Skip to main content

The Study of Cytoskeletal Protein Interactions by Fluorescence Probe Techniques

  • Chapter
Fluorescence Studies on Biological Membranes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 13))

  • 152 Accesses

Abstract

The reductionist approach to cell biology aims to explain the functioning of the whole cell in terms of the properties of its individual components. The central place of proteins in all aspects of cell activity justifies the theoretical and experimental attempts that have been made to relate amino acid sequence to molecular structure and function. Since many proteins are present in the cell in small amounts, the biochemist has resorted to microanalytical methods to obtain this information. Recent developments in instrumentation and computer technologies have greatly aided this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arakawa, T., and Frieden, C., 1984, Interaction of microtubule-associated proteins with actin filaments, J. Biol Chem. 259: 11730–11734.

    PubMed  CAS  Google Scholar 

  • Asakura, S., 1961, F-actin adenosine triphosphate activated under sonic vibration, Biochim. Biophys Acta. 52: 65–75.

    Article  PubMed  CAS  Google Scholar 

  • Austin, R. H., Chan, S. S., and Jovin, T. M., 1979, Rotational diffusion of cell surface components by time-resolved phosphorescence anisotropy, Proc. Natl. Acad. Sci. U.S.A. 76: 5650–5654.

    Article  PubMed  CAS  Google Scholar 

  • Axelrod, D., Koppel, D., Schlessinger, J., Elson, E., and Webb, W. W., 1976, Mobility measurement by analysis of fluorescence photobleaching recovery kinetics, Biophys. J. 16: 1055–1069.

    Article  PubMed  CAS  Google Scholar 

  • Barden, J. A., Miki, M., and Dos Remedios, C. G., 1986, Selective labelling of Cys-10 on actin, Biochem. Int. 12: 95–101.

    PubMed  CAS  Google Scholar 

  • Barkley, M. D., and Zimm, B. H., 1979. Theory of twisting and bending of chain macromolecules; analysis of the fluorescence depolarization of DNA, J. Chem. Phys. 70: 2991–3007.

    Article  CAS  Google Scholar 

  • Beechem, J. M., and Brand, L., 1985, Time-resolved fluorescence of proteins, Annu. Rev. Biochem. 54: 43–71.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, V., 1985, The membrane skeleton of human erythrocytes and its implications for more complex cells, Annu. Rev. Biochem. 54: 273–304.

    Article  PubMed  CAS  Google Scholar 

  • Blatt, E., and Jovin, T. M., 1986, Rotational dynamics of biological macromolecules, in Photo-physical and Photochemical Tools in Polymer Science (M. A. Winnik, ed.), pp. 351–370. D. Reidel Publishing, Dordrecht.

    Google Scholar 

  • Blatt, E., and Sawyer, W. H., 1985, Depth-dependent fluorescence quenching in micelles and membranes, Biochim. Biophys. Acta. 822: 43–62.

    PubMed  CAS  Google Scholar 

  • Blatt, E., and Vaz, W. L. C., 1986, The effects of Ca2+ on lipid diffusion, Chem. Phys. Lipids. 41: 183–194.

    Article  PubMed  CAS  Google Scholar 

  • Blatt, E., Ghiggino, K. P., and Sawyer, W. H., 1982, Fluorescence depolarization studies of n-(9-anthroyloxy) fatty acids in cetyltrimethylammonium bromide micelles, J. Phys. Chem. 86: 4461–4464.

    Article  CAS  Google Scholar 

  • Blatt, E., Ghiggino, K. P., and Sawyer, W. H., 1983. The rotational motion of n-(9-anthroyloxy) fatty acids in phospholipid bilayer vesicles, Aust. J. Chem. 36: 1079–1086.

    Article  CAS  Google Scholar 

  • Blatt, E., Husain, A., and Sawyer, W. H., 1986a, The association of acrylamide with proteins. The interpretation of fluorescence quenching experiments, Biochim. Biophys. Acta. 871: 6–13.

    Article  PubMed  CAS  Google Scholar 

  • Blatt, E., Chatelier, R. C., and Sawyer, W. H., 1986b, Effects of quenching mechanism and type of quencher interaction on Stern-Volmer plots in compartmentalized systems, Biophys. J. 50: 349–356.

    Article  PubMed  CAS  Google Scholar 

  • Brown, S. S., and Spudich, J. A., 1981, Mechanism of action of cytochalasin B: Evidence that it binds to actin filament ends, J Cell Biol 80: 487–491.

    Article  Google Scholar 

  • Cherry, R. J., 1978, Measurement of protein rotational diffusion in membranes by flash photolysis, Methods Enzymol.54: 47–61.

    Article  PubMed  CAS  Google Scholar 

  • Cherry, R. J., Bürkli, A., Busslinger, M., Schneider, G., and Parish, G. R., 1976, Rotational diffusion of band 3 proteins in the human erythrocyte membrane, Nature 263: 389–393.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, H. C., Cooke, R., and Smith, L., 1971, G-actin → F-actin transformation as studied by the fluorescence of bound dansyl cystine, Arch. Biochem. Biophys. 142: 333–339.

    Article  PubMed  CAS  Google Scholar 

  • Coates, J. H., Criddle, A. H., and Geeves, M. A., 1985, Pressure-relaxation studies of pyrene-labeled actin and myosin subfragment 1 from rabbit skeletal muscle, Biochem. J. 232: 351–356.

    PubMed  CAS  Google Scholar 

  • Cohen, C. M., and Foley, S. F., 1984, Biochemical characterization of complex formation by human erythrocyte spectrin, protein 4.1, and actin, Biochemistry 23: 6091–6098.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, C. M., Foley, S. F., and Korsgren, C., 1982, A protein immunologically related to erythrocyte band 4.1 is found on stress fibres of nonerythroid cells, Nature 299: 648–650.

    Article  PubMed  CAS  Google Scholar 

  • Coke, M., Restall, C. J., Kemp, C. M., and Chapman, D., 1986, Rotational diffusion of rhodopsin in the visual receptor membrane: Effects of temperature and bleaching, Biochemistry 25: 513–518.

    Article  CAS  Google Scholar 

  • Cooper, J. A., and Pollard, T. D., 1982, Methods to measure actin polymerization, Methods Enzymol. 85: 182–210.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, J. A., Walker, S. B., and Pollard, T. D., 1983, Pyrene actin: Documentation of the validity of a sensitive assay for actin polymerization, J. Muscle. Res. Cell. Motil. 4: 253–262.

    Article  PubMed  CAS  Google Scholar 

  • Corin, A. F., Matayoshi, E. D., and Jovin, T. M., 1985, Triplet-state spectroscopy for investigating diffusion and chemical kinetics, in Spectroscopy and the Dynamics of Biological Systems (P. M. Bayley and R. E. Dale, eds.), pp. 53–78, Academic Press, London.

    Google Scholar 

  • Corin, A. F., Blatt, E., and Jovin, T. M., 1987, Triplet-state detection of labeled proteins using fluorescence recovery spectroscopy, Biochemistry 26: 2207–2217.

    Article  PubMed  CAS  Google Scholar 

  • Criddle, A. H., Geeves, M. A., and Jeffries, T., 1985, The use of actin labeled with N-(\-pyrenyl)iodoacetamide to study the interaction of actin with myosin subfragments and troponin/ tropomyosin, Biochem. J. 232: 343–349.

    PubMed  CAS  Google Scholar 

  • Cundall, R. B., and Dale, R. E., eds. 1983, Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology, Plenum Press, New York.

    Google Scholar 

  • Davis, J. Q., and Bennett, V., 1983, Brain spectrin. Isolation of subunits and formation of hybrids with ethrythrocyte spectrin subunits, J. Biol Chem. 258: 7757–7766.

    PubMed  CAS  Google Scholar 

  • Davis, J. Q., and Bennett, V., 1984, Brain ankyrin. A membrane-associated protein with binding sites for spectrin, tubulin and the cytoplasmic domain of the erythrocyte anion channel, J. Biol. Chem. 259: 13550–13559.

    PubMed  CAS  Google Scholar 

  • Dos Remedios, C. G., and Cooke, R., 1984, Fluorescence energy transfer between probes on actin and probes on myosin, Biochim. Biophys. Acta. 788: 193–205.

    Article  PubMed  Google Scholar 

  • Dos Remedios, C. G., Miki, M., and Barden, J. A., 1987, Fluorescence resonance energy transfer measurement of distances in actin and myosin. A critical evaluation, J. Muscle. Res. Cell. Motil. 8: 97–117.

    Article  PubMed  Google Scholar 

  • Edelman, G. M., and McClure, W. O., 1968, Fluorescent probes and the conformation of proteins, Acct. Chem. Res. 1: 65–70.

    Article  CAS  Google Scholar 

  • Eftink, M. R., and Ghiron, C. A., 1976, Fluorescence quenching of indole and model micelle systems, J. Phys. Chem. 80: 486–493.

    Article  CAS  Google Scholar 

  • Eftink, M. R., and Ghiron, C. A., 1977, Exposure of tryptophanyl residues and protein dynamics, Biochemistry 16: 5546–5551.

    Article  PubMed  CAS  Google Scholar 

  • Eftink, M. R., and Ghiron, C. A., 1981, Fluorescence quenching studies with proteins, Anal. Biochem. 114: 199–227.

    Article  PubMed  CAS  Google Scholar 

  • Elbaum, D., Mimms, L. T., and Branton, D., 1984, Modulation of actin polymerization by the spectrin-band 4.1 complex, Biochemistry 23: 4813–4816.

    Article  PubMed  CAS  Google Scholar 

  • Elzinga, M., Collins, J. H., Kuel, W., and Adelstein, R. S., 1973, Complete amino-acid sequence of actin of rabbit skeletal muscle, Proc. Natl. Acad. Sci. U.S.A. 70: 2687–2691.

    Article  PubMed  CAS  Google Scholar 

  • Fowler, V. M., 1986, An actomyosin contractile mechanism for erythrocyte shape transformations, J. Cell. Biochem. 31: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Fowler, V. M., and Bennett, V., 1984, Erythrocyte membrane tropomyosin. Purification and properties, J. Biol Chem. 259: 5978–5989.

    PubMed  CAS  Google Scholar 

  • Fowler, V. M., Davis, J. Q., and Bennett, V., 1985, Human erythrocyte myosin: Identification and purification, J. Cell Biol. 100: 47–55.

    Article  PubMed  CAS  Google Scholar 

  • Frieden, C., 1983, Polymerization of actin: Mechanism of the Mg2+-induced process at pH 8 and 20°C, Proc. Natl. Acad. Sci. U.S.A. 80: 6513–6517.

    Article  PubMed  CAS  Google Scholar 

  • Frieden, C., and Goddette, D. W., 1983, Polymerization of actin and actin-like systems: Evaluation of the time course of polymerization in relation to the mechanism, Biochemistry 22: 5836–5843.

    Article  PubMed  CAS  Google Scholar 

  • Geeves, M. A., and Gutfreund, H., 1982, The use of pressure perturbations to investigate the interaction of rabbit muscle myosin subfragment 1 with actin in the presence of MgADP, FEBS Lett. 140: 11–15.

    Article  PubMed  CAS  Google Scholar 

  • Geeves, M. A., Goody, R. S., and Gutfreund, H., 1984, Kinetics of acto-Sl interaction as a guide to a model for the crossbridge cycle, J. Muscle. Res. Cell. Motil. 5: 351–361.

    Article  PubMed  CAS  Google Scholar 

  • Ghiggino, K. P., Roberts, A. J., and Phillips, D., 1981, Time-resolved fluorescence techniques in polymer and biopolymer studies, Adv. Polym. Sci. 40: 69–167.

    CAS  Google Scholar 

  • Goodman, S. R., Zagon, I. S., and Kulikowski, R. R., 1981, Identification of a spectrin-like protein in nonerythroid cells, Proc. Natl. Acad. Sci. U.S.A. 78: 7570–7574.

    Article  PubMed  CAS  Google Scholar 

  • Gratton, E., Jameson, D. M., Weber, G., and Alpert, B., 1984, A model of dynamic quenching of fluorescence in globular proteins, Biophys. J. 45: 789–794.

    Article  PubMed  CAS  Google Scholar 

  • Harris, S. J., and Winzor, D. J., 1985, Effect of thermodynamic nonideality on the subcellular distribution of enzymes: Adsorption of aldolase to muscle myofibrils, Arch. Biochem. Biophys. 143: 598–604.

    Article  Google Scholar 

  • Heyn, M. P., 1979, Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments, FEBS Lett. 108: 359–364.

    Article  PubMed  CAS  Google Scholar 

  • Hite, P., Krasnansky, R., and Thomas, J. K., 1986, Spectroscopic investigations of surfaces using aminopyrene, J. Phys. Chem. 90: 5795–5799.

    Article  CAS  Google Scholar 

  • Horie, T., and Vanderkooi, J. M., 1982, Phosphorescence of tryptophan from parvalbumin and actin in liquid solution, FEBS Lett. 147: 69–73.

    Article  PubMed  CAS  Google Scholar 

  • Husain, A., 1985, “Protein Interactions in the Erythrocyte Cytoskeleton,” PhD thesis, University of Melbourne.

    Google Scholar 

  • Husain, A., Sawyer, W. H., and Howlett, G. J., 1983, The effect of cross-linking spectrin-actin complexes with band 4.1 on the state of polymerization of the actin, Biochem. Biophys. Res. Commun. 111: 360–365.

    Article  PubMed  CAS  Google Scholar 

  • Ikkai, T., Wahl, P., and Auchet, J.-C, 1979, Anisotropy decay of labeled actin, Eur. J. Biochem. 93: 397–408.

    Article  PubMed  CAS  Google Scholar 

  • Jähnig, F., 1979, Structural order of lipids and proteins in membranes: Evaluation of fluorescence anisotropy data, Proc. Natl. Acad. Sci. U.S.A. 76: 6361–6365.

    Article  PubMed  Google Scholar 

  • Johnson, K. A., and Borisy, 1977, Kinetic analysis of microtubule self-assembly in vitro. J. Mol. Biol. 117: 1–31.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, P., and Garland, P. B., 1982, Fluorescent triplet probes for measuring the rotational diffusion of membrane proteins, Biochem. J. 203: 313–321.

    PubMed  CAS  Google Scholar 

  • Julien, M., Garel, J.-R., Merola, F., and Brochon, J.-C, 1986, Quenching by acrylamide and temperature of a fluorescent probe attached to the active site of ribonuclease, Eur. Biophys. J. 13: 131–137.

    Article  Google Scholar 

  • Kawasaki, Y., Mihashi, K., Tanaka, H., and Ohnuma, H., 1976, Fluorescence study of AT-(3-pyrene)maleimide conjugated to F-actin and Plasmodium actin polymers, Biochim. Biophys. Acta. 446: 166–178.

    PubMed  CAS  Google Scholar 

  • Kinosita, K., Jr., Ikegami, A., and Kawato, S., 1982, On the wobbling-in-cone analysis of fluorescence anisotropy decay, Biophys. J. 37: 461–464.

    Article  PubMed  CAS  Google Scholar 

  • Koppel, D., 1979, Fluorescence redistribution after photobleaching, Biophys. J. 28: 281–292.

    Article  PubMed  CAS  Google Scholar 

  • Kouyama, T., and Mihashi, K., 1980, Pulse-fluorometry study on actin and heavy meromyosin using F-actin labeled with AT-(l-pyrene)maleimide, Eur. J. Biochem. 105: 279–287.

    Article  PubMed  CAS  Google Scholar 

  • Kouyama, T., and Mihashi, K., 1981, Fluorimetry study of AT-(l-pyrenyl)iodacetamide-labeled F-actin, Eur. J. Biochem. 114: 33–38.

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., 1983, Principles of Fluorescence Spectroscopy, Plenum Press, New York.

    Google Scholar 

  • Lakowicz, J. R., Maliwal, B. P., Cherek, H., and Baiter, A., 1983, Rotational freedom of tryptophan residues in proteins and peptides, Biochemistry 22: 1741–1752.

    Article  PubMed  CAS  Google Scholar 

  • Lanni, F., and Ware, B. R., 1984, Detection and characterization of actin monomers, oligomers, and filaments in solution by measurement of fluorescence photobleaching recovery, Biophys. J. 46: 97–110.

    Article  PubMed  CAS  Google Scholar 

  • Lanni, F., Taylor, D. L., and Ware, B. R., 1981, Fluorescence photobleaching recovery in solutions of labeled actin, Biophys. J. 35: 351–364.

    Article  PubMed  CAS  Google Scholar 

  • Lee, P. C., and Meisel, D., 1985, Photophysical studies of pyrene incorporated in nafion membranes, Photochem. Photobiol. 41: 21–26.

    Article  CAS  Google Scholar 

  • Lehrer, S. S., 1971, Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion, Biochemistry 10: 3254–3263.

    Article  PubMed  CAS  Google Scholar 

  • Lehrer, S. S., and Kerwar, G., 1972, Intrinsic fluorescence of actin, Biochemistry 11: 1211–1217.

    Article  PubMed  CAS  Google Scholar 

  • Lehrer, S. S., and Leavis, P. C., 1978, Solute quenching of protein fluorescence, Methods Enzymol. 49: 222–236.

    Article  PubMed  CAS  Google Scholar 

  • Marchesi, V. T., 1985, Stabilizing infrastructure of cell membranes, Annu. Rev. Cell. Biol. 1: 531–561.

    Article  PubMed  CAS  Google Scholar 

  • Martonosi, A., 1968, The sulfhydryl groups of actin, Arch. Biochem. Biophys. 123: 29–40.

    Article  PubMed  CAS  Google Scholar 

  • Matayoshi, E. D., Corin, A. F., Zidovetzki, R., Sawyer, W. H., and Jovin, T. M., 1983, Rotational dynamics of cell surface proteins by time-resolved phosphorescence anisotropy, in Mobility and Recognition in Cell Biology (H. Sund and C. Veeger, eds.), pp. 119–134, Walter de Gruyter, Berlin.

    Google Scholar 

  • Mihashi, K., and Wahl, P., 1975, Nanosecond pulse fluorometry in polarized light of g-actin—∈-ATP [l,N 6-ethenoadenosine triphosphate] and F-actin—∈-ADP, FEBS Lett. 52: 8–12.

    Article  PubMed  CAS  Google Scholar 

  • Mihashi, K., Yoshimura, H., Nishio, T., Ikegami, A., and Kinosita, Jr., K., 1983, Internal motion of F-actin in 10-6–10-3 s time range studied by transient absorption anisotropy: Detection of torsional motion, J. Biochem. 93: 1705–1707.

    PubMed  CAS  Google Scholar 

  • Miki, M., and Iio, T., 1984, Fluorescence energy transfer measurements between the nucleotide binding site and Cys-374 in actin and their application to the kinetics of actin polymerization, Biochim. Biophys. Acta. 790: 201–207.

    Article  PubMed  CAS  Google Scholar 

  • Miki, M., and Mihashi, K., 1978, Fluorescence energy transfer between e-ATP at the nucleotide binding site and AT-(4-dimethylamino-3,5-dinitrophenyl)-maleimide at Cys-374 of G-actin, Biochim. Biophys. Acta. 533: 163–172.

    PubMed  CAS  Google Scholar 

  • Miki, M., and Wahl, P., 1984, Fluorescence energy transfers in labeled G-actin and F-actin, Biochim. Biophys. Acta. 786: 188–196.

    Article  CAS  Google Scholar 

  • Miki, M., and Wahl, P., 1985, Fluorescence energy transfer between points in G-actin: The nu-cleotide-binding site, the metal-binding site and Cys-374 residue, Biochim. Biophys. Acta. 828: 188–195.

    Article  PubMed  CAS  Google Scholar 

  • Miki, M., Wahl, P., and Auchet, J.-C, 1982a, Fluorescence anisotropy of labelled F-actin: Influence of divalent cations on the interaction between F-actin and myosin heads, Biochemistry 21: 3661–3665.

    Article  PubMed  CAS  Google Scholar 

  • Miki, M., Wahl, P., and Auchet, J.-C., 1982b, Fluorescence anisotropy of labelled F-actin. Influence of Ca2+ on the flexibility of F-actin, Biophys. Chem. 16: 165–172.

    Article  PubMed  CAS  Google Scholar 

  • Miki, M. Barden, J. A., Hambly, B. D., and Dos Remedios, C. G., 1986a, Fluorescence energy transfer between Cys-10 residues in F-actin filaments, Biochem. Int. 12: 725–731.

    PubMed  CAS  Google Scholar 

  • Miki, M., Barden, J. A., and Dos Remedios, C. G., 1986b, The distance separating Cys-10 from the high-affinity metal binding site in actin, Biochem. Int. 12: 807–813.

    PubMed  CAS  Google Scholar 

  • Miki, M., Barden, J. A., and Dos Remedios, C. G., 1986c, Fluorescence resonance energy transfer between the nucleotide binding site and Cys-10 in G-actin and F-actin, Biochim. Biophys. Acta. 872: 76–82.

    Article  PubMed  CAS  Google Scholar 

  • Mühlebach, T., and Cherry, R. J., 1982, Influence of cholesterol on the rotation and self-association of band 3 in the human erythrocyte membrane, Biochemistry 21: 4225–4228.

    Article  PubMed  Google Scholar 

  • Munro, I., Pecht, I., and Stryer, L., 1979, Subnanosecond motions of tryptophan residues in proteins, Proc. Natl. Acad. Sci. U.S.A. 76: 56–60.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima, A., 1977, Fluorescence spectra of condensed aromatic hydrocarbons in water and in aqueous surfactant solution, Photochem. Photobiol. 25: 593–598.

    Article  CAS  Google Scholar 

  • Nakaoka, Y., and Kasai, M., 1969, Behavior of sonicated actin polymers: Adenosine triphosphate splitting polymerization, J. Mol. Biol. 44: 319–332.

    Article  PubMed  CAS  Google Scholar 

  • Ohanian, V., Wolfe, L. C., John, K. M., Pinder, J. C., Lux, S. E., and Gratzer, W. B., 1984, Analysis of the ternary interaction of the red cell membrane skeletal proteins spectrin, actin, and 4.1, Biochemistry 23: 4416–4420.

    Article  PubMed  CAS  Google Scholar 

  • Pantaloni, D., Carlier, M.-F., and Korn, E. D., 1985, The interaction between ATP-actin and ADP- actin, J. Biol. Chem. 260: 6572–6578.

    PubMed  CAS  Google Scholar 

  • Pardee, J. D., Simpson, P. A., Stryer, L., and Spudich, J. A., 1982, Actin filaments undergo limited subunit exchange in physiological salt conditions, J. Cell Biol. 94: 316–324.

    Article  PubMed  CAS  Google Scholar 

  • Peters, R., 1986, Fluorescence microphotolysis to measure nucleocytoplasmic transport and intracellular mobility, Biochim. Biophys. Acta. 864: 305–359.

    PubMed  CAS  Google Scholar 

  • Pinder, J. C., and Gratzer, W. B., 1982, Investigation of the actin-deoxyribonuclease I interaction using a pyrene-conjugated actin derivative, Biochemistry 21: 4886–4890.

    Article  PubMed  CAS  Google Scholar 

  • Pinder, J. C., Ohanian, V., and Gratzer, W. B., 1984, Spectrin and band 4.1 as an actin filament-capping complex, FEBS Lett. 169: 161–164.

    Article  PubMed  CAS  Google Scholar 

  • Pollard, T. D., 1983, Measurement of rate constants for actin filament elongation in solution, Anal. Biochem. 134: 406–412.

    Article  PubMed  CAS  Google Scholar 

  • Pollard, T. D., and Cooper, J. A., 1982, Methods to characterize actin filament networks, Methods Enzymol. 85: 211–233.

    Article  PubMed  CAS  Google Scholar 

  • Reed, W., Lasic, D., Häuser, H., and Fendler, J. H., 1985, Effects of photopolymerization on surfactant vesicle surface morphology, Macromolecules 18: 2005–2012.

    Article  CAS  Google Scholar 

  • Rigler, R., and Ehrenberg, M., 19876, Fluorescence relaxation spectroscopy in the analysis of macromolecular structure and motion, Q. Rev. Biophys. 9: 1–19.

    Google Scholar 

  • Rigler, R., Rabl, C.-R., and Jovin, T.M., 1974, A temperature-jump apparatus for fluorescence measurements, Rev. Sci. Instrum. 45: 580–588.

    Article  CAS  Google Scholar 

  • Somogyi, B., Papp, S., Rosenberg, A., Seres, I., Matko, J., Welch, R., and Nagy, P., 1985, A double-quenching method for studying protein dynamics: Separation of the fluorescence quenching parameters characteristic of solvent-exposed and solvent-masked fluorophors, Biochemistry 24: 6674–6679.

    Article  PubMed  CAS  Google Scholar 

  • Spudich, J. A., Kuczmarski, E. R., Pardee, J. D., Simpson, P. A., Yamamoto, K., and Stryer, L., 1982, Control of assembly of Dictyostelium myosin and actin filaments, Cold Spring Harbor Symp. Quant. Biol. XLVI: 553–561.

    Google Scholar 

  • Steck, T. L., 1974, The organization of proteins in the human red blood cell membrane, J. Cell Biol. 62: 1–19.

    Article  PubMed  CAS  Google Scholar 

  • Stern, V. O., and Volmer, M., 1919, On the quenching-time of fluorescence, Phys. Z. 20: 183–188.

    CAS  Google Scholar 

  • Stryer, L., 1978, Fluorescence energy transfer as a spectroscopic ruler, Annu. Rev. Biochem. 47: 819–846.

    Article  PubMed  CAS  Google Scholar 

  • Tait, J. F., and Frieden, C., 1982a, Polymerization and gelation of actin studied by fluorescence photobleaching recovery, Biochemistry 21: 3666–3674.

    Article  PubMed  CAS  Google Scholar 

  • Tait, J. F., and Frieden, C., 1982b, Polymerization-induced changes in the fluorescence of actin labeled with iodoacetamidotetramethylrhodamine, Arch. Biochem. Biophys. 216: 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Tait, J. F., and Frieden, C., 1982c, Chemical modification of actin. Acceleration of polymerization and reduction of network formation by reaction with JV-ethylmaleimide, (iodoacetam-ido)tetramethylrhodamine, or 7-chloro-4-nitro-2,l,3-benzoxadiazole, Biochemistry 21: 6046–6053.

    Article  PubMed  CAS  Google Scholar 

  • Takashi, R., 1979, Fluorescence energy transfer between subfragment-1 and actin points in the rigor complex of actosubfragment-1, Biochemistry 18: 5164–5169.

    Article  PubMed  CAS  Google Scholar 

  • Tao, T., 1969, Time-dependent fluorescence depolarization and brownian rotational diffusion coefficients of macromolecules, Biopolymers 8: 609–632.

    Article  CAS  Google Scholar 

  • Tao, T., and Cho, J., 1979, Fluorescence lifetime quenching studies on the accessibilities of actin sulfhydryl sites, Biochemistry 18: 2759–2765.

    Article  PubMed  CAS  Google Scholar 

  • Tawada, K., Wahl, P., and Auchet, J.-C, 1978, Study of actin and its interactions with heavy meromyosin and the regulatory points by the pulse fluorimetry in polarized light of a fluorescent probe attached to actin cysteine, Eur. J. Biochem. 88: 411–419.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, D. L., Reidler, J., Spudich, J. A., and Stryler, L., 1981, Detection of actin assembled by fluorescence energy transfer, J. Cell Biol. 89: 362–367.

    Article  PubMed  CAS  Google Scholar 

  • Tellam, R., and Frieden, C., 1982, Cytochalasin D and platelet gelsolin accelerate actin polymer formation. A model for regulation of the extent of actin formation in vivo, Biochemistry 21: 3207–3214.

    Article  PubMed  CAS  Google Scholar 

  • Tilley, L., and Ralston, G. B., 1987, Effect of erythrocyte spectrin on actin self-association, Aust. J. Biol. Sci. 40: 27–36.

    CAS  Google Scholar 

  • Vanderkerckhove, J., and Weber, K., 1979, The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle and rabbit slow skeletal muscle, Differentiation 14: 123–33.

    Article  Google Scholar 

  • Vaz, W. L. C., Derzko, Z. I., and Jacobson, K. A., 1982, Photobleaching experiments of the lateral diffusion of lipids and proteins in artificial bilayer membranes, Cell Surf. Rev. 8: 83–135.

    CAS  Google Scholar 

  • Vaz, W. L. C., Goodsaid-Zalduondo, F., and Jacobson, K., 1984, Lateral diffusion of lipids and proteins in bilayer membranes, FEBS Lett. 174: 199–207.

    Article  CAS  Google Scholar 

  • Vincent, M., de Forresta, B., Gallay, J., and Alfsen, A., 1982a, Fluorescence anisotropy decays of 7i-(9-anthroyloxy) fatty acids in dipalmitoyl phosphatidylcholine vesicles. Localization of the effects of cholesterol addition, Biochim. Biophys. Res. Commun. 107: 914–921.

    Article  CAS  Google Scholar 

  • Vincent, M., de Forresta, B., Gallay, J., and Alfsen, A., 1982b, Nanosecond fluorescence anisotropy decays of n-(9-anthroyloxy) fatty acids in dipalmitoylphosphatidylcholine vesicles with regard to isotropic solvents, Biochemistry 21: 708–716.

    Article  PubMed  CAS  Google Scholar 

  • Wahl, P., Mihashi, K., and Auchet, J.-C, 1975, Nanosecond pulse fluorometry in polarized light of dansyl-L-cysteine linked to a unique SH group of F-actin; the influence of regulatory proteins and myosin moiety, FEBS Lett. 60: 164–167.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y.-I., and Taylor, D. L., 1981, Probing the dynamic equilibrium of actin polymerization by fluorescence energy transfer, Cell 27: 429–436.

    Article  PubMed  CAS  Google Scholar 

  • Weber, G., 1953, Rotational Brownian motion and polarization of the fluorescence of solutions, in Advances in Protein Chemistry (M. L. Anson, K. Bailey, and J. T. Eskell, eds.), Vol. 8, pp. 415–459, Academic Press, New York.

    Google Scholar 

  • Weeds, A., 1982, Actin-binding proteins — regulators of cell architecture and motility, Nature 296: 811–816.

    Article  PubMed  CAS  Google Scholar 

  • Weltman, J. K., Szaro, R. P., Frackelton, A. R., Jr., and Dowben, R. M., 1972, Fluorescence changes associated with G-F transformation of actin, FEBS Lett. 22: 61–63.

    Article  PubMed  CAS  Google Scholar 

  • Weltman, J. K., Szaro, R. P., Frackelton, A. R., Jr., Dowben, R. M., Bunting, J. R., and Cathou, R.E., 1973, JV-(3-pyrenyl)maleimide, a long, lifetime fluorescent sulfhydryl reagent, J. Biol. Chem. 248: 3173–3177.

    PubMed  CAS  Google Scholar 

  • Yamamoto, K., Pardee, J. D., Reidler, J., Stryler, L., and Spudich, J. A., 1982, Mechanism of interaction of Dictyosteliwn severin with actin filaments, J. Cell Biol. 95: 711–719.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura, H., Nishio, T., Mihashi, K., Kinosita, K., and Ikegami, A., 1984, Torsional motion of eosin-labeled F-actin as detected in time-resolved anisotropy decay of the probe in the sub-millisecond time range, J. Mol. Biol. 179: 453–467.

    Article  PubMed  CAS  Google Scholar 

  • Yoshino, H., and Marchesi, V. T., 1984, Isolation of spectrin subunits and reassociation in vitro. Analysis by fluorescence polarization, J. Biol. Chem. 259: 4496–4500.

    PubMed  CAS  Google Scholar 

  • Yoshino, H., and Marchesi, V. T., 1985, Interaction between the subunits of human erythrocyte spectrin using a fluorescence probe, Biochim. Biophys. Acta. 812: 786–792.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerle, C. T., and Frieden, C., 1986, Effect of temperature on the mechanism of actin polymerization, Biochemistry 25: 6432–6438.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Blatt, E., Sawyer, W.H. (1988). The Study of Cytoskeletal Protein Interactions by Fluorescence Probe Techniques. In: Hilderson, H.J. (eds) Fluorescence Studies on Biological Membranes. Subcellular Biochemistry, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9359-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9359-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9361-0

  • Online ISBN: 978-1-4613-9359-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics