Skip to main content

Transpose-Free Quasi-Minimal Residual Methods for Non-Hermitian Linear Systems

  • Conference paper

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 60))

Abstract

Recently, Freund and Nachtigal proposed a novel conjugate gradient-type method, the quasi-minimal residual algorithm (QMR), for the iterative solution of general non-Hermitian systems of linear equations. The QMR method is based on the nonsymmetric Lanczos process, and thus, like the latter, QMR requires matrix-vector multiplications with both the coefficient matrix of the linear system and its transpose. However, in certain applications, the transpose is not readily available, and generally, it is desirable to trade in multiplications with the transpose for matrix-vector products with the original matrix.

This paper gives a survey of transpose-free algorithms that are based on the quasi-minimal residual approach. First, it is shown that, in principle, the transpose in the standard QMR method can always be eliminated by choosing special starting vectors. Examples are given for which this approach is practical. Then, two transpose-free QMR methods, the TFQMR algorithm and the QMR squared algorithm, for general non-Hermitian systems axe described. Some theory for ideal transpose-free QMR and TFQMR is presented. Results of numerical experiments are reported. Finally, some open problems are mentioned.

This research was performed while the author was in residence at the Research Institute for Advanced Computer Science (RIACS), NASA Ames Research Center, Moffett Field, California 94035, it was supported by Cooperative Agreement NCC 2-387 between the National Aeronautics and Space Administration and the Universities Space Research Association.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Brezinski and H. Sadok, Avoiding breakdown in the CGS algorithm, Numer. Algorithms, 1 (1991) pp. 199–206.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. R. Bunch and B. N. Parlett, Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations, SIAM J. Numer. Anal., 8 (1971), pp. 639–655.

    Article  MathSciNet  Google Scholar 

  3. R. H. Chan and G. Strang, Toeplitz equations by conjugate gradients with circulant preconditioner, SIAM J. Sci. Stat. Comput., (1989), pp. 104–119.

    Google Scholar 

  4. T. F. Chan, L. de Pillis, and H. A. van der Vorst, A transpose-free squared Lanczos algorithm and application to solving nonsymmetric linear systems, Tech. Report CAM 91-17, Department of Mathematics, University of California, Los Angeles, California, October 1991.

    Google Scholar 

  5. P. Concus, G. H. Golub, and D. P. O’leary, A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations, in Sparse Matrix Computations, J. R. Bunch and D. J. Rose, eds., Academic Press, New York, 1976, pp. 309–332.

    Google Scholar 

  6. I. S. Duff, R. G. Grimes, and J. G. Lewis, Sparse matrix test problems, ACM Trans. Math. Softw., 15 (1989), pp. 1–14.

    Article  MATH  Google Scholar 

  7. S. C. Eisenstat, Efficient implementation of a class of preconditioned conjugate gradient methods, SIAM J. Sci. Stat. Comput., 2 (1981), pp. 1–4

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Faber and T. Manteuffel, Necessary and sufficient conditions for the existence of a conjugate gradient method, SIAM J. Numer. Anal., 21 (1984) pp. 352–362.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Fletcher, Conjugate gradient methods for indefinite systems in Proc. Dundee Conference on Numerical Analysis, 1975, Lecture Notes in Mathematics 506, G. A. Watson, ed., Springer, Berlin, 1976 pp. 73–89.

    Google Scholar 

  10. R. W. Freund, Pseudo-Ritz values for indefinite Hermitian matrices, Tech. Report 89. 33, RIACS, NASA Ames Research Center, Moffett Field, California, August 1989.

    Google Scholar 

  11. R. W. Freund, Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 425–448.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. Sci. Stat. Comput. (to appear).

    Google Scholar 

  13. R. W. Freund, Quasi-kernel polynomials and their use in non-Hermitian matrix iterations, J. Comput. Appl. Math, (to appear).

    Google Scholar 

  14. R. W. Freund, Quasi-kernel polynomials and convergence results for quasi-minimal residual iterations, in Numerical Methods of Approximation Theory, D. Braess and L. L. Schumaker, eds., Birkauser, Basel, 1992 (to appear).

    Google Scholar 

  15. R. W. Freund, G. H. Golub, and N. M. Nachtigal, Iterative solution of linear systems, Acta Numerica, 1 (1992) pp. 57–100.

    Article  MathSciNet  Google Scholar 

  16. R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal, An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Stat. Comput. (to appear).

    Google Scholar 

  17. R. W. Freund and M. Hochbruck, On the use of two QMR algorithms for solving singular systems and applications in Markov chain modeling, Tech. Report 91.25, RIACS, NASA Ames Research Center, Moffett Field, California, December 1991.

    Google Scholar 

  18. R. W. Freund and N. M. Nachtigal, QMR: a quasi-minimal residual method for nonHermitian linear systems, Numer. Math., 60 (1991) pp. 315–339.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. W. Freund and N. M. Nachtigal, An implementation of the QMR method based on coupled two-term recurrences, Numerical Analysis Manuscript 92-06, AT&T Bell Laboratories, Murray Hill, New Jersey, July 1992.

    Google Scholar 

  20. R. W. Freund and T. Szeto, A quasi-minimal residual squared algorithm for non-Hermitian linear systems, Tech. Report 91.26, RIACS, NASA Ames Research Center, Moffett Field, California, December 1991.

    Google Scholar 

  21. R. W. Freund and H. Zha, A look-ahead algorithm for the solution of general Hankel systems, Numer. Math, (to appear).

    Google Scholar 

  22. R. W. Freund and H. Zha, Simplifications of the nonsymmetric Lanczos process and a new algorithm for solving symmetric indefinite linear systems, Tech. Report, RIACS, NASA Ames Research Center, Moffett Field, California, 1992.

    Google Scholar 

  23. P. E. Gill, W. Murray, D. B. Ponceleón, and M. A. Saunders, Preconditioned for indefinite systems arising in optimization, SIAM J. Matrix Anal. Appl., 13 (1992) pp. 292–311.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. H. Golub and C. F. van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, 2nd ed., 1989.

    Google Scholar 

  25. M. D. Gunzburger, Finite Element Methods for Viscous Incompressible Flows, Academic Press, San Diego, 1989.

    MATH  Google Scholar 

  26. M. H. Gutknecht, A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms, Part I, SIAM J. Matrix Anal. Appl., 13 (1992) pp. 594–639.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. R. Hestenes and E. L. Stiefel, Methods of Conjugate Gradients for Solving Linear Systems, J. Res. Nat. Bur. Standards, 49 (1952) pp. 409–436.

    MathSciNet  MATH  Google Scholar 

  28. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.

    MATH  Google Scholar 

  29. W. D. Joubert and D. M. Young, Necessary and sufficient conditions for the simplification of generalized conjugate-gradient algorithms, Linear Algebra Appl., 88 /89 (1987) pp. 449–485.

    Article  MathSciNet  Google Scholar 

  30. J. A. Meijerink and H. A. van der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977) pp. 148–162.

    Google Scholar 

  31. C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bur. Standards, 45 1950, 255–282.

    MathSciNet  Google Scholar 

  32. C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Res. Nat. Bur. Standards, 49 (1952) pp. 33–53.

    MathSciNet  Google Scholar 

  33. C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal., 12 (1975) pp. 617–629.

    Article  MathSciNet  MATH  Google Scholar 

  34. B. N. Parlett, D. R. Taylor, and Z. A. Liu, A look-ahead Lanczos algorithm for unsymmetric matrices, Math. Comp., 44 (1985) pp. 105–124.

    MathSciNet  MATH  Google Scholar 

  35. Y. Saad, ILUT: a dual threshold incomplete LU factorization, Tech. Report UMSI 92/38, University of Minnesota Supercomputer Institute, Minneapolis, Minnesota, March 1992.

    Google Scholar 

  36. Y. Saad and M. H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986) pp. 856–869.

    Article  MathSciNet  MATH  Google Scholar 

  37. P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 10 (1989) pp. 36–52.

    Article  MathSciNet  MATH  Google Scholar 

  38. E. L. Stiefel, Kernel polynomials in linear algebra and their numerical applications, U.S. National Bureau of Standards, Applied Mathematics Series 49 (1958) pp. 1–22.

    MathSciNet  Google Scholar 

  39. V. V. Voevodin, The question of non-self-adjoint extension of the conjugate gradients method is closed, USSR Comput. Math, and Math. Phys., 23 (1983) pp. 143–144.

    Article  Google Scholar 

  40. M. H. Wright, Interior methods for constrained optimization, Acta Numerica, 1 (1992) pp. 341–407.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc

About this paper

Cite this paper

Freund, R.W. (1994). Transpose-Free Quasi-Minimal Residual Methods for Non-Hermitian Linear Systems. In: Golub, G., Luskin, M., Greenbaum, A. (eds) Recent Advances in Iterative Methods. The IMA Volumes in Mathematics and its Applications, vol 60. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9353-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9353-5_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9355-9

  • Online ISBN: 978-1-4613-9353-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics