Skip to main content

Regulation of Hamster Embryo Development In Vitro by Amino Acids

  • Conference paper
Preimplantation Embryo Development

Part of the book series: Serono Symposia, USA Norwell, Massachusetts ((SERONOSYMP))

Abstract

Considerable attention has been directed towards determining carbohydrate energy substrates for supporting in vitro development of pre-implantation embryos, mostly in studies with mice (1,2). In contrast, there has been little interest in examining amino acid requirements, doubtless because no regulatory role for amino acids was found in studies with mouse embryos. Although glycine as the sole fixed-nitrogen source was able to support 8-cell mouse embryo development (3), later studies showed that a fixed-nitrogen source was not essential for development of 2-cell mouse embryos (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brinster RL. Studies on the development of mouse embryos in vitro, IV. Interaction of energy sources. J Reprod Fertil 1965;10:227–40.

    Article  PubMed  CAS  Google Scholar 

  2. Biggers JD. Pioneering mammalian embryo culture. In: Bavister BD, ed. The mammalian preimplantation embryo. Regulation of growth and differentiation in vitro. New York: Plenum Press, 1987:1–22.

    Google Scholar 

  3. Whitten WK. Culture of tubal ova. Nature (London) 1957;179:1081–2.

    Article  PubMed  CAS  Google Scholar 

  4. Cholewa JA, Whitten WK. Development of two-cell mouse embryos in the absence of a fixed-nitrogen source. J Reprod Fertil 1970;22:553–5.

    Article  PubMed  CAS  Google Scholar 

  5. Mehta TS, Kiessling AA. Development potential of mouse embryos conceived in vitro and cultured in ethylenediaminetetraacetic acid with or without amino acids or serum. Biol Reprod 1990;43:600–6.

    Article  PubMed  CAS  Google Scholar 

  6. Kane MT, Foote RH. Culture of two- and four-cell rabbit embryos to the expanding blastocyst stage in synthetic media. Proc Soc Exp Biol Med 1970;133:921–5.

    PubMed  CAS  Google Scholar 

  7. Zhang X, Armstrong DT. Presence of amino acids and insulin in a chemically defined medium improves development of 8-cell rat embryos in vitro and subsequent implantation in vivo. Biol Reprod 1990;42:662–8.

    Article  PubMed  CAS  Google Scholar 

  8. Kishi J, Noda Y, Narimoto K, Umaoka Y, Mori T. Block to development in cultured rat one-cell embryos is overcome using medium HECM-1. Hum Reprod 1991;6:1445–8.

    PubMed  CAS  Google Scholar 

  9. Bavister BD, Leibfried ML, Lieberman G. Development of preimplantation embryos of the golden hamster in a defined culture medium. Biol Reprod 1983;28:235–47.

    Article  PubMed  CAS  Google Scholar 

  10. Schini SA, Bavister BD. Development of hamster embryos through the “two-cell block” in chemically-defined medium. J Exp Zool 1988;245:111–5.

    Article  PubMed  CAS  Google Scholar 

  11. Schini SA, Bavister BD. Two-cell block to development of cultured hamster embryos is caused by phosphate and glucose. Biol Reprod 1988;39:1183–92.

    Article  PubMed  CAS  Google Scholar 

  12. Seshagiri PB, Bavister BD. Relative developmental abilities of hamster 2- and 8-cell embryos cultured in HECM-1 and HECM-2. J Exp Zool 1991;257:51–7.

    Article  PubMed  CAS  Google Scholar 

  13. McKiernan SH, Bavister BD. Environmental variables influencing in vitro development of hamster 2-cell embryos to the blastocyst stage. Biol Reprod 1990;43:404–13.

    Article  PubMed  CAS  Google Scholar 

  14. McKiernan SH, Bavister BD, Tasca RJ. Energy substrate requirements for in vitro development of hamster 1- and 2-cell embryos to the blastocyst stage. Hum Reprod 1991;6:64–75.

    PubMed  CAS  Google Scholar 

  15. Yanagimachi R, Chang MC. Fertilization of hamster eggs in vitro. Nature (London) 1963;200:281–2.

    Article  PubMed  CAS  Google Scholar 

  16. Yanagimachi R, Chang MC. In vitro fertilization of golden hamster ova. J Exp Zool 1964;156:361–76.

    Article  PubMed  CAS  Google Scholar 

  17. Yanagimachi R. Mammalian fertilization. In: Knobil E, Neill JD, Ewing LL, Markert CL, Greenwald GS, Pfaff DW, eds. Physiology of reproduction. New York: Raven Press, 1988:135–86.

    Google Scholar 

  18. Cherr GN, Drobnis EZ. Fertilization in the golden hamster. In: Dunbar BS, O’Rand MG, eds. A comparative overview of mammalian fertilization. New York: Plenum Press, 1991:217–43.

    Google Scholar 

  19. Gwatkin RB, Haidri AA. Requirements for the maturation of hamster oocytes in vitro. Exp Cell Res 1973;76:1–7.

    Article  PubMed  CAS  Google Scholar 

  20. Leese HJ, Aldridge S, Jeffries KS. The movement of amino acids into rabbit oviductal fluid. J Reprod Fertil 1979;56:623–6.

    Article  PubMed  CAS  Google Scholar 

  21. Schultz GA, Kaye PL, McKay DJ, Johnson MH. Endogenous amino acid pool sizes in mouse eggs and preimplantation embryos. J Reprod Fertil 1981;61:387–93.

    Article  PubMed  CAS  Google Scholar 

  22. Miller JGO, Schultz GA. Amino acid content of preimplantation rabbit embryos and fluids of the reproductive tract. Biol Reprod 1987;36:125–9.

    Article  PubMed  CAS  Google Scholar 

  23. Kaye PL. Metabolic aspects of the physiology of the preimplantation embryo. In: Rossant J, Pedersen RA, eds. Experimental approaches to mammalian embryonic development. Cambridge, UK: Cambridge University Press, 1986:267–92.

    Google Scholar 

  24. Kane MT, Carney EW, Bavister BD. Vitamins and amino acids stimulate hamster blastocysts to hatch in vitro. J Exp Zool 1986;239:429–32.

    Article  PubMed  CAS  Google Scholar 

  25. Carney EW, Bavister BD. Stimulatory and inhibitory effects of amino acids on development of hamster eight-cell embryos in vitro. J In Vitro Fertil Embryo Transfer 1987;4:162–7.

    Article  CAS  Google Scholar 

  26. Juetten J, Bavister BD. The effects of amino acids, cumulus cells and bovine serum albumin on in vitro fertilization and first cleavage division of hamster eggs. J Exp Zool 1983;227:487–90.

    Article  PubMed  CAS  Google Scholar 

  27. McKiernan SH, Bavister BD. Different lots of bovine serum albumin inhibit or stimulate in vitro development of hamster embryos. In Vitro Cell Dev Biol 1992;28A:154–6.

    Article  PubMed  CAS  Google Scholar 

  28. Bavister BD. Evidence for a role of post-ovulatory cumulus components in supporting fertilizing ability of hamster spermatozoa. J Androl 1982;3:365–72.

    Google Scholar 

  29. Boatman DE, Bavister BD, Cruz E. Addition of hypotaurine can reactivate immotile golden hamster spermatozoa. J Androl 1990;11:66–72.

    PubMed  CAS  Google Scholar 

  30. Kane MT, Bavister BD. Protein-free culture medium containing polyvinylalcohol, vitamins and amino acids supports development of eight-cell hamster embryos to hatching blastocysts. J Exp Zool 1988;247:183–7.

    Article  PubMed  CAS  Google Scholar 

  31. Bavister BD, Arlotto TM. Influence of single amino acids on the development of hamster 1-cell embryos in vitro. Mol Reprod Dev 1990;25:45–51.

    Article  PubMed  CAS  Google Scholar 

  32. Purcel VG, Wall RJ, Rexroad CE Jr, Hammer RE, Brinster RL. A rapid whole-mount staining procedure for nuclei of mammalian embryos. Theriogenology 1985;24:687–91.

    Article  Google Scholar 

  33. Boatman DE, Andrews JC, Bavister BD. A quantitative assay for capacitation: evaluation of multiple sperm penetration through the zona pellucida of salt-stored hamster eggs. Gamete Res 1988;19:19–29.

    Article  PubMed  CAS  Google Scholar 

  34. Bavister, BD. A consistently successful procedure for in vitro fertilization of golden hamster eggs. Gamete Res 1989;23:139–58.

    Article  PubMed  CAS  Google Scholar 

  35. Barnett DK, Bavister BD. Development of in vitro fertilized hamster embryos to morulae and blastocysts in a chemically defined culture medium. Biol Reprod 1991;44 (suppl 1):155.

    Google Scholar 

  36. Barnett DK, Bavister BD. Hypotaurine requirement for in vitro development of golden hamster one-cell embryos into morulae and blastocysts, and production of term offspring from in vitro fertilized ova. Biol Reprod 1992;47:297–304.

    Article  PubMed  CAS  Google Scholar 

  37. Schini SA, Bavister BD. Normal offspring produced after transfer of hamster embryos grown from two- to eight-cells in a chemically-defined culture medium. Theriogenology 1990;33:1255–62.

    Article  Google Scholar 

  38. Seshagiri PB, Bavister BD. Assessment of hamster blastocysts derived from eight-cell embryos cultured in medium HECM-2: cell numbers and viability following embryo transfer. J In Vitro Fertil Embryo Dev 1990;7:229–35.

    Article  CAS  Google Scholar 

  39. Brinster RL. Uptake and incorporation of amino acids by the preimplantation mouse embryo. J Reprod Fertil 1971;27:329–38.

    Article  PubMed  CAS  Google Scholar 

  40. Borland RM, Tasca RJ. Activation of a Na+-dependent amino acid transport system in preimplantation mouse embryos. Dev Biol 1974;36:169–82.

    Article  PubMed  CAS  Google Scholar 

  41. Borland RM, Tasca RJ. Na+-dependent amino acid transport in preimplantation mouse embryos, II. Metabolic inhibitors and nature of the cation requirement. Dev Biol 1975;46:192–201.

    Article  PubMed  CAS  Google Scholar 

  42. Kaye PL, Schultz GA, Johnson MH, Pratt HPM, Church RB. Amino acid transport and exchange in preimplantation mouse embryos. J Reprod Fertil 1982;65:367–80.

    Article  PubMed  CAS  Google Scholar 

  43. Van Winkle LJ. Amino acid transport in developing animal oocytes and early conceptuses. Biochim Biophys Acta 1988;947:173–208.

    PubMed  Google Scholar 

  44. Van Winkle LJ, Campione AL, Gorman JM, Weimer BD. Changes in the activities of amino acid transport systems bo+ and L during development of preimplantation mouse conceptuses. Biochim Biophys Acta 1990;1021:77–84.

    Article  PubMed  Google Scholar 

  45. Van Winkle LJ, Haghighat N, Campione AL. Glycine protects preimplantation mouse conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid. J Exp Zool 1990;253:215–9.

    Article  PubMed  Google Scholar 

  46. Baltz JM, Biggers JD, Lechene C. Apparent absence of Na+/H+ antiport activity in the two-cell mouse embryo. Dev Biol 1990;138:421–9.

    Article  PubMed  CAS  Google Scholar 

  47. Baltz JM, Biggers JD, Lechene C. Two-cell stage mouse embryos appear to lack mechanisms for alleviating intracellular acid loads. J Biol Chem 1991;266:6052–7.

    PubMed  CAS  Google Scholar 

  48. Bavister BD, Barnett DK, McKiernan SH. Hypotaurine stimulates in vitro development of early one-cell hamster embryos to the morula/blastocyst stage. Biol Reprod 1991;44 (suppl 1):155.

    Google Scholar 

  49. Lutwak-Mann C. Carbonic anhydrase in the female reproductive tract: occurrence, distribution and hormonal dependence. J Endocrinol 1955;13:26–38.

    Article  PubMed  CAS  Google Scholar 

  50. Hobbs JG, Kaye PL. Glycine and Na+ transport in preimplantation mouse embryos. J Reprod Fertil 1986;77:61–6.

    Article  PubMed  CAS  Google Scholar 

  51. Van Winkle LJ, Campione AL, Kester SE. A possible effect of the Na+ concentration in oviductal fluid on amino acid uptake by cleavage-stage mouse embryos. J Exp Zool 1985;235:141–5.

    Article  PubMed  Google Scholar 

  52. Van Winkle LJ, Haghighat N, Campione AL, Gorman JM. Glycine transport in mouse eggs and preimplantation conceptuses. Biochim Biophys Acta 1988;941:241–56.

    Article  PubMed  Google Scholar 

  53. Sellens MH, Stein S, Sherman MI. Protein and free amino acid content in preimplantation mouse embryos and in blastocysts under various culture conditions. J Reprod Fertil 1981;61:307–15.

    Article  PubMed  CAS  Google Scholar 

  54. Gillies RJ. Intracellular pH and growth control in eukaryotic cells. In: Cameron, Pool TB, eds. The transformed cell. New York: Academic Press, 1981:353–95.

    Google Scholar 

  55. Busa WB, Nuccitelli R. Metabolic regulation via intracellular pH. Am J Physiol 1984;246:R409–38.

    PubMed  CAS  Google Scholar 

  56. Boron WF. Intracellular pH regulation in epithelial cells. Annu Rev Physiol 1986;48:377–88.

    Article  PubMed  CAS  Google Scholar 

  57. Carney EW, Bavister BD. Regulation of hamster embryo development in vitro by carbon dioxide. Biol Reprod 1987;36:1155–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Bavister, B.D., McKiernan, S.H. (1993). Regulation of Hamster Embryo Development In Vitro by Amino Acids. In: Bavister, B.D. (eds) Preimplantation Embryo Development. Serono Symposia, USA Norwell, Massachusetts. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9317-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9317-7_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9319-1

  • Online ISBN: 978-1-4613-9317-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics