Skip to main content

Generation of Detonation by Plane Shock

  • Chapter
  • 305 Accesses

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

Abstract

In a very particular sense, generation of detonation by plane shock has already been approached in §III.6.2, which dealt with the birth of a simple detonation. There we came to conclusions bearing on the local conditions of incipient development of chemical reactions downstream of a shock.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, A.B. et al. Shock initiation of porous TATB. Proc. 7th Symposium on Detonation, Annapolis/MD (1981), p. 385.

    Google Scholar 

  2. Aveillé, J. et al. Célérité de détonation et profondeur d’amorçage de deux compositions explosives. Proc. Colloque Pyrotechnie Fond. et Ap., Arcachon/ France (1982), p. 396

    Google Scholar 

  3. Bahl, K.L., Vantine, H.C., Weingart, R.C. Shock initiation of bare and covered explosives by projectile impact. Proc. 7th Symposium on Detonation, Annapolis/ MD (1981), p. 325.

    Google Scholar 

  4. Bernier, H. Contribution à l’étude de la génération de la détonation provoquée par impact sur un explosif. Thèse de Doctorat ès Sciences, Paris (1964).

    Google Scholar 

  5. Campbell, A.W., Davis, W.C., Travis, J.R. Shock initiation of detonation in liquid explosives. Phys. Fluids, 4 (1961), p. 498.

    Article  ADS  Google Scholar 

  6. Campbell, A.W., Davis, W.C., Ramsay, J.B., Travis, J.R. Shock initiation of solid explosives. Phys. Fluids, 4 (1961), p. 511.

    Article  ADS  Google Scholar 

  7. Campbell, A.W., Engelke, R. The diameter-effect in high density heterogeneous explosives. Proc. 6th Symposium Detonation, Coronado/CA (1976), p. 642.

    Google Scholar 

  8. Chaiken, R.F. Comments on hypervelocity wave phenomena in condensed explosives. J. Chem. Phys., 33 (1960), p. 760.

    Article  ADS  Google Scholar 

  9. Cowperthwaite, M., Rosenberg, J.T. A multiple Lagrange gage study of the shock initiation process in cast TNT. Proc. 6th Symposium on Detonation, San Diego/CA (1976), p. 786.

    Google Scholar 

  10. Dremin, A.N., Shvedov, K.K. On shock wave explosive decomposition. Proc. 6th Symposium on Detonation, Coronado/CA (1976), p. 29.

    Google Scholar 

  11. Droux, R., Mouchel, C. Étude du comportement sous choc et de la génération de la détonation d’explosifs hétérogènes par la méthode du double coin. Proc. Symposium H.D.P., Paris (1978), p. 103.

    Google Scholar 

  12. Erckson, L.M. et al. The electromagnetic velocity gauge. Proc. 7th Symposium on detonation, Annapolis/MD (1981), p. 1062.

    Google Scholar 

  13. Fauquignon, C., Chéret, R. Generation of detonation in solid explosives. Proc. 12th Symposium of the Combustion Institute, Poitiers/France (1968), p. 745.

    Google Scholar 

  14. Graham, R.A. Shock-induced inorganic chemistry. Proc. APS Shock Waves Meeting, Menlo Park/CA (1981), p. 4.

    Google Scholar 

  15. Green, L. Shock initiation of explosives by the impact of small diameter cylindrical projectiles. Proc. 7th Symposium on Detonation, Annapolis/MD (1981), p. 273.

    Google Scholar 

  16. Hayes, D.B. A et detonation criterion from thermal explosion theory. Proc. 6th Symposium Detonation, San Diego/CA (1976), p. 76.

    Google Scholar 

  17. Holland, T.E., Campbell, A.W., Malin, M.E. Phenomena associated with detonation in large single crystals. J. Appl. Phys., 28 (1957), p. 1212.

    Article  ADS  Google Scholar 

  18. Honodel, C.A. et al. Shock initiation of TATB formulations. Proc. 7th Symposium on Detonation, Annapolis/MD (1981), p. 425.

    Google Scholar 

  19. Howe, P. et al. Shock initiation and the critical energy concept. Proc. 6th Symposium on Detonation, Coronado/CA (1976), p. 11.

    Google Scholar 

  20. Hubbard, H.W., Johnson, M.H. Initiation of detonations. J. Appl. Phys., 30 (1959), p. 765.

    Article  ADS  Google Scholar 

  21. Kanel, G.I., Dremin, A.N. Decomposition of cast trotyl in shock waves. Combustion, Explosion and Shock Waves, 13 (1977), p. 71.

    Article  Google Scholar 

  22. Kennedy, J.E. Pressure-field in a shock-compressed high explosive. Proc. 14th Symposium of the Combustion Institute, Pittsburgh/PA (1972), p. 125.

    Google Scholar 

  23. Lindstrom, I. E. Plane shock initiation of an RDX plastic bonded explosive. J. Appl. Phys., 37 (1966).

    Google Scholar 

  24. Longueville, Y. de et al. Initiation of several condensed explosives by a given duration shock wave. Proc. 6th Symposium on Detonation, San Diego/CA (1976), p. 105.

    Google Scholar 

  25. Mader, C.L. The two-dimensional hydrodynamic hot spot. Vol. II. LASL Report LA 3235 (1965).

    Google Scholar 

  26. Mader, C.L. Numerical Modeling of Detonations. University of California Press, Berkeley (1979).

    MATH  Google Scholar 

  27. Mader, C.L., Forest, C.A. Two-dimensional homogeneous and heterogeneous detonation propagation. LASL Report LA 6259 (1976).

    Google Scholar 

  28. Moulard, H. Critical conditions for shock initiation of detonation by small projectile impact. Proc. 7th Symposium on Detonation, Annapolis/MD (1981), p. 316.

    Google Scholar 

  29. Price, D. Shock sensitivity, a property of many aspects. Proc. 5th Symposium on Detonation, Pasadena/CA (1970), p. 207.

    Google Scholar 

  30. Ramsay, J.B., Popolato, A. Analysis of shock wave and initiation data for solid explosives. Proc. 4th Symposium on Detonation, White Oak/MD (1965), p. 233.

    Google Scholar 

  31. Roth, J. Shock sensitivity and shock Hugoniots of high-density granular explosives. Proc. 5th Symposium on Detonation, Pasadena/CA (1976), p. 219.

    Google Scholar 

  32. Setchell, R.E. Microstructural effects in shock initiation of granular explosives. Proc. Symposium on Pyrotechnics and Explosives, Beijing (1987), p. 635.

    Google Scholar 

  33. Sheffield, S A, Mitchell, D.E., Hayes, D.B. The equation of state and chemical kinetics of HNS explosive. Proc. 6th Symposium Detonation, Coronado/CA (1976), p. 748.

    Google Scholar 

  34. Taylor, B.C., Erwin, L.W. Separation of ignition and build-up to detonation in pressed TNT. Proc. 6th Symposium on Detonation, Coronado/CA (1976), p. 3.

    Google Scholar 

  35. Vorthman, J., Andrews, G., Wackerle, J. Reaction rates from electromagnetic gauge data. Proc. 8th Symposium on Detonation, Albuquerque/NM (1985), p. 99.

    Google Scholar 

  36. Wackerlé, J., Johnson, J.O., Halleck, P.M. Shock initiation of high density PETN. Proc. 6th Symposium on Detonation, San Diego/CA (1976), p. 20.

    Google Scholar 

  37. Walker, F.E., Wasley, R.J. Critical energy for shock initiation of heterogeneous explosives. UCRL Report 70891 (1968).

    Google Scholar 

  38. Weingart, R.C. et al. Acceleration of thin flyers by exploding metal foils: application to initiation studies. Proc. 6th Symposium on Detonation, San Diego/Ca (1976), p. 653.

    Google Scholar 

  39. Weingart, R. C. et al. Magnetic stress gages in reacting high explosive environment. Proc. Symposium H.D.P., Paris (1978), p. 451.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Chéret, R. (1993). Generation of Detonation by Plane Shock. In: Detonation of Condensed Explosives. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9284-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9284-2_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9286-6

  • Online ISBN: 978-1-4613-9284-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics