Skip to main content

Weak Convergence to Self-Affine Processes in Dynamical Systems

  • Conference paper
New Directions in Time Series Analysis

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 46))

  • 389 Accesses

Abstract

Self-affine processes arise naturally as weak limits of partial sums of observations on a dynamical system. This fact has practical and theoretical implications for the study of dynamical systems. We survey some of these results, and their implications.

Research partially supported by an NSF Grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Breuer and P. Major, Central Limit Theorems for non-linear fundionals of Gaussian fields, J. Multivariate Anal., 13 (1983), pp. 425–441.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Burton and M. Denker, On the central limit theorem for dynamical systems, Trans. Amer. Math. Soc, 302 (1987), pp. 715–726.

    Article  MathSciNet  MATH  Google Scholar 

  3. C.D. Cutler and D.A. Dawson, Estimation of dimension for spatially distributed data and related limit theorems, J. Multi. Analy., 28 (1989), pp. 115–148.

    Article  MathSciNet  MATH  Google Scholar 

  4. C.D. Cutler and D.A. Dawson, Nearest-neighbor analysis of a family of Fractal distributions, Ann. Probab., 18 (1990), pp. 256–271.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Denker, The central limit theorem for dynamical systems, in Dynamical Systems and Ergodic Theory, Banach center publications, vol. 23. PWN-Polish Scientific Publishers, Warsaw, 1989.

    Google Scholar 

  6. M. Denker and G. Keller, Rigorous statistical procedures for data from dynamical systems, J. Stat. Phys., 44 (1986), pp. 67–93.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Denker and M. Keane, Finitary codes and the law of the iterated logarithm, Z. Wahrsch. ver. Gebiete, 52, pp. 321–331.

    Google Scholar 

  8. R.L. Dobrushin and P. Major, Non-central limit theorems for non-linear functionals of Gaussian fields, Z. Wahrsch. verw. Gebiete, 50 (1979), pp. 27–52.

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. Guivarc’h and J. Hardy, Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphisms d’Anosov, Ann. Inst. H. Poincaré, 24 (1988), pp. 73–98.

    MathSciNet  MATH  Google Scholar 

  10. F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z., 180 (1982), pp. 119–140.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Ishitani, A central limit theorem of mixed type for a class of 1-dimensional transformations, Hiroshima Math. J., 16 (1986), pp. 161–168.

    MathSciNet  MATH  Google Scholar 

  12. K. Itô, Multiple Wiener Integrals, J. Math. Soc. Japan, 3 (1951), pp. 157–164.

    Article  MathSciNet  MATH  Google Scholar 

  13. M.T. Lacey, On weak convergence in dynamical systems to self-similar processes with spectral representation, To appear in Trans. Amer. Math. Soc.

    Google Scholar 

  14. M.T. Lacey, On weak convergence in dynamical systems to self-similar processes with moving average representation.

    Google Scholar 

  15. M.T. Lacey, On central limit theorems, modulus of continuity and Diophantine type for certain irrational rotations.

    Google Scholar 

  16. S. Lalley, Renewal theorems in symbolic dynamics, with applications to geodesic flows, noneuclidean tessellations and their fractal limits, Acta. Math., 163 (1989), pp. 1–55.

    Article  MathSciNet  MATH  Google Scholar 

  17. J.W. Lamperti, Stochastic Processes, Springer, New York, 1973.

    Google Scholar 

  18. J.W. Lamperti, Semi-stable stochastic processes, Trans. Amer. Math. Soc, 104 (1962) 62–78.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Maejima, Self-similar processes and limit theorems, Sugaku Exp., 2 (1989), pp. 103–123.

    MATH  Google Scholar 

  20. P. Major, Limit theorems for non-linear functionals of Gaussian sequences, Z. Wahrsch. verw. Gebiete, 57 (1981), pp. 129–158.

    Article  MathSciNet  MATH  Google Scholar 

  21. B.B. Mandelbrot and J.W. van Ness, Fractional Brownian motions, fractional noises and applications, SIAM. Rev., 10 (1968), pp. 422–437.

    Article  MathSciNet  MATH  Google Scholar 

  22. W. Parry, The information co-cycle and ε-bounded codes, Israel Math. J., 29 (1978), pp. 205–220.

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Przytycki, M. Urbanski and A. Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps, I. Ann. Math., 130 (1989), pp. 1–40.

    Article  MathSciNet  MATH  Google Scholar 

  24. D.J. Rudolph, n and n cocycle extensions and complementary algebras, Ergod. Th. and Dynam. Sys. 6 (1986), pp. 583–599.

    Article  MathSciNet  MATH  Google Scholar 

  25. M.S. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z. Wahrsch. verw. Gebeite 31 (1975), pp. 287–302.

    Article  MathSciNet  MATH  Google Scholar 

  26. M.S. Taqqu, Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrsch. verw. Gebeite, 50 (1979), pp. 53–83.

    Article  MathSciNet  MATH  Google Scholar 

  27. M.S. Taqqu, Self-similar processes and related ultraviolet and infrared catastrophes, in Random Fields: Rigorous results in Statistical Mechanics and Quantum Field Theory, Colloq. Math. Soc. Janos Bolyai, Vol. 27, Book 2, North Holland, Amsterdam, 1981, pp. 1057–1096.

    Google Scholar 

  28. D. Volný, On limit theorems and category for dynamical systems, Preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Lacey, M. (1993). Weak Convergence to Self-Affine Processes in Dynamical Systems. In: Brillinger, D., Caines, P., Geweke, J., Parzen, E., Rosenblatt, M., Taqqu, M.S. (eds) New Directions in Time Series Analysis. The IMA Volumes in Mathematics and its Applications, vol 46. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9296-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9296-5_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9298-9

  • Online ISBN: 978-1-4613-9296-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics