Skip to main content

Mutations Affecting Early Development in the Mouse

  • Conference paper
Preimplantation Embryo Development

Abstract

Mutations are important for defining and dissecting complex pathways of normal development and for relating biological function to protein structure. Most of the known mutations in mouse have occurred spontaneously and were identified because of visible phenotypic effects associated with the mutated gene in the heterozygous state. More recently, an intense effort has been under way to induce random or site-directed germ-line mutations. For example, the specific-locus method has been used to generate mutations in localized regions of the genome (1). Irradiated animals are mated to a test stock homozygous for a number of visible markers. The resulting array of mutations, many of which are deletions, are detected because of visible phenotypes produced in F1 offspring. The deletions are useful for studying the marker locus as well as the surrounding chromosomal region. The dilute-short ear-deletion complex of chromosome 9 (2, 3) and the albino-deletion complex of chromosome 7 (4–7) represent two examples of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Russell WL. X-ray-induced mutations in mice. Cold Spring Harbor Symposium Quant Biol 1951;16:327–36.

    CAS  Google Scholar 

  2. Rinchik EM, Russell LB, Copeland NG, Jenkins NA. Molecular genetic analysis of the Dilute-Short Ear (D-SE) region of the mouse. Genetics 1986; 112:321–42.

    PubMed  CAS  Google Scholar 

  3. Strobel MC, Seperack PK, Copeland NG, Jenkins NA. Molecular analysis of two mouse dilute locus deletion mutations: spontaneous dilute lethal20J and radiation-induced dilute prenatal lethal Aa2 alleles. Mol Cell Biol 1990; 10:501–9.

    PubMed  CAS  Google Scholar 

  4. Gluecksohn-Waelsch S, Schiffman MB, Thorndike J, Cori CF. Complementation studies of lethal alleles in the mouse causing deficiencies of glucose-6-phosphatase, tyrosine aminotransferase and serine dehydratase. Proc Natl Acad Sci USA 1974;71:825–9.

    Article  PubMed  CAS  Google Scholar 

  5. Russell LB, Russell WL, Kelly EM. Analysis of the albino-locus region of the mouse, I. Origin and viability of whole body and fractional mutants. Genetics 1979;91:127–39.

    PubMed  CAS  Google Scholar 

  6. Russell LB, Raymer GD. Analysis of the albino-locus region of the mouse, III. Time of death of prenatal lethals. Genetics 1979;92:205–13.

    PubMed  CAS  Google Scholar 

  7. Russell LB, Montgomery CS, Raymer GD. Analysis of the albino-locus region of the mouse, IV. Characterization of 34 deficiencies. Genetics 1982; 100:427–53.

    PubMed  CAS  Google Scholar 

  8. Shedlovsky A, Guenet J-L, Johnson LL, Dove WF. Induction of recessive lethal mutations in the T/t-H-2 region of the mouse genome by a point mutagen. Genet Res 1986;47:135–42.

    Article  PubMed  CAS  Google Scholar 

  9. Shedlovsky A, King TR, Dove WF. Saturation germ line mutagenesis of murine t region including a lethal allele at the quaking locus. Proc Natl Acad Sci USA 1988;85:180–4.

    Article  PubMed  CAS  Google Scholar 

  10. King TR, Dove WF, Herrmann B, Moser AR, Shedlovsky A. Mapping to molecular resolution in the T to H-2 region of the mouse genome with a nested set of meiotic recombinants. Proc Natl Acad Sci USA 1989;86:222–6.

    Article  PubMed  CAS  Google Scholar 

  11. Rinchik EM, Carpenter DA, Selby PB. A strategy for fine-structure functional analysis of a 6- to 11-centimorgan region of mouse chromosome 7 by high-efficiency mutagenesis. Proc Natl Acad Sci USA 1990;87:896–900.

    Article  PubMed  CAS  Google Scholar 

  12. Rinchik EM. Chemical mutagenesis and fine-structure functional analysis of the mouse genome. Trend Genet 1991;7:15–21.

    Article  CAS  Google Scholar 

  13. Westphal H, Grass P. Molecular genetics of development studied in the transgenic mouse. Annu Rev Cell Biol 1989;5:181–96.

    Article  PubMed  CAS  Google Scholar 

  14. Gridley T, Soriano P, Janeisch R. Insertional mutagenesis in mice. Trends Genet 1987;3:162–6.

    Article  CAS  Google Scholar 

  15. Lock LF, Keshet E, Gilbert DJ, Jenkins NA, Copeland NG. Studies of the mechanism of spontaneous germline ecotropic provirus acquisition in mice. EMBO J 1988;7:4169–77.

    PubMed  CAS  Google Scholar 

  16. Copeland NG, Lock LF, Spence SE, et al. Spontaneous germ-line ecotropic murine leukemia virus infection: implications for retroviral insertional mutagenesis and germ-line gene transfer. Prog Nucleic Acid Res Mol Biol 1989;36:221–34.

    Article  PubMed  CAS  Google Scholar 

  17. Gossler A, Joyner AL, Rossant J, Skarnes WC. Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science 1989;244:463–5.

    Article  PubMed  CAS  Google Scholar 

  18. Capecchi MR. The new mouse genetics: altering the genome by gene targeting. Trends Genet 1989;5:70–6.

    Article  PubMed  CAS  Google Scholar 

  19. Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 1987;51:503–12.

    Article  PubMed  CAS  Google Scholar 

  20. Mansour SL, Thomas KR, Capecchi MR. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature (London) 1988;336:348–52.

    Article  PubMed  CAS  Google Scholar 

  21. Doetschman T, Maeda N, Smithies O. Targeted mutation of the Hprt gene in mouse embryonic stem cells. Proc Natl Acad Sci USA 1988;85:8583–7.

    Article  PubMed  CAS  Google Scholar 

  22. Hasty P, Ramirez-Solis R, Krumlauf R, Bradley A. Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature (London) 1991;350:243–6.

    Article  PubMed  CAS  Google Scholar 

  23. Valancius V, Smithies O. Testing an “in-out” targeting procedure for making subtle genomic modifications in mouse embryonic stem cells. Mol Cell Biol 1991;11:1402–8.

    PubMed  CAS  Google Scholar 

  24. Zijlstra M, Bix M, Simister NE, Loring JM, Raulet DH, Jaenisch R. ß2-microglobulin deficient mice lack CD4–8+ cytolytic T cells. Nature (London) 1990;344:742–6.

    Article  PubMed  CAS  Google Scholar 

  25. Koller BH, Marrack P, Kappler JW, Smithies O. Normal development of mice deficient in ß2M, MHC class I proteins, and CD8+ T cells. Science 1990;248:1227–30.

    Article  PubMed  CAS  Google Scholar 

  26. Joyner AL, Herrup K, Auerbach BA, Davis CA, Rossant J. Subtle cerebellar phenotype in mice homozygous for a targeted deletion of the En-2 homeobox. Science 1991;251:1239–43.

    Article  PubMed  CAS  Google Scholar 

  27. Chisaka O, Capecchi MR. Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5. Nature (London) 1991;350:473–9.

    Article  PubMed  CAS  Google Scholar 

  28. Kitamura D, Roses J, Kuhn R, Rajewsky K. AB cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin μ chain gene. Nature (London) 1991;350:423–6.

    Article  PubMed  CAS  Google Scholar 

  29. DeChiara TM, Efstratiadis A, Robertson EJ. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature (London) 1990;345:78–80.

    Article  PubMed  CAS  Google Scholar 

  30. Thomas KR, Capeechi MR. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature (London) 1990;346:847–50.

    Article  CAS  Google Scholar 

  31. Mucenski ML, McLain K, Kier AB, et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 1991;65:677–89.

    Article  PubMed  CAS  Google Scholar 

  32. Soriano P, Montgomery C, Geske R, Bradley A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 1991;64:693–702.

    Article  PubMed  CAS  Google Scholar 

  33. McMahon AP, Bradley A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 1990;62:1073–85.

    Article  PubMed  CAS  Google Scholar 

  34. Lewis SE, Turchin HA, Gluecksohn-Waelsch S. The developmental analysis of an embryological lethal (c 6H) in the mouse. J Embryol Exp Morphol 1976;36:363–71.

    PubMed  CAS  Google Scholar 

  35. Lewis S. Developmental analysis of lethal effects of homozygosity for the c 25H deletion in the mouse. Dev Biol 1978;65:553–7.

    Article  PubMed  CAS  Google Scholar 

  36. Nadijcka MD, Hillman N, Gluecksohn-Waelsch S. Ultrastructural studies of lethal c 25H /c 25H mouse embryos. J Embryol Exp Morphol 1979;52:1–11.

    PubMed  CAS  Google Scholar 

  37. Niswander L, Yee D, Rinchik EM, Russell LB, Magnuson T. The albino deletion complex and early postimplantation survival in the mouse. Development 1988;102:45–53.

    PubMed  CAS  Google Scholar 

  38. Niswander L, Yee D, Rinchik EM, Russell LB, Magnuson T. The albino-deletion complex in the mouse defines genes necessary for development of embryonic and extraembryonic mesoderm. Development 1989;105:175–82.

    PubMed  CAS  Google Scholar 

  39. Niswander L, Kelsey G, Schedl A, et al. Molecular mapping of albino deletions associated with early embryonic lethality in the mouse. Genomics 1991;9:162–9.

    Article  PubMed  CAS  Google Scholar 

  40. Gluecksohn-Waelsch S. Regulatory genes in development. Trend Genet 1987;3:123–7.

    Article  CAS  Google Scholar 

  41. McKnight SL, Lane MD, Gluecksohn-Waelsch S. Is CCAAT/enhancer-binding rotein a central regulator of energy metabolism? Genes Dev 1989; 3:2021–4.

    Article  PubMed  CAS  Google Scholar 

  42. Sharan SK, Hodener-Kenny B, Ruppert S, et al. The albino-deletion complex of the mouse: molecular mapping of deletion breakpoints that define regions necessary for development of the embryonic and extraembryonic ectoderm. Genetics 1991;129:825–32.

    PubMed  CAS  Google Scholar 

  43. Johnson DK, Hand RE, Rinchik EM. Molecular mapping within the mouse albino-deletion complex. Proc Natl Acad Sci USA 1989;8862–6.

    Google Scholar 

  44. Eicher EM, Lewis SE, Turchin HA, Gluecksohn-Waelsch S. Absence of mitochondrial malic enzyme in mice carrying two complementing lethal albino alleles. Genet Res 1978;32:1–7.

    Article  PubMed  CAS  Google Scholar 

  45. Russell LB. Definition of functional units in a small chromosomal segment of the mouse and its use in interpreting the nature of radiation-induced mutations. Mutat Res 1971;11:107–23.

    Article  PubMed  CAS  Google Scholar 

  46. Bird AP. CpG islands as gene markers in the vertebrate nucleus. Trends Genet 1987;3:342–7.

    Article  CAS  Google Scholar 

  47. Monaco AP, Neve RL, Colletti-Feener C, Bertelson CJ, Kurmit DM, Kunkel LM. Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature (London) 1986;323:646–50.

    Article  PubMed  CAS  Google Scholar 

  48. Duyk GM, Kim S, Myers RM, Cox DR. Exon trapping: a genetic screen to identify transcribed sequences in cloned mammalian genomic DNA. Proc Natl Acad Sci USA 1991;87:8995–9.

    Article  Google Scholar 

  49. Eliceiri B, Labella T, Hagino Y, et al. Stable integration and expression in mouse cells of yeast artificial chromosomes harboring human genes. Proc Natl Acad Sci USA 1991;88:2179–83.

    Article  PubMed  CAS  Google Scholar 

  50. Pachnis V, Pevny L, Rothstein R, Costantini F. Transfer of a yeast artificial chromosome carrying human DNA from Saccharomyces cerevisiae into mammalian cells. Proc Natl Acad Sci USA 1990;87:5109–13.

    Article  PubMed  CAS  Google Scholar 

  51. Herrman BG, Labeit S, Poustka A, King TR, Lehrach H. Cloning of the T gene required in mesoderm formation in the mouse. Nature (London) 1990; 343:617–22.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Magnuson, T., Sharan, S.K., Holdener-Kenny, B. (1993). Mutations Affecting Early Development in the Mouse. In: Bavister, B.D. (eds) Preimplantation Embryo Development. Serono Symposia, USA Norwell, Massachusetts. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9317-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9317-7_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9319-1

  • Online ISBN: 978-1-4613-9317-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics