Skip to main content

Effects of Imprinting on Early Development of Mouse Embryos

  • Conference paper
Preimplantation Embryo Development

Part of the book series: Serono Symposia, USA Norwell, Massachusetts ((SERONOSYMP))

Abstract

During the past decade, a major advance in understanding the development of embryonic and extraembryonic lineages of mammals has emerged from studies on the fate of parthenogenetic (or gynogenetic) embryos and their androgenetic counterparts. Diploid parthenogenotes produced by experimentally activating mouse oocytes develop to midgestation stages, then they die with a characteristic phenotype: The most advanced embryos have extensive development of the axial embryonic structures (brain and neural tube, somites) and other embryonic organs, but only rudimentary development of the trophoblast lineage (1). Diploid androgenotes— that is, embryos with only paternally derived chromosomes—that are manufactured by nuclear transfer (2) also die at midgestation stages, but with retarded development of the embryo proper and with normal trophoblast by gross morphological examination (1, 3). The conclusion drawn from these and other studies (reviewed in 4–6) is that maternal and paternal gametes make distinct and complementary contributions to the developing conceptus, so that normal mouse development requires both maternal and paternal haploid genomes (1, 7). This phenomenon, referred to as genomic imprinting, thus appears to have profound consequences for peri-implantation development in eutherian mammals (metatheria and prototheria have not been studied).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Surani MA, Barton SC, Norris ML. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature (London) 1984;308:548–50.

    Article  PubMed  CAS  Google Scholar 

  2. McGrath J, Solter D. Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 1983;220:1300–3.

    Article  PubMed  CAS  Google Scholar 

  3. Surani MA, Barton SC, Norris ML. Nuclear transplantation in the mouse: heritable differences between parental genomes after activation of the embryonic genome. Cell 1986;45:127–36.

    Article  PubMed  CAS  Google Scholar 

  4. Surani MA. Evidences and consequences of differences between maternal and paternal genomes during embryogenesis in the mouse. In: Rossant J, Pedersen RA, eds. Experimental approaches to mammalian embryonic development. Cambridge, UK: Cambridge University Press, 1986:401–35.

    Google Scholar 

  5. Surani MA. Mechanism and consequences of genomic imprinting and genetic disorders. In: Edwards RG, ed. Establishing a successful human pregnancy. New York: Raven Press, 1990:171–84.

    Google Scholar 

  6. Solter D. Differential imprinting and expression of maternal and paternal genomes. Annu Rev Genet 1988;22:127–46.

    Article  PubMed  CAS  Google Scholar 

  7. McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 1984;37:179–83.

    Article  PubMed  CAS  Google Scholar 

  8. Beatty RA. Parthenogenesis in vertebrates. In: Metz CB, Monroy A, eds. Fertilization; vol. I. New York: Academic Press, 1967:413–41.

    Google Scholar 

  9. Clarke HJ, Varmuza S, Prideaux VR, Rossant J. The developmental potential of parthenogenetically derived cells in chimeric mouse embryos: implications for action of imprinted genes. Development 1988;104:175–82.

    PubMed  CAS  Google Scholar 

  10. Thomson JA, Solter D. Chimeras between parthenogenetic or androgenetic blastomeres and normal embryos: allocation to the inner cell mass and trophectoderm. Dev Biol 1989;131:580–3.

    Article  PubMed  CAS  Google Scholar 

  11. Thomson JA, Solter D. The developmental fate of androgenetic, parthenogenetic, and gynogenetic cells in chimeric gastrulating mouse embryos. Genes Dev 1988;2:1344–51.

    Article  PubMed  CAS  Google Scholar 

  12. Fundele R, Norris ML, Barton SC, Reik W, Surani MA. Systematic elimination of parthenogenetic cells in mouse chimeras. Development 1989;106: 29–35.

    PubMed  CAS  Google Scholar 

  13. Nagy A, Sass M, Markkula M. Systematic non-uniform distribution of parthenogenetic cells in adult mouse chimeras. Development 1989;106:321–4.

    PubMed  CAS  Google Scholar 

  14. Paldi A, Nagy A, Markkula M, Barna I, Dezso L. Postnatal development of parthenogenetic ‹-› fertilized mouse aggregation chimeras. Development 1989:115–8.

    Google Scholar 

  15. Anderegg C, Markert CL. Successful rescue of microsurgically produced homozygous diploid uniparental mouse embryos via production of aggregation chimeras. Proc Natl Acad Sci USA;83:6509–13.

    Google Scholar 

  16. Mann JR, Gadi I, Harbison ML, Abbondanzo SJ, Stewart CL. Androgenetic mouse embryonic stem cells are pluripotent and cause skeletal defects in chimeras: implications for genetic imprinting. Cell 1990;62:251–60.

    Article  PubMed  CAS  Google Scholar 

  17. Mann JR, Stewart CL. Development to term of mouse androgenetic aggregation chimeras. Development 1991;113:1325–33.

    PubMed  CAS  Google Scholar 

  18. Barton SC, Ferguson-Smith AC, Fundele R, Surani MA. Influence of paternally imprinted genes on development. Development 1991;113:679–88.

    PubMed  CAS  Google Scholar 

  19. Surani MA, Barton SC, Howlett SK, Norris ML. Influence of chromosomal determinants on development of androgenetic and parthenogenetic cells. Development 1988;103:171–8.

    PubMed  CAS  Google Scholar 

  20. DeChiara TM, Efstratiadis A, Robertson EJ. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature (London) 1990;345:78–80.

    Article  PubMed  CAS  Google Scholar 

  21. DeChiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 1991;64:849–59.

    Article  PubMed  CAS  Google Scholar 

  22. Barlow DP, Stöger R, Herrmann BG, Saito K, Schweifer N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature (London) 1991;349:84–7.

    Article  PubMed  CAS  Google Scholar 

  23. Cruz YP, Pedersen RA. Origin of embryonic and extraembryonic cell lineages in mammalian embryos. In: Pedersen RA, McLaren A, First NL, eds. Animal applications of research in mammalian development. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1991:147–204.

    Google Scholar 

  24. Hall JG. Genomic imprinting: review and relevance to human diseases. J Hum Genet 1990;46:857–73.

    CAS  Google Scholar 

  25. Sturm KS, Flannery ML, Pedersen RA. Abnormal development of embryonic and extraembryonic cell lineages in parthenogenesis mouse embryos. Development (submitted).

    Google Scholar 

  26. Cuthbertson KSR. Rapid communication: parthenogenetic activation of mouse oocytes in vitro with ethanol and benzyl alcohol. J Exp Zool 1983; 226:311–4.

    Article  PubMed  CAS  Google Scholar 

  27. Surani MA, Barton SC, Norris ML. Experimental reconstruction of mouse eggs and embryos: an analysis of mammalian development. Biol Reprod 1987;36:1–16.

    Article  PubMed  CAS  Google Scholar 

  28. Hogan BLM, Cooper AR, Kurkinen M. Incorporation into Reichert’s membrane of laminin-like extracellular proteins synthesized by parietal endoderm cells of the mouse embryo. Dev Biol 1980;80:289–300.

    Article  PubMed  CAS  Google Scholar 

  29. Rappolee DA, Brenner CA, Schultz R, Mark D, Werb Z. Developmental expression of PDGF, TGF-α, and TGF-β genes in preimplantation mouse embryos. Science 1988;241:1823–5.

    Article  PubMed  CAS  Google Scholar 

  30. Rappolee DA, Wang A, Mark D, Werb Z. Novel method for studying mRNA phenotypes in single or small numbers of cells. J Cell Biochem 1989;39:1–11.

    Article  PubMed  CAS  Google Scholar 

  31. Rappolee DA, Sturm KS, Behrendtsen O, Schultz GA, Pedersen RA, Werb Z. Insulin-like growth factor II, acting through the IGF-I receptor, forms an endogenous growth circuit regulated by imprinting in early mouse embryos. Genes Dev 1992;6:939–52.

    Article  PubMed  CAS  Google Scholar 

  32. Ferguson-Smith AC, Cattanach BM, Barton SC, Beechey CV, Surani MA. Embryological and molecular investigations of parental imprinting on mouse chromosome. Nature (London) 1991;351:667–70.

    Article  PubMed  CAS  Google Scholar 

  33. Czech MP. Signal transmission by the insulin-like growth factors. Cell 1989; 59:235–8.

    Article  PubMed  CAS  Google Scholar 

  34. Okamoto T, Katada T, Murayama Y, Ui M, Ogata E, Nishimoto I. A simple structure encodes G protein-activating function of the IGF-II/mannose 6-phosphate receptor. Cell 1990;62:709–17.

    Article  PubMed  CAS  Google Scholar 

  35. Okamoto T, Nishimoto I, Murayama Y, Ohkuni Y, Ogata E. Insulin-like growth factor-II/mannose 6-phosphate receptor is incapable of activating GTP-binding proteins in response to mannose 6-phosphate, but capable in response to insulin-like growth factor-II. Biochem Biophys Res Commun 1990;168:1201–10.

    Article  PubMed  CAS  Google Scholar 

  36. Kaufman MH. Early mammalian development: parthenogenetic studies. In: Barlow PW, Green PB, Wylie CC, eds. Developmental and cell biology series. Cambridge, UK: Cambridge University Press, 1983:84–110.

    Google Scholar 

  37. Kaufmann MH, Barton SC, Surani MA. Normal postimplantation development of mouse parthenogenetic embryos to the forelimb bud stage. Nature (London) 1977;265:53–5.

    Article  Google Scholar 

  38. McGrath J, Solter D. Nucleocytoplasmic interactions in the mouse embryo. J Embryol Exp Morphol 1986;97:277–89.

    PubMed  Google Scholar 

  39. Rossant J, Tamura-Lis W. Effect of culture conditions on diploid to giant-cell transformation in postimplantation mouse trophoblast. J Embryol Exp Morphol 1981;62:217–27.

    PubMed  CAS  Google Scholar 

  40. Gardner RL. Investigation of cell lineage and differentiation in the extraembryonic endoderm of the mouse embryo. J Embryol Exp Morphol 1982; 68:175–98.

    PubMed  CAS  Google Scholar 

  41. Hogan BLM, Tilly R. Cell interactions and endoderm differentiation in cultured mouse embryos. J Embryol Exp Morphol 1981;62:379–94.

    PubMed  CAS  Google Scholar 

  42. Gardner RL, Barton SC, Surani MAH. Use of triple tissue blastocyst reconstitution to study the development of diploid parthenogenetic primitive ectoderm in combination with fertilization-derived trophectoderm and primitive endoderm. Genet Res 1990;56:209–22.

    Article  PubMed  CAS  Google Scholar 

  43. Nilsen-Hamilton M, ed. Growth factors and development: current topics in developmental biology; vol 24. San Diego: Academic Press, 1990.

    Google Scholar 

  44. Grant SG, Chapman VM. Mechanisms of X-chromosome regulation. Annu Rev Genet 1988;22:199–233.

    Article  PubMed  CAS  Google Scholar 

  45. Bartolomei MS, Zemel S, Tilghman SM. Parental imprinting of the mouse H19 gene. Nature (London) 1991;351:153–5.

    Article  PubMed  CAS  Google Scholar 

  46. Haig D, Graham C. Genomic imprinting and the strange case of the insulinlike growth factor II receptor. Cell 1991;64:1045–6.

    Article  PubMed  CAS  Google Scholar 

  47. Haig D, Westoby M. Parent-specific gene expression and the triploid endosperm. Am Nat 1988;134:147–55.

    Article  Google Scholar 

  48. Bell G. The masterpiece of nature: the evolution and genetics of sexuality. Berkeley: University of California Press, 1982:324–31.

    Google Scholar 

  49. Kaslow DC, Migeon BR. DNA methylation stabilizes X chromosome inactivation in eutherians but not in marsupials: evidence for multistep maintenance of mammalian X dosage compensation. Proc Natl Acad Sci USA 1987;84:6210–4.

    Article  PubMed  CAS  Google Scholar 

  50. Searle AG, Beechey CV. Complementation studies with mouse translocations. Cytogenet Cell Genet 1978;20:282–303.

    Article  PubMed  CAS  Google Scholar 

  51. Searle AG, Beechey CV. Noncomplementation phenomena and their bearing on nondisjunctional effects. In: Dellarco VL, Vojtek PE, Hollaender A, eds. Aneuploidy, aetology and mechanisms. New York: Plenum Press, 1985: 363–76.

    Google Scholar 

  52. Cattanach BM. Parental origin effects in mice. J Embryol Exp Morphol. 1986;97:137–50.

    PubMed  Google Scholar 

  53. Searle AG, Peters J, Lyon MF, et al. Chromosome maps of man and mouse, IV. Ann Hum Genet 1989;53:89–140.

    Article  PubMed  CAS  Google Scholar 

  54. Cattanach BM, Beechey CV. Autosomal and X-chromosome imprinting. Development 1990 (Suppl.);63–72.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Pedersen, R.A., Sturm, K.S., Rappolee, D.A., Werb, Z. (1993). Effects of Imprinting on Early Development of Mouse Embryos. In: Bavister, B.D. (eds) Preimplantation Embryo Development. Serono Symposia, USA Norwell, Massachusetts. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9317-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9317-7_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9319-1

  • Online ISBN: 978-1-4613-9317-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics