Skip to main content

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

  • 299 Accesses

Abstract

It must be stated at the outset (so as to warn the reader) that numerical predictions for explosives are, at first sight, somewhat disconcerting because of the diversity of the phenomena invoked, the quantities measured, the approximations made. This disorder is not an effect of Art but a consequence of the ambivalence of the concerns which dominate the use of an explosive structure:

  1. (i)

    to control the risks encountered during manufacturing, storage, and dismantling phases,

  2. (ii)

    to control, in time and intensity, performance during the normal and unique sequence of use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, J.W.S., Lambourn, B.D. An equation of state of detonation products at pressures below 30 kbar. Proc. 4th Symposium on Detonation,White Oak/MD (1965), p. 52.

    Google Scholar 

  2. Andersen, H.C., Weeks, J.D., Chandler, D. Relationship between the hard-sphere fluid and fluids with realistic repulsive forces. Phys. Rev. A, 4 (1971), p. 1597.

    Article  ADS  Google Scholar 

  3. Barker, J.A., Henderson, D., Perturbation theory and equation of state for fluids I. The square well poten­tial. J. Chem. Phys., 47 (1967), p. 2856.

    Article  ADS  Google Scholar 

  4. Barker, J.A., Henderson, D. Perturbation theory and equation of state for fluids. II. A successful theory of liquids. J. Chem. Phys., 47 (1967), p. 4714.

    Article  ADS  Google Scholar 

  5. Barker, J.A., Henderson, D. Perturbation theory of fluids at high temperatures. Phys. Rev. A, 1 (1970), p. 1266.

    Article  ADS  Google Scholar 

  6. Bauer, P.A., Vidal, P., Manson, N., Heuzé, O. An approach to the determina­tion of gaseous explosive mixtures at elevated initial pressures by means of the inverse method. Proc. 11th Colloquium on Dynamics of Explosions and Reactive Systems, Varsovie (1987).

    Google Scholar 

  7. Baute, J., Chirat, R. Which equation of state for carbon in detonation products? Proc. 8th Symposium on Detonation. Albuquerque/NM (1985), p. 287.

    Google Scholar 

  8. Becker, R. Z. Physik, 4 (1921), p. 393.

    Article  ADS  Google Scholar 

  9. Becker, R. Z. Physik, 8 (1922), p. 321.

    Article  ADS  Google Scholar 

  10. Becker, R. Z. Technische Physik, 3 (1922), p. 249.

    Google Scholar 

  11. Berger, J., Favier, J., Nault, Y. Détermination des caractéristiques de détonation des explosifs solides. Ann. Phys. 13 th séries (1960), pp. 771–803, 1144–1176.

    Google Scholar 

  12. Brinkley, S.R. JR. and Wilson, E.B. OSRD Report no. 905 (1942).

    Google Scholar 

  13. Brinkley, S.R. JR. and Wilson, E.B. OSRD Report no. 1707 (1943).

    Google Scholar 

  14. Brinkley, S.R. JR. Calculation of the equilibrium composition of systems of many constituants. J.Chem. Phys., 15 (1947), p. 107.

    Article  ADS  Google Scholar 

  15. Brochet, C., Presles, H.-N., Cheret, R. Detonation characteristics of some liquid mixtures of nitromethane and chlorform or bromoform. Proc. 15th Symposium (International) on Combustion, Pittsburgh/PA (1974), p. 29.

    Google Scholar 

  16. Chéret, R. Représentation quasi polytropique de la surface d’état des produits de détonation d’un explosif condensé. C. R. Acad. Sci. Paris, Series II 305(1987), p. 1337.

    MATH  Google Scholar 

  17. Cheret, R. Contribution à l’étude numérique des produits de détonation d’une substance explosive. Rapport CEA-R-4122 (1971).

    Google Scholar 

  18. Cheret, R. Sur un cas où l’unicité de la détonation de Chapman—Jouguet est en défaut. C. R. Acad. Sci. Paris, 274 (1972), p. 1347.

    Google Scholar 

  19. Cheret, R. Le code ARPÈGE; application à l’étude d’un explosif à l’aluminium. Acta Astronautica 1 (1974), p. 893.

    Article  Google Scholar 

  20. Chirat, R., Pirrion-Rossillon, G. A new equation of state for detonation products. J. Chem. Phys., 74 (1981), p. 4634.

    Article  ADS  Google Scholar 

  21. Chirat, R., Pittion-Rossillon, G. Detonation properties of condensed explo­sives calculated with an equation of state based on intermolecular potentials. Proc. 7th Symposium on Detonation. Annapolis/MD (1981), p. 703.

    Google Scholar 

  22. Chirat, R., Baute, J. An extensive application of WCA4 equation of state for explosives. Proc. 8th Symposium on Detonation. Albuquerque/NM (1985), p. 94.

    Google Scholar 

  23. Cook, M.A. et al. Velocity-diameter curves, velocity transients and reaction rates in PETN, RDX, EDNA and tetryl. J. Amer. Chem. Soc., 79 (1957), p. 32.

    Article  Google Scholar 

  24. Cowan, R.D., Fickett, W. Calculation of the detonation properties of solid explosives with the Kistiakowsky—Wilson equation of state. J. Chem. Phys., 24 (1956), p. 932.

    Article  ADS  Google Scholar 

  25. Cowperthwaite, M., Zwisler, W.H. Theoretical and mathematical formulations for the TIGER computer pro­gram. SRI Publications, no. Z106, January 1973.

    Google Scholar 

  26. Cowperthwaite, M., Zwisler, W.H. The JCZ equation of state for detonation products and their incorporation in the TIGER Code. Proc. 6th Symposium on Detonation, San Diego/CA (1976), p. 162.

    Google Scholar 

  27. Davis, W.C. Failure of Chapman—Jouguet theory for solid and liquid explo­sives. Phys. Fluids, 8 (1965), p. 2169.

    Article  ADS  Google Scholar 

  28. Dorn, W.S. Variational principles for chemical equilibrium. J. Chem. Phys., 32 (1960), p. 1490.

    Article  ADS  Google Scholar 

  29. Edwards, J.C., Chaiken, R.F. Detonation calculations with Percus—Yevick equation of state. Combustion and Flame, 22 (1974), p. 269.

    Article  Google Scholar 

  30. Fickett, W., Wood, W.W. A detonation products equation of state obtained from hydrodynamic data. Phys. Fluids, 1 (1958), p. 528.

    Article  ADS  MATH  Google Scholar 

  31. Fickett, W. Detonation properties of condensed explosives calculated with an equation of state based on intermolecular potentials. LASL Report LA 2712 (1962).

    Google Scholar 

  32. Finger, M. et al. The effect of elemental composition on the detonation behaviour of explosives. Proc. 6th Symposium on Detonation, San Diego/CA (1976), p. 710.

    Google Scholar 

  33. Heuzé, O. Contribution au calcul des caractéristiques de détonation de sub­stances explosives gazeuses ou condensées. Thèse de Doctorat, Poitiers (1985).

    Google Scholar 

  34. Hirschfelder, J.O., Curtiss, C.F., Bird R. Byron. Molecular Theory of Gases and Liquids. Wiley, New York (1954).

    Google Scholar 

  35. Hornig, H.C. et al. Equation of state of detonation products. Proc. 5th Sympo­sium on Detonation. Pasadena/CA (1970), p. 503.

    Google Scholar 

  36. Jacobs, S. On the equation of state for detonation products at high density. Proc. 12th Symposium on Combustion, Poitiers (1968), p. 501.

    Google Scholar 

  37. Janaf. Thermochemical Tables. Day. Chemical Company, Midland, Michigan.

    Google Scholar 

  38. Kistiakowsky, G.B. and Wilson, E.B. Report on the prediction of detonation velocities of solid explosives. O.S.R.D. Report 69 (1941).

    Google Scholar 

  39. Kistiakowsky, G.B. and Wilson, E.B. The hydrodynamic theory of detonation and shock waves. O.S.R.D. Report 114 (1941).

    Google Scholar 

  40. Lee, E.L., Hornig, H.C., Kury, J.W. Adiabatic expansion of high explosive detonation products. UCRL Report no. 504122 (1968).

    Google Scholar 

  41. Lee, L.L., Levesque, D. Perturbation theory for mixtures of simple liquids. Mo­lecular Phys., 26 (1973), p. 1351.

    Article  ADS  Google Scholar 

  42. Lennard-Jones, J.E., Devonshire, A.F. Critical phenomena in gases. Proc. Roy. Soc. A, 163 (1937), p. 53; 165 (1938), p. 1; 169 (1938), p. 317; 170 (1939), p. 464.

    Google Scholar 

  43. Levine, H.B., Sharples, R.E. Operator’s manual for RUBY. Report UCRL no. 6815 (1962).

    Google Scholar 

  44. Levine, H.B.Final report on the method of univariant descent for solving problems in heterogeneous chemical equilibria. JAYCOR Report, J510–82­008154 (1982).

    Google Scholar 

  45. Mader, C.L. Detonation performance calculations using the Kistiakowsky—Wilson equa­tion of state. LASL Report LA 2613 (1961).

    Google Scholar 

  46. Mader, C.L. Stretch, B. A Code for computing the detonation properties of explo­sives. LASL Report LADC 5691 (1962).

    Google Scholar 

  47. Mader, C.L. Detonation properties of condensed explosives computed using the Becker­Kistiakowsky—Wilson equation of state. LASL Report LA-2900 (1963).

    Google Scholar 

  48. Mader, C.L. Fortran, Bkw. A code for computing the detonation properties of explo­sives. LASL Report LA 3704 (1967).

    Google Scholar 

  49. Mader, C.L. Numerical Modeling of Detonations. Los Alamos Series, University of California (1979).

    Google Scholar 

  50. Manson, N. Détermination par la méthode inverse des caractéristiques des ondes explosives. Publication no. 366 du Ministère de l’Air, Paris (1960).

    Google Scholar 

  51. Mansoori, G.B., Canfield, J.B. Variational approach to the equilibrium thermodynamic properties of simple liquids. J. Chem. Phys., 51 (1969), p. 4958.

    Article  ADS  Google Scholar 

  52. Mansoori, G.A., Carnaham, N.G., Starling, K.E., Leland, T.W. Equilibrium properties of the mixture of hard spheres. J. Chem. Phys., 54 (1971), p. 1523.

    Article  ADS  Google Scholar 

  53. Medard, L. Tables thermochimiques à l’usage des techniciens des substances explosives. Memorial de l’Artillerie Française, 28 (1954), p. 415.

    Google Scholar 

  54. Medard, L. Les explosifs occasionnels. Librairie Lavoisier, Technique et Docu­mentation, Paris (1987).

    Google Scholar 

  55. Murnaghan, F.D. Finite Deformation of an Elastic Solid. Wiley, New York (1951).

    Google Scholar 

  56. Percus, J.K., Yevick, G.J. Analysis of classical statistical mechanics by means of collective coordinates. Phys. Rev., 110 (1958), p. 1.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. Rasaiah, J.C., Stell, G. Upper bounds of free energies in terms of hard spheres results. Molecular Phys., 18 (1970), p. 249.

    Article  ADS  Google Scholar 

  58. Ree, F.H. (and Van Thiel M. for c.). Post detonation behavior of condensed high explosives by modern methods of statistical mechanics. Proc. 7th Symposium on Detonation, Annapolis/MD (1968), p. 646.

    Google Scholar 

  59. Ree, F.H. (and Van ThielM. for c.). A statistical theory of chemically reacting multiphase mixture: application to the detonation properties of PETN. J. Chem. Phys., 81 (1984), p. 1251.

    Article  ADS  Google Scholar 

  60. Ree, F.H. (and Van Thiel M. for c.). Detonation behavior of LX-14 and PBX 9404: theoretical aspect. Proc. 8th Symposium on Detonation, Albuquerque/NM (1985), p. 501.

    Google Scholar 

  61. Ree, F.H. (and Van Thiel M. for c.). Supercritical fluid phase separation: implications for detonation properties of condensed explosives. J. Chem. Phys. 39 (1963), p. 474.

    Article  Google Scholar 

  62. Ree, F.H. (and Van Thiel M. for c.). Phase changes and chemistry at high pressures and temperature. Proc. 5th APS Conference on Shock Waves in Condensed Matter, Monterey/CA (1987).

    Google Scholar 

  63. Ross, M. A high-density fluid perturbation theory band on an inverse 12th­power hard-sphere reference system. J. Chem. Phys., 71 (1979), p. 1567.

    Article  ADS  Google Scholar 

  64. Thiele, E. Equation of state for hard spheres. J. Chem. Phys., 39 (1963), p. 474.

    Article  ADS  Google Scholar 

  65. Verlet, L., Weiss, J.-J. Equilibrium theory of simple liquids. Phys. Rev. A, 5 (1972), p. 939.

    Article  ADS  Google Scholar 

  66. Vidart, A. Calcul des caractéristiques de détonation des explosifs condensés. Mémorial des Poudres, XLII (1960), p. 83.

    Google Scholar 

  67. Weeks, J.D., Chandler, D., Andersen, H.C. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys., 54 (1971), p. 5237.

    Article  ADS  Google Scholar 

  68. Wertheim, M.S. Exact solution for the Percus—Yevick integral equation for hard spheres. Phys. Rev. Lett., 10 (1963), p. 321.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. White, W.B., Johnson, S.M., Dantzig, C.B. Chemical equilibrium in complex mixtures. J. Chem. Phys., 28 (1958), p. 751.

    Article  ADS  Google Scholar 

  70. Wilkins, M.L., Sqier, B., Halperin, B. The equation of state of PBX 9404 and LX04–01. UCRL Report no. 7797 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Chéret, R. (1993). Numerical Predictions. In: Detonation of Condensed Explosives. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9284-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9284-2_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9286-6

  • Online ISBN: 978-1-4613-9284-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics