Skip to main content

Perfect Zero-Knowledge Sharing Schemes over any Finite Abelian Group

  • Conference paper
Book cover Sequences II

Abstract

A secret sharing (threshold) scheme is an algorithm in which a distributor creates shares of a secret such that a minimum number of shares are needed to regenerate the secret. We propose a new homomorphic perfect secret sharing scheme over any finite Abelian group for which the group operation and inverses are computable in polynomial time. We introduce the concept of zero-knowledge sharing scheme to prove that the distributor does not reveal anything. A stronger condition than not revealing anything about the secret.

This research is being supported by NSF Grant NCR-9106327.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. Benaloh. Secret sharing homomorphisms: Keeping shares of a secret secret. In A. Odlyzko, editor, Advances in Cryptology, Proc. of Crypto ’86 (Lecture Notes in Computer Science 263), pp. 251–260. Springer-Verlag, 1987. Santa Barbara, California, U.S.A., August 11–15.

    Google Scholar 

  2. E. R. Berlekamp. Factoring polynomials over large finite fields. Mathematics of Computation, 24(111), pp. 713–735, 1970.

    Article  MathSciNet  Google Scholar 

  3. G. R. Blakley. Safeguarding cryptographic keys. In Proc. Nat. Computer Conf. AFIPS Conf. Proc, pp. 313–317, 1979. vol.48.

    Google Scholar 

  4. D. Coppersmith, A. Odlyzko, and R. Schroeppel. Discrete logarithms in GF(p). Algorithmica, pp. 1–15, 1986.

    Google Scholar 

  5. Y. Desmedt and Y. Frankel. Shared generation of authenticators and signatures. To be presented at Crypto ’91, August 12–15, 1991, Santa Barbara, California, U.S.A., to appear in: Advances in Cryptology. Proc. of Crypto ‘90 (Lecture Notes in Computer Science), Springer-Verlag, 1991.

    Google Scholar 

  6. R. G. Gallager. Information Theory and Reliable Communications. John Wiley and Sons, New York, 1968.

    Google Scholar 

  7. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proceedings of the Nineteenth annual ACM Symp. Theory of Computing, STOC, pp. 218–229, May 25–27, 1987.

    Google Scholar 

  8. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2), pp. 270–299, April 1984.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Ito, A. Saito, and T. Nishizeki. Secret sharing schemes realizing general access structures. In Proc. IEEE Global Telecommunications Conf, Globe-com ’87, pp. 99–102. IEEE Communications Soc. Press, 1987.

    Google Scholar 

  10. N. Jacobson. Basic Algebra I. W. H. Freeman and Company, New York, 1985.

    MATH  Google Scholar 

  11. A. Menezes, S. Vanstone, and T. Okamoto. Reducing elliptic curve logarithms to logarithms in a finite field. In Proceedings of the Twenty third annual ACM Symp. Theory of Computing, STOC, 1991.

    Google Scholar 

  12. M. Naor and M. Yung. Public-key cryptosyterns provably secure against chosen ciphertext attack. In Proceedings of the twenty second annual ACM Symp. Theory of Computing, STOC, pp. 427–437, May 14–16, 1990.

    Chapter  Google Scholar 

  13. A. M. Odlyzko. Discrete logs in a finite field and their cryptographic significance. In N. Cot T. Beth and I. Ingemarsson, editors, Advances in Cryptology, Proc. of Eurocrypt 84 (Lecture Notes in Computer Science 209), pp. 224–314. Springer-Verlag, 1984. Paris, France April 1984.

    Google Scholar 

  14. M. Rabin. Digitalized signatures and public-key functions as intractable as factorization. Technical report, Massachusetts Institute of Technology Technical Report MIT/LCS/TR-212, Cambridge, Massachusetts, January 1977.

    Google Scholar 

  15. M. Rabin. Probabilistic algorithms in finite fields. SIAM Journal on Computing, 9(2), pp. 273–280, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance. Journal of the ACM, 36(2), pp. 335–348, April 1989.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. L. Rivest, A. Shamir, and L. Adleman. On digital signatures and pulic-key cryptosystems. Technical report, Massachusetts Institute of Technology Technical Report LCS/TN-82, Cambridge, Massachusetts, April 1977.

    Google Scholar 

  18. A. Shamir. How to share a secret. Commun. ACM, 22, pp. 612–613, November 1979.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. J. Simmons. A survey of information authentication. Proc. IEEE, 76(5), pp. 603–620, May 1988.

    Article  Google Scholar 

  20. G. J. Simmons. Robust shared secret schemes. Congressus Numerantium, 68, pp. 215–248, 1989.

    MathSciNet  Google Scholar 

  21. D. R. Stinson and S. A. Vanstone. A combinatorial approach to threshold schemes. SIAM Journal on Discrete Mathematics, 1(2), pp. 230–236, 1988. Extended abstract is in Advances in Cryptology, Proc. of Crypto ’87 (Lecture Notes in Computer Science 293).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Desmedt, Y., Frankel, Y. (1993). Perfect Zero-Knowledge Sharing Schemes over any Finite Abelian Group. In: Capocelli, R., De Santis, A., Vaccaro, U. (eds) Sequences II. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9323-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9323-8_28

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9325-2

  • Online ISBN: 978-1-4613-9323-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics