Skip to main content

Intracellular pH Regulation by the Preimplantation Embryo

  • Conference paper
Preimplantation Embryo Development

Part of the book series: Serono Symposia, USA Norwell, Massachusetts ((SERONOSYMP))

  • 100 Accesses

Abstract

It has become clear that the preimplantation embryo possesses a number of rapidly developing and sometimes unique systems for transmembrane transport. For example, mouse embryos possess amino acid transport systems that change from one set to a different set, found only in embryos, over the course of only a few days’ development (1); excitable calcium channels are found in abundance in the early mouse and hamster embryo, but disappear completely by the 16-cell stage (2–4); and Na+ transport into the rabbit blastocoel is completely altered between the 5th and 7th day of development, with the development of amiloride and furosemide sensitivity (5, 6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van Winkle LJ. Amino acid transport in developing animal oocytes and early conceptuses. Biochim Biophys Acta 1988;947:173–208.

    PubMed  Google Scholar 

  2. Eusebi F, Colonna R, Mangia F. Development of membrane excitability in mammalian oocytes and early embryos. Gamete Res 1983;7:39–47.

    Article  CAS  Google Scholar 

  3. Mitani S. The reduction of calcium current associated with early differentiation of the murine embryo. J Physiol 1985;363:71–86.

    PubMed  CAS  Google Scholar 

  4. Yoshida S. Action potentials dependent on monovalent cations in developing mouse embryos. Dev Biol 1985;110:200–6.

    Article  PubMed  CAS  Google Scholar 

  5. Powers RD, Borland RM, Biggers JD. Amiloride-sensitive rheogenic Na+ transport in rabbit blastocyst. Nature (London) 1977;270:603–4.

    Article  PubMed  CAS  Google Scholar 

  6. Benos DJ, Biggers JD. Sodium and chloride co-transport by preimplantation rabbit blastocysts. J Physiol 1983;342:23–33.

    PubMed  CAS  Google Scholar 

  7. Cohen BJ, Lechene C. Na,K pump: cellular role and regulation in non-excitable cells. Biol Cell 1989;66:191–5.

    Article  PubMed  CAS  Google Scholar 

  8. Montrose MH, Murer H. Kinetics of Na+/H+ exchange. In: Grinstein S, ed. Na+/H+ exchange. Boca Raton, FL: CRC Press, 1988:57–75.

    Google Scholar 

  9. Aronson PS, Nee J, Suhm MA. Modifier role of internal H+ in activating the Na+/H+ exchanger in renal microvillus membrane vesicles. Nature (London) 1982;299:161–3.

    Article  PubMed  CAS  Google Scholar 

  10. Sardet C, Counillon L, Franchi A, Pouyssegur J. Growth factors induce phosphorylation of the Na+/H+ antiporter, a glycoprotein of 110 kD. Science 1990;247:723–6.

    Article  PubMed  CAS  Google Scholar 

  11. Kopito RR, Lee BS, Simmons DM, Lindsey AE, Morgans CW, Schneider K. Regulation of intracellular pH by a neuronal homolog of the erythrocyte anion exchanger. Cell 1989;59:927–37.

    Article  PubMed  CAS  Google Scholar 

  12. Olsnes S, Tonnessen TI, Sandvig K. pH-regulated anion antiport in nucleated mammalian cells. J Cell Biol 1986;102:967–71.

    Article  PubMed  CAS  Google Scholar 

  13. Vaughan-Jones RD. Regulation of intracellular pH in cardiac muscle. In: Bock G, Marsh J, eds. Proton passage across cell membranes. CIBA Foundation Symposium 139, Feb. 9–11, 1988. London: Wiley and Sons, 1988:23–46.

    Google Scholar 

  14. Moolenaar WH, Tsien RY, van der Saag PT, de Laat SW. Na+/H+ exchange and cytoplasmic pH in the action of growth factors in human fibroblasts. Nature (London) 1983;304:645–8.

    Article  PubMed  CAS  Google Scholar 

  15. Moolenaar WH, Tertoolen LGJ, de Laat SW. Phorbol esters and diacylglycerol mimic growth factors in raising cytoplasmic pH. Nature (London) 1984;312: 371–3.

    Article  PubMed  CAS  Google Scholar 

  16. Ganz MB, Boyarsky G, Sterzel RB, Boron WF. Arginine vasopressin enhances pHi regulation in the presence of HCO3 - by stimulating three acid-base transport systems. Nature (London) 1989;337:648–51.

    Article  PubMed  CAS  Google Scholar 

  17. Biermann AJ, Tertoolen LGJ, de Laat SW, Moolenaar WH. The Na+/H+ exchanger is constitutively activated in P19 embryonal carcinoma cells, but not in a differentiated derivative. J Biol Chem 1987;262:9621–8.

    Google Scholar 

  18. Perona R, Serrano R. Increased pH and tumorigenicity of fibroblasts expressing a yeast proton pump. Nature (London) 1988;334:438–40.

    Article  PubMed  CAS  Google Scholar 

  19. Schwartz MA, Both G, Lechene C. Effect of cell spreading on cytoplasmic pH in normal and transformed fibroblasts. Proc Natl Acad Sci USA 1989; 86:4525–9.

    Article  PubMed  CAS  Google Scholar 

  20. Epel D. The role of Na+/H+ exchange and intracellular pH changes in fertilization. In: Grinstein S, ed. Na+/H+ exchange. Boca Raton, FL: CRC Press, 1988:57–75.

    Google Scholar 

  21. Boron WF, de Weer P. Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. J Gen Physiol 1976;67: 91–112.

    Article  PubMed  CAS  Google Scholar 

  22. Roos A, Boron WF. Intracellular pH. Physiol Rev 1981;61:296–434.

    PubMed  CAS  Google Scholar 

  23. Molecular Probes product information for BCECF-AM and BCECF. Apr. 1991 edition. Molecular Probes, Inc., Eugene, OR.

    Google Scholar 

  24. Bright GR, Fisher GW, Rogowska J, Taylor DL. Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH. J Cell Biol 1987;104:1019–33.

    Article  PubMed  CAS  Google Scholar 

  25. Baltz JM, Biggers JD, Lechene C. Apparent absence of Na+/H+ antiport activity in the two-cell mouse embryo. Dev Biol 1990;138:421–9.

    Article  PubMed  CAS  Google Scholar 

  26. Baltz JM, Biggers JD, Lechene C. Relief from alkaline-load in two-cell stage mouse embryos by bicarbonate/chloride exchange. J Biol Chem 1991;266: 17212–7.

    PubMed  CAS  Google Scholar 

  27. Thomas RC. The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones. J Physiol 1977;273:317–38.

    PubMed  CAS  Google Scholar 

  28. Boyarsky G, Ganz MB, Sterzel RB, Boron WF. pH regulation in single glomerular mesangial cells, I. Acid extrusion in absence and presence of HCO3 -. Am J Physiol 1988;255:C844–56.

    PubMed  CAS  Google Scholar 

  29. Boron WF, Boulpaep EL. Intracellular pH regulation in the renal proximal tubule of the salamander: Na+/H+ exchange. J Gen Physiol 1983;81:29–52.

    Article  PubMed  CAS  Google Scholar 

  30. Aickin CC. Movement of acid equivalents across the mammalian smooth muscle membrane. In: Bock G, Marsh J, eds. Proton passage across cell membranes. CIBA Foundation Symposium 139, Feb. 9–11, 1988. London: Wiley and Sons, 1988:23–46.

    Google Scholar 

  31. Bidani A, Brown SES, Heming TA, Gurich R, Dubose TD. Cytoplasmic pH in pulmonary macrophages: recovery from acid-loads is Na+ independent and NEM sensitive. Am J Physiol 1989;257:C65–76.

    PubMed  CAS  Google Scholar 

  32. Lubman RL, Danto SI, Crandall ED. Evidence for active H+ secretion by rat alveolar epithelial cells. Am J Physiol 1989;257:L438–45.

    PubMed  CAS  Google Scholar 

  33. Baltz JM, Biggers JD, Lechene C. Two-cell stage mouse embryos appear to lack mechanisms for alleviating intracellular acid-loads. J Biol Chem 1991; 266:6052–7.

    PubMed  CAS  Google Scholar 

  34. Muallem S, Burnham C, Blissard D, Berglindh T, Sachs G. Electrolyte transport across the basolateral membrane of the parietal cells. J Biol Chem 1985;260:6641–53.

    PubMed  CAS  Google Scholar 

  35. Kurtz I, Golchini K. Na+-independent Cl--HCO3 - exchange in Madin-Darby canine kidney cells: role in intracellular pH regulation. J Biol Chem 1987;262:4516–20.

    PubMed  CAS  Google Scholar 

  36. Reinertsen KV, Tonnessen TI, Jacobsen J, Sandvig K. Role of chloride/bicarbonate antiport in the control of cytoplasmic pH: cell line differences in activity and regulation of antiport. J Biol Chem 1988;263:11117–25.

    PubMed  CAS  Google Scholar 

  37. Manejwala FM, Cragoe EJ, Schultz RM. Blastocoel expansion in the pre-implantation mouse embryo: role of extracellular sodium and chloride and possible apical routes of their entry. Dev Biol 1989;133:210–20.

    Article  PubMed  CAS  Google Scholar 

  38. Borland RM, Hazra S, Biggers JD, Lechene C. The elemental composition of the environments of the gametes and preimplantation embryo during the initiation of pregnancy. Biol Reprod 1977;16:147–57.

    Article  PubMed  CAS  Google Scholar 

  39. Maas DHA, Storey BT, Mastroianni L. Hydrogen ion and carbon dioxide content of the oviductal fluid of the rhesus monkey (Macaca mulatto). Fertil Steril 1977;28:981–5.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Baltz, J.M., Biggers, J.D., Lechene, C. (1993). Intracellular pH Regulation by the Preimplantation Embryo. In: Bavister, B.D. (eds) Preimplantation Embryo Development. Serono Symposia, USA Norwell, Massachusetts. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9317-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9317-7_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9319-1

  • Online ISBN: 978-1-4613-9317-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics