Skip to main content

Long Memory Shot Noises and Limit Theorems with Application to Burgers’ Equation

  • Conference paper

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 46))

Abstract

Shot noise processes and random fields with long memory are discussed. Convergence of the distribution of integrated polynomials of shot noise process with long memory to a self-similar process expressed as multiple Wiener-Ito integral is proved. Asymptotical normality of solutions of the Burgers equation in R 3 with random initial data as the gradient of a shot noise field with long memory is established, extending recent results by Bulinskii and Molchanov.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Albeverio and S.A. Molchanov, Stratified structure of the Universe and Burgers’ equation: a probabilistic approach (to appear).

    Google Scholar 

  2. F. Avram and M.S. Taqqu, Generalized powers of strongly dependent random variables. Ann. Probab., 15 (1987), pp. 767–775.

    Article  MathSciNet  MATH  Google Scholar 

  3. A.V. Bulinskii, CTL for families of integral functionals arising in solving multidimensional Burgers equation In: Proc. 5th Vilnius Conf. Probab. Math. Statist., 1 (1990), VSP/Mokslas, pp. 207–216.

    MathSciNet  Google Scholar 

  4. A.V. Bulinskii and S.A. Molchanov, Asymptotic Gaussian behaviour of the solution of Burgers equation with random initial data Theory Probab. Appl., 36 (1991), pp. 217–235.

    Article  MathSciNet  Google Scholar 

  5. D.J. Daley, The definition of multi-dimensional generalization of shot noise J. Appl. Prob., 8 (1971), pp. 128–135.

    Article  MathSciNet  MATH  Google Scholar 

  6. R.L. Dobrushin, Gaussian and their subordinated self-similar random generalized fields Ann. Probab., 7 (1979), pp. 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  7. R.L. Dobrushin and P. Major, Non-central limit theorems for nonlinear functionals of Gaussian fields Z. Wahr. verw. Geb., 50 (1979), pp. 27–52.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Giraitis and D. Surgailis, Multivariate Appell polynomials and the central limit theorem In: Dependence in Probability and Statistics, Birkhäuser (1986), pp. 21–71.

    Google Scholar 

  9. L. Giraitis and D. Surgailis, A limit theorem for polynomials of linear process with long range dependence Lithuanian Math. Journal, 29 (1989), pp. 290–311.

    MathSciNet  MATH  Google Scholar 

  10. L. Giraitis and D. Surgailis, On shot noise processes with long range dependence In: Proc. 5th Vilnius Conf. Probab. Math. Statist., 1 (1990), VSP/Mokslas, pp. 401–408.

    MathSciNet  Google Scholar 

  11. O. Grinev, A central limit theorem for Burgers’ equation with random initial conditions Vestn. Mosk. Univ. Ser. 1, (to appear)..

    Google Scholar 

  12. T. Hsing and J.T. Teugels, Extremal properties of shot noise properties Adv. Appl. Prob., 21 (1989), pp. 513–525.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Major, Multiple Wiener-Ito integrals Springer, New York, 1981.

    MATH  Google Scholar 

  14. E. Parzen, Stochastic processes Holden-Day, San Francisco, 1962.

    MATH  Google Scholar 

  15. M. Reed and B. Simon, Methods of modern mathematical physics, vol. 2: Fourier analysis self-adjointness Academic Press, New York, 1975.

    Google Scholar 

  16. J. Rice, On generalized shot-noise Adv. Appl. Prob., 9 (1977), pp. 553–565.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Rosenblatt, Independence and dependence In: Proc. 4th Berkeley Sympos. Math. Statist. Probab., Univ. Calif. Press, Berkeley (1961), pp. 411–443.

    Google Scholar 

  18. M. Rosenblatt, Scale renormalization and random solutions of the Burgers equation J. Appl. Prob., 24 (1987), pp. 328–338.

    Article  MathSciNet  MATH  Google Scholar 

  19. S.F. Shandarin and Ya. B. Zeldovich, Turbulence, intermittency, structures in a self-gravitating medium: the large scale structure of the Universe Max-Planck-Institut für Physik and Astrophysik, MPA 350 (1988).

    Google Scholar 

  20. E.M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces Princeton Univ. Press, Princeton (1971).

    MATH  Google Scholar 

  21. D. Surgailis, Linear and their subordinated random fields Dissertation, Vilnius (1981).

    Google Scholar 

  22. D. Surgailis, On L 2 and non-L 2 multiple stochastic integration In: Stochastic Differential Systems, Lecture Notes in Control and Informatics Sciences, vol. 36, Springer (1981), pp. 212–226.

    Article  MathSciNet  Google Scholar 

  23. D. Surgailis, On infinitely divisible self-similar random fields Z. Wahr. verw. Geb., 58 (1981), pp. 453–477.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Surgailis, On multiple Poisson stochastic integrals and associated Markov semigroups Probab. Math. Statist., 3 (1984), pp. 217–239.

    MathSciNet  Google Scholar 

  25. D. Surgailis, Zones of attraction of self-similar multiple integrals Lithuanian Math. Journal, 22 (1982), pp. 185–201.

    MathSciNet  MATH  Google Scholar 

  26. L. Takács, On secondary processes generated by a Poisson process and their applications in physics Acta Math. Acad. Sci. Hungar., 5 (1954), pp. 203–235.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process Z. Wahr. verw. Geb. 31 (1975), pp. 287–302.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Taqqu, Convergence of integrated processes of arbitrary Hermite rank Z. Wahr. verw. Geb. 50 (1979), pp. 53–83.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Vishik, A. Komech and A. Fursikov, Some mathematical problems of statistical hydrodynamics Russian Math. Surveys, 34 (1979), pp. 149–234.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Westcott, On the existence of a generalized shot-noise process In: Studies in Probability and Statistics, North-Holland (1976), pp. 73–88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Giraitis, L., Molchanov, S.A., Surgailis, D. (1993). Long Memory Shot Noises and Limit Theorems with Application to Burgers’ Equation. In: Brillinger, D., Caines, P., Geweke, J., Parzen, E., Rosenblatt, M., Taqqu, M.S. (eds) New Directions in Time Series Analysis. The IMA Volumes in Mathematics and its Applications, vol 46. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9296-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9296-5_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9298-9

  • Online ISBN: 978-1-4613-9296-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics