically consist of a bilayer of lipid molecules interacting with each other and with proteins that have either a transmem-branous or a superficial position. These physical interactions determine the structure and molecular motions in the membrane.

Keywords

Fatty Acid Composition Membrane Fluidity Fluorescence Polarization Hairy Cell Leukemia Membrane Lipid Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

α

cholesterol ordering coefficient

ALL

acute lymphocytic leukemia

AML

acute myelogenous leukemia

CLL

chronic lymphocytic leukemia

CML

chronic myelogenous leukemia

C/PL

cholesterol/phospholipid

DPH

l,6-diphenyl-l,3,5-hexatriene

HCL

hairy cell leukemia

HDL

high-density lipoproteins

HMG-CoA

3-hydroxyl-3-methylglutaryl-CoA

LDL

low-density lipoproteins

PDPH

DPH steady-state fluorescence polarization

PPlat

plateau value of PDVH reached at high cholesterol content

Pzezo

polarization of the liposome without cholesterol

SDPH

membrane order parameter

VLDL

very-low-density lipoproteins

WBC

white blood cells

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, A., and Holub, B. J., 1984, Alteration and recovery of bleeding times, platelet aggregation and fatty acid composition of individual phospholipids in platelets of human subjects receiving a supplement of cod-liver oil, Lipids 19: 617–624.PubMedCrossRefGoogle Scholar
  2. Brasitus, T. A., Davidson, N. O., and Schachter, D., 1985, Variations in dietary triacylglycerol saturation alter the lipid composition and fluidity of rat intestinal plasma membranes, Biochim. Biophys. Acta. 812: 460–472.PubMedCrossRefGoogle Scholar
  3. Brox, J. H., Killie, J.-E., Gunnes, S., and Nordoy, A., 1981, The effect of cod liver oil and corn oil on platelets and vessel wall in man, Thromb. Haemost. 46: 604–611.PubMedGoogle Scholar
  4. Burns, C. P., and Spector, A. A., 1987, Membrane fatty acid modification in tumor cells: A potential therapeutic adjunct, Lipids 22: 178–184.PubMedCrossRefGoogle Scholar
  5. Burns, C. P., Rosenberger, J. A., and Luttenegger, D. G., 1983, Selectivity in modification of the fatty acid composition of normal mouse tissues and membranes in vivo, Ann. Nutr. Metab. 27: 268–277.PubMedCrossRefGoogle Scholar
  6. Carroll, K. K., 1986, Biological effects of fish oils in relation to chronic diseases, Lipids 21: 731–732.PubMedCrossRefGoogle Scholar
  7. Conroy, D. M., Stubbs, C. D., Belin, J., Pryor, C. L., and Smith, A. D., 1986, The effects of dietary (n-3) fatty acid supplementation on lipid dynamics and composition in rat lymphocytes and liver microsomes, Biochim. Biophys. Acta. 861: 457–462.PubMedCrossRefGoogle Scholar
  8. Cooper, R. A., Leslie, M. H., Fischkoff, S., Shinitzky, M., and Shattil, S. J., 1978, Factors influencing the lipid composition and fluidity of red cell membranes in vitro: Production of red cells possessing more than two cholesterols per phospholipid, Biochemistry 17: 327–331.PubMedCrossRefGoogle Scholar
  9. Damen, J., Van Ramshorst, J., Van Hoeven, R. P., and Van Blitterswijk, W. J., 1984, Alterations in plasma lipoproteins and heparin-releasable lipase activities in mice bearing GRSL ascites tumor, Biochim. Biophys. Acta. 793: 287–296.PubMedGoogle Scholar
  10. Damen, J., de Widt, J., Hengeveld, T., and Van Blitterswijk, W. J., 1985, Accumulation of HDL-like lipoproteins in the plasma low-density fractions of tumor-bearing mice, Biochim. Biophys. Acta. 833: 495–498.PubMedGoogle Scholar
  11. Demel, R. A., Geurts van Kessel, W. S. M., and Van Deenen, L. L. M., 1972, The properties of polyunsaturated lecithins in monolayers and liposomes and the interactions of these lecithins with cholesterol, Biochim. Biophys. Acta. 266: 26–40.CrossRefGoogle Scholar
  12. Demel, R. A., Jansen, J. W. C. M., Van Dijck, P. W. M., and Van Deenen, L. L. M., 1977, The preferential interactions of cholesterol with different classes of phospholipids, Biochim. Biophys. Acta. 465: 1–10.PubMedCrossRefGoogle Scholar
  13. Farias, R. N., 1987, Insulin-membrane interactions and membrane fluidity changes, Biochim. Biophys. Acta. 906: 459–468.PubMedGoogle Scholar
  14. Friedlander, G., Le Grimellec, C., Giocondi, M. C., and Amiel, C., 1987, Benzyl alcohol increases membrane fluidity and modulates cyclic AMP synthesis in intact renal epithelial cells, Biochim. Biophys. Acta. 903: 341–348.PubMedCrossRefGoogle Scholar
  15. Gordon, L. M., Sauerheber, R. D., Esgate, J. A., Dipple, I., Marchmont, R. J., and Houslay, M. D., 1980, The increase in bilayer fluidity of rat liver plasma membranes achieved by the local anesthetic benzyl alcohol affects the activity of intrinsic membrane enzymes, J. Biol. Chem. 255: 4519–4527.PubMedGoogle Scholar
  16. Gould, R. J., and Ginsberg, B. H., 1985, Membrane fluidity and membrane receptor function, in Membrane Fluidity in Biology (R. C. Aloia and J. Boggs, eds.), Vol. 3, pp. 257–280, Academic Press, New York.Google Scholar
  17. Heiniger, H. J., Chen, H. W., Applegate, O. L., Jr., Schacter, L. P., Schacter, B. Z., and Anderson, P. N., 1976, Elevated synthesis of cholesterol in human leukemic cells, J. Mol. Med. 1: 109–116.Google Scholar
  18. Ho, Y. K., Smith, R. G., Brown, M. S., and Goldstein, J. L., 1978, Low-density lipoprotein (LDL) receptor activity in human acute myelogenous leukemia cells, Blood 52: 1099–1114.PubMedGoogle Scholar
  19. Hoffmann, W., Pink, D. A., Restall, C., and Chapman, D., 1981, Intrinsic molecules in fluid phospholipid bilayers: Fluorescence probe studies, Eur. J. Biochem. 114: 585–589.PubMedCrossRefGoogle Scholar
  20. Hornstra, G., and Rand, M. L., 1986, Effect of dietary n-6 and n-3 polyunsaturated fatty acids on the fluidity of platelet membranes in rat and man, Prog. Lipid Res. 25: 637–638.CrossRefGoogle Scholar
  21. Iritani, N., and Narita, R., 1984, Changes of arachidonic acid and n-3 polyunsaturated fatty acids of phospholipid classes of liver, plasma and platelets during dietary fat manipulation, Biochim. Biophys. Acta. 793: 441–447.PubMedGoogle Scholar
  22. Irvine, R. F., 1982, How is the level of free arachidonic acid controlled in mammalian cells?, Biochem. J. 204: 3–16.PubMedGoogle Scholar
  23. Kannagi, R., Koizumi, K., and Masuda, T., 1981, Limited hydrolysis of platelet membrane phospholipids; on the proposed phospholipase-susceptible domain in platelet membranes, J. Biol. Chem. 256: 1177–1184.PubMedGoogle Scholar
  24. Kinosita, K., Jr., Kawato, S., and Ikegami, A., 1984, Dynamic structure of biological and model membranes: Analysis by optical anisotropy decay measurement, Adv. Biophys. 17: 147–203.PubMedCrossRefGoogle Scholar
  25. Lange, Y., and Matthies, H. J. G., 1984, Transfer of cholesterol from its site of synthesis to the plasma membrane, J. Biol. Chem. 259: 14624–14630.PubMedGoogle Scholar
  26. Lange, Y., D’Alessandro, J. S., and Small, D. M., 1979, The affinity of cholesterol for phosphatidylcholine and sphingomyelin, Biochim. Biophys. Acta. 556: 388–398.PubMedCrossRefGoogle Scholar
  27. Lentz, B. R., Barenholz, Y., and Thompson, T. E., 1976, Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2. Two-component phosphatidylcholine liposomes, Biochemistry 15: 4529–4537.PubMedCrossRefGoogle Scholar
  28. Leslie, C. A., Gonnerman, W. A., Ullman, M. D., Hayes, K. C., Franzblau, C., and Cathcart, E. S., 1985, Dietary fish oil modulates macrophage fatty acids and decreases arthritis susceptibility in mice, J. Exp. Med. 162: 1336–1349.PubMedCrossRefGoogle Scholar
  29. Mahadevappa, V. G., and Holub, B. J., 1987, Quantitative loss of individual eicosapentaenoyl-relative to arachidonoyl-containing phospholipids in thrombin-stimulated human platelets, J. Lipid Res. 28: 1275–1280.PubMedGoogle Scholar
  30. McMurchie, E. J., Patten, G. S., Charnock, J. S., and McLennan, P. L., 1987, The interaction of dietary fatty acid and cholesterol on catecholamine-stimulated adenylate cyclase activity in the rat heart, Biochim. Biophys. Acta. 898: 137–153.PubMedCrossRefGoogle Scholar
  31. Mori, T. A., Codde, J. P., Van Dongen, R., and Beilin, L. J., 1987, New findings in the fatty acid composition of individual platelet phospholipids in man after dietary fish oil supplementation, Lipids 22: 744–750.PubMedCrossRefGoogle Scholar
  32. Müller, C. P., and Krueger, G. R. F., 1986, Modulation of membrane proteins by vertical phase separation and membrane lipid fluidity. Basis for a new approach to tumor immunotherapy, Anticancer Res.6: 1181–1194.PubMedGoogle Scholar
  33. Nakagawa, Y., Inoue, K., and Nojima, S., 1979, Transfer of cholesterol between liposomal membranes, Biochim. Biophys. Acta. 553: 307–319.PubMedCrossRefGoogle Scholar
  34. Needham, L., Dodd, N. J. F., and Houslay, M. D., 1987, Quinidine and melittin both decrease the fluidity of liver plasma membranes and both inhibit hormone-stimulated adenylate cyclase activity, Biochim. Biophys. Acta. 899: 44–50.PubMedCrossRefGoogle Scholar
  35. Neelands, P. J., and Clandinin, M. T., 1983, Diet fat influences liver plasma-membrane lipid composition and glucagon-stimulated adenylate cyclase activity, Biochem. J. 212: 573–583.PubMedGoogle Scholar
  36. Nordoy, A., Davenas, E., Ciavatti, M., and Renaud, S., 1985, Effect of (n-3) fatty acids on platelet function and lipid metabolism in rats, Biochim. Biophys. Acta. 835: 491–500.PubMedGoogle Scholar
  37. Oldfield, E., and Chapman, D., 1972, Dynamics of lipids in membranes: Heterogenicity and the role of cholesterol, FEBS Lett.23: 285–297.PubMedCrossRefGoogle Scholar
  38. Popp-Snijders, C., Schouten, J. A., Van Blitterswijk, W. J., and van der Veen, E. A., 1986, Changes in membrane lipid composition of human erythrocytes after dietary supplementation of (n-3) polyunsaturated fatty acids. Maintenance of membrane fluidity, Biochim. Biophys. Acta. 854: 31–37.PubMedCrossRefGoogle Scholar
  39. Pottel, H., Van der Meer, B. W., and Herreman, W., 1983, Correlation between the order parameter and the steady-state fluorescence anisotropy of l,6-diphenyl-l,3,5-hexatriene and an evaluation of membrane fluidity, Biochim. Biophys. Acta. 730: 181–186.CrossRefGoogle Scholar
  40. Rand, M. L., Hennissen, A. A. H. M., and Hornstra, G., 1986, Effects of dietary sunflowerseed oil and marine oil on platelet membrane fluidity, arterial thrombosis, and platelet responses in rats, Atherosclerosis 62: 267–276.PubMedCrossRefGoogle Scholar
  41. Renaud, S., MQrazain, R., McGregor, L., and Baudier, F., 1979, Dietary fats and platelet function in relation to atherosclerosis and coronary heart disease, Haemostasis 8: 234–251.PubMedGoogle Scholar
  42. Rosenfeld, C., Jasmin, C., Mathe, G., and Inbar, M., 1979, Dynamic and composition of cellular membranes and serum lipids in malignant disorders, Rec. Results Cancer Res. 67: 63–77.Google Scholar
  43. Schouten, J. A., Beynen, A. C., Popp-Snijders, C., Mulder, C., Van Blitterswijk, W. J., and Hoitsma, H. F. W., 1987, The composition of plasma lipoproteins in cholesterol-fed pigs with partial ileal bypass, Artery 14: 165–189.PubMedGoogle Scholar
  44. Shinitzky, M., 1984, Membrane fluidity and cellular functions, in Physiology of Membrane Fluidity (M. Shinitzky, ed.), Vol. 1, pp. 1–51, CRC Press, Boca Raton, FL.Google Scholar
  45. Shinitzky, M., Skornick, Y., and Haran-Ghera, N., 1979, Effective tumor immunization induced by cells of elevated membrane lipid microviscosity, Proc. Natl. Acad. Sci. U.S.A. 76: 5313–5316.PubMedCrossRefGoogle Scholar
  46. Simon, I., Brown, T. J., and Ginsberg, B. H., 1987, Modification of membrane physical properties, biological response and insulin binding in Friend cells by low serum concentration, Biochim. Biophys. Acta. 896: 165–172.PubMedCrossRefGoogle Scholar
  47. Skornick, Y., Kurman, C. C., and Sindelar, W. F., 1984, Active immunization of hamsters against pancreatic carcinoma with lipid-treated cells or their shed antigens, Cancer Res.44: 946–948.PubMedGoogle Scholar
  48. Skornick, Y. G., Rong, G. H., Sindelar, W. F., Richert, L., Klausner, J. M., Rozin, R. R., and Shinitzky, M., 1986, Active immunotherapy of human solid tumor with autologous cells with cholesteryl hemisuccinate. A phase I study, Cancer 58: 650–654.Google Scholar
  49. Spector, A. A., and Burns, C. P., 1987, Biological and therapeutic potential of membrane lipid modification in tumors, Cancer Res.47: 4529–4537.PubMedGoogle Scholar
  50. Spector, A. A., and Yorek, M. A., 1985, Membrane lipid composition and cellular function, J. Lipid Res.26: 1015–1035.PubMedGoogle Scholar
  51. Spiegel, R. J., Schaefer, E. J., Magrath, I. T., and Edwards, B. K., 1982, Plasma lipid alterations in leukemia and lymphoma, Am. J. Med. 72: 775–782.PubMedCrossRefGoogle Scholar
  52. Storch, J., and Schachter, D., 1985, Calcium alters the acyl chain composition and lipid fluidity of rat hepatocyte plasma membrane in vitro, Biochim. Biophys. Acta. 812: 473–484.PubMedCrossRefGoogle Scholar
  53. Stubbs, C. D., and Smith, A. D., 1984, The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function, Biochim. Biophys. Acta. 779: 89–137.PubMedGoogle Scholar
  54. Tahin, Q. S., Blum, M., and Carafoli, E., 1981, The fatty acid composition of subcellular membranes of rat liver, heart, and brain: Diet-induced modifications, Eur. J. Biochem. 121: 5–13.PubMedCrossRefGoogle Scholar
  55. Tandon, N., Harmon, J. T., Rodbard, D., and Jamieson, G. A., 1983, Thrombin receptors define responsiveness of cholesterol-modified platelets, J. Biol. Chem. 258:11840–11845.PubMedGoogle Scholar
  56. Van Blitterswijk, W. J., 1984, Alterations in lipid fluidity in the plasma membrane of tumor cells, in Physiology of Membrane Fluidity (M. Shinitzky, ed.), Vol. 2, pp. 53–83, CRC Press, Boca Raton, FL.Google Scholar
  57. Van Blitterswijk, W. J., 1985, Membrane fluidity in normal and malignant lymphoid cells, in Membrane Fluidity in Biology (R. C. Aloia and J. Boggs, eds.), Vol. 3, pp. 85–159, Academic Press, New York.Google Scholar
  58. Van Blitterswijk, W. J., Van Hoeven, R. P., and Van der Meer, B. W., 1981, Lipid structural order parameters (reciprocal of fluidity) in biomembranes derived from steady-state fluorescence polarization measurements, Biochim. Biophys. Acta. 644: 323–332.PubMedCrossRefGoogle Scholar
  59. Van Blitterswijk, W. J., De Veer, G., Krol, H. J., and Emmelot, P., 1982, Comparative lipid analysis of purified plasma membranes and shedded extracellular membrane vesicles from normal murine thymocytes and leukemic GRSL cells, Biochim. Biophys. Acta. 688: 495–504.PubMedCrossRefGoogle Scholar
  60. Van Blitterswijk, W. J., Hilkmann, H., and Hengeveld, T., 1984, Differences in membrane lipid composition and fluidity of transplanted GRSL lymphoma cells, depending on their site of growth in the mouse, Biochim. Biophys. Acta. 778: 521–529.PubMedCrossRefGoogle Scholar
  61. Van Blitterswijk, W. J., Damen, J., Hilkmann, H., and de Widt, J., 1985, Alterations in cholesterol homeostasis and biosynthesis in mice bearing a transplanted lymphoid tumor, Biochim. Biophys. Acta. 816: 46–56.PubMedCrossRefGoogle Scholar
  62. Van Blitterswijk, W. J., Van der Meer, B. W., and Hilkmann, H., 1987, Quantitative contributions of cholesterol and the individual classes of phospholipids and their degree of fatty acyl (un)saturation to membrane fluidity measured by fluorescence polarization, Biochemistry 26: 1746–1756.PubMedCrossRefGoogle Scholar
  63. Van den Bosch, H., 1980, Intracellular phospholipases A, Biochim. Biophys. Acta. 604: 191–246.PubMedCrossRefGoogle Scholar
  64. Van der Meer, B. W., Van Hoeven, R. P., and Van Blitterswijk, W. J., 1986, Steady-state fluorescence polarization data in membranes. Resolution into physical parameters by an extended Perrin equation for restricted rotation of fluorophores, Biochim. Biophys. Acta. 854: 38–44.PubMedCrossRefGoogle Scholar
  65. Verger, R., 1976, Interfacial enzyme kinetics of lipolysis, Annu. Rev. Biophys. Bioeng. 5: 77–117.PubMedCrossRefGoogle Scholar
  66. Vitols, S., Gahrton, G., Ost, A., and Peterson, C., 1984, Elevated low density lipoprotein receptor activity in leukemic cells with monocytic differentiation, Blood 63: 1186–1193.PubMedGoogle Scholar
  67. Wattenberg, B. W., and Silbert, D. F., 1983, Sterol partitioning among intracellular membranes; testing a model for cellular sterol distribution, J. Biol. Chem. 258: 2284–2289.PubMedGoogle Scholar
  68. Yachnin, S., Golomb, H. M., West, E. J., and Saffold, C., 1983, Increased cholesterol biosynthesis in leukemic cells from patients with hairy cell leukemia, Blood 61: 50–60.PubMedGoogle Scholar
  69. Yeagle, P. L., and Young, J. E., 1986, Factors contributing to the distribution of cholesterol among phospholipid vesicles, J. Biol. Chem.261: 8175–8181.PubMedGoogle Scholar
  70. Yguerabide, J., 1972, Nanosecond fluorescence spectroscopy of macromolecules, Methods Enzymol.26: 498–578.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Wim J. van Blitterswijk
    • 1
  1. 1.Division of Cellular BiochemistryThe Netherlands Cancer InstituteAmsterdamThe Netherlands

Personalised recommendations