Numerical Predictions

  • Roger Chéret
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)


It must be stated at the outset (so as to warn the reader) that numerical predictions for explosives are, at first sight, somewhat disconcerting because of the diversity of the phenomena invoked, the quantities measured, the approximations made. This disorder is not an effect of Art but a consequence of the ambivalence of the concerns which dominate the use of an explosive structure:
  1. (i)

    to control the risks encountered during manufacturing, storage, and dismantling phases,

  2. (ii)

    to control, in time and intensity, performance during the normal and unique sequence of use.



Hard Sphere Numerical Prediction Detonation Velocity Detonation Product Helmholtz Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Allan, J.W.S., Lambourn, B.D. An equation of state of detonation products at pressures below 30 kbar. Proc. 4th Symposium on Detonation,White Oak/MD (1965), p. 52.Google Scholar
  2. [2]
    Andersen, H.C., Weeks, J.D., Chandler, D. Relationship between the hard-sphere fluid and fluids with realistic repulsive forces. Phys. Rev. A, 4 (1971), p. 1597.ADSCrossRefGoogle Scholar
  3. [3]a
    Barker, J.A., Henderson, D., Perturbation theory and equation of state for fluids I. The square well poten­tial. J. Chem. Phys., 47 (1967), p. 2856.ADSCrossRefGoogle Scholar
  4. b.
    Barker, J.A., Henderson, D. Perturbation theory and equation of state for fluids. II. A successful theory of liquids. J. Chem. Phys., 47 (1967), p. 4714.ADSCrossRefGoogle Scholar
  5. c.
    Barker, J.A., Henderson, D. Perturbation theory of fluids at high temperatures. Phys. Rev. A, 1 (1970), p. 1266.ADSCrossRefGoogle Scholar
  6. [4]
    Bauer, P.A., Vidal, P., Manson, N., Heuzé, O. An approach to the determina­tion of gaseous explosive mixtures at elevated initial pressures by means of the inverse method. Proc. 11th Colloquium on Dynamics of Explosions and Reactive Systems, Varsovie (1987).Google Scholar
  7. [5]
    Baute, J., Chirat, R. Which equation of state for carbon in detonation products? Proc. 8th Symposium on Detonation. Albuquerque/NM (1985), p. 287.Google Scholar
  8. [6]a
    Becker, R. Z. Physik, 4 (1921), p. 393.ADSCrossRefGoogle Scholar
  9. b.
    Becker, R. Z. Physik, 8 (1922), p. 321.ADSCrossRefGoogle Scholar
  10. c.
    Becker, R. Z. Technische Physik, 3 (1922), p. 249.Google Scholar
  11. [7]
    Berger, J., Favier, J., Nault, Y. Détermination des caractéristiques de détonation des explosifs solides. Ann. Phys. 13 th séries (1960), pp. 771–803, 1144–1176.Google Scholar
  12. [8]a
    Brinkley, S.R. JR. and Wilson, E.B. OSRD Report no. 905 (1942).Google Scholar
  13. b.
    Brinkley, S.R. JR. and Wilson, E.B. OSRD Report no. 1707 (1943).Google Scholar
  14. [9]
    Brinkley, S.R. JR. Calculation of the equilibrium composition of systems of many constituants. J.Chem. Phys., 15 (1947), p. 107.ADSCrossRefGoogle Scholar
  15. [10]
    Brochet, C., Presles, H.-N., Cheret, R. Detonation characteristics of some liquid mixtures of nitromethane and chlorform or bromoform. Proc. 15th Symposium (International) on Combustion, Pittsburgh/PA (1974), p. 29.Google Scholar
  16. [11]
    Chéret, R. Représentation quasi polytropique de la surface d’état des produits de détonation d’un explosif condensé. C. R. Acad. Sci. Paris, Series II 305(1987), p. 1337.MATHGoogle Scholar
  17. [12]
    Cheret, R. Contribution à l’étude numérique des produits de détonation d’une substance explosive. Rapport CEA-R-4122 (1971).Google Scholar
  18. [13]
    Cheret, R. Sur un cas où l’unicité de la détonation de Chapman—Jouguet est en défaut. C. R. Acad. Sci. Paris, 274 (1972), p. 1347.Google Scholar
  19. [14]
    Cheret, R. Le code ARPÈGE; application à l’étude d’un explosif à l’aluminium. Acta Astronautica 1 (1974), p. 893.CrossRefGoogle Scholar
  20. [15]
    Chirat, R., Pirrion-Rossillon, G. A new equation of state for detonation products. J. Chem. Phys., 74 (1981), p. 4634.ADSCrossRefGoogle Scholar
  21. [16]
    Chirat, R., Pittion-Rossillon, G. Detonation properties of condensed explo­sives calculated with an equation of state based on intermolecular potentials. Proc. 7th Symposium on Detonation. Annapolis/MD (1981), p. 703.Google Scholar
  22. [17]
    Chirat, R., Baute, J. An extensive application of WCA4 equation of state for explosives. Proc. 8th Symposium on Detonation. Albuquerque/NM (1985), p. 94.Google Scholar
  23. [18]
    Cook, M.A. et al. Velocity-diameter curves, velocity transients and reaction rates in PETN, RDX, EDNA and tetryl. J. Amer. Chem. Soc., 79 (1957), p. 32.CrossRefGoogle Scholar
  24. [19]
    Cowan, R.D., Fickett, W. Calculation of the detonation properties of solid explosives with the Kistiakowsky—Wilson equation of state. J. Chem. Phys., 24 (1956), p. 932.ADSCrossRefGoogle Scholar
  25. [20]a
    Cowperthwaite, M., Zwisler, W.H. Theoretical and mathematical formulations for the TIGER computer pro­gram. SRI Publications, no. Z106, January 1973.Google Scholar
  26. b.
    Cowperthwaite, M., Zwisler, W.H. The JCZ equation of state for detonation products and their incorporation in the TIGER Code. Proc. 6th Symposium on Detonation, San Diego/CA (1976), p. 162.Google Scholar
  27. [21]
    Davis, W.C. Failure of Chapman—Jouguet theory for solid and liquid explo­sives. Phys. Fluids, 8 (1965), p. 2169.ADSCrossRefGoogle Scholar
  28. [22]
    Dorn, W.S. Variational principles for chemical equilibrium. J. Chem. Phys., 32 (1960), p. 1490.ADSCrossRefGoogle Scholar
  29. [23]
    Edwards, J.C., Chaiken, R.F. Detonation calculations with Percus—Yevick equation of state. Combustion and Flame, 22 (1974), p. 269.CrossRefGoogle Scholar
  30. [24]
    Fickett, W., Wood, W.W. A detonation products equation of state obtained from hydrodynamic data. Phys. Fluids, 1 (1958), p. 528.ADSCrossRefMATHGoogle Scholar
  31. [25]
    Fickett, W. Detonation properties of condensed explosives calculated with an equation of state based on intermolecular potentials. LASL Report LA 2712 (1962).Google Scholar
  32. [26]
    Finger, M. et al. The effect of elemental composition on the detonation behaviour of explosives. Proc. 6th Symposium on Detonation, San Diego/CA (1976), p. 710.Google Scholar
  33. [27]
    Heuzé, O. Contribution au calcul des caractéristiques de détonation de sub­stances explosives gazeuses ou condensées. Thèse de Doctorat, Poitiers (1985).Google Scholar
  34. [28]
    Hirschfelder, J.O., Curtiss, C.F., Bird R. Byron. Molecular Theory of Gases and Liquids. Wiley, New York (1954).Google Scholar
  35. [29]
    Hornig, H.C. et al. Equation of state of detonation products. Proc. 5th Sympo­sium on Detonation. Pasadena/CA (1970), p. 503.Google Scholar
  36. [30]
    Jacobs, S. On the equation of state for detonation products at high density. Proc. 12th Symposium on Combustion, Poitiers (1968), p. 501.Google Scholar
  37. [31]
    Janaf. Thermochemical Tables. Day. Chemical Company, Midland, Michigan.Google Scholar
  38. [32]a
    Kistiakowsky, G.B. and Wilson, E.B. Report on the prediction of detonation velocities of solid explosives. O.S.R.D. Report 69 (1941).Google Scholar
  39. b.
    Kistiakowsky, G.B. and Wilson, E.B. The hydrodynamic theory of detonation and shock waves. O.S.R.D. Report 114 (1941).Google Scholar
  40. [33]
    Lee, E.L., Hornig, H.C., Kury, J.W. Adiabatic expansion of high explosive detonation products. UCRL Report no. 504122 (1968).Google Scholar
  41. [34]
    Lee, L.L., Levesque, D. Perturbation theory for mixtures of simple liquids. Mo­lecular Phys., 26 (1973), p. 1351.ADSCrossRefGoogle Scholar
  42. [35]
    Lennard-Jones, J.E., Devonshire, A.F. Critical phenomena in gases. Proc. Roy. Soc. A, 163 (1937), p. 53; 165 (1938), p. 1; 169 (1938), p. 317; 170 (1939), p. 464.Google Scholar
  43. [36]
    Levine, H.B., Sharples, R.E. Operator’s manual for RUBY. Report UCRL no. 6815 (1962).Google Scholar
  44. [37]
    Levine, H.B.Final report on the method of univariant descent for solving problems in heterogeneous chemical equilibria. JAYCOR Report, J510–82­008154 (1982).Google Scholar
  45. [38]a
    Mader, C.L. Detonation performance calculations using the Kistiakowsky—Wilson equa­tion of state. LASL Report LA 2613 (1961).Google Scholar
  46. b.
    Mader, C.L. Stretch, B. A Code for computing the detonation properties of explo­sives. LASL Report LADC 5691 (1962).Google Scholar
  47. c.
    Mader, C.L. Detonation properties of condensed explosives computed using the Becker­Kistiakowsky—Wilson equation of state. LASL Report LA-2900 (1963).Google Scholar
  48. d.
    Mader, C.L. Fortran, Bkw. A code for computing the detonation properties of explo­sives. LASL Report LA 3704 (1967).Google Scholar
  49. [39]
    Mader, C.L. Numerical Modeling of Detonations. Los Alamos Series, University of California (1979).Google Scholar
  50. [40]
    Manson, N. Détermination par la méthode inverse des caractéristiques des ondes explosives. Publication no. 366 du Ministère de l’Air, Paris (1960).Google Scholar
  51. [41]
    Mansoori, G.B., Canfield, J.B. Variational approach to the equilibrium thermodynamic properties of simple liquids. J. Chem. Phys., 51 (1969), p. 4958.ADSCrossRefGoogle Scholar
  52. [42]
    Mansoori, G.A., Carnaham, N.G., Starling, K.E., Leland, T.W. Equilibrium properties of the mixture of hard spheres. J. Chem. Phys., 54 (1971), p. 1523.ADSCrossRefGoogle Scholar
  53. [43]
    Medard, L. Tables thermochimiques à l’usage des techniciens des substances explosives. Memorial de l’Artillerie Française, 28 (1954), p. 415.Google Scholar
  54. [44]
    Medard, L. Les explosifs occasionnels. Librairie Lavoisier, Technique et Docu­mentation, Paris (1987).Google Scholar
  55. [45]
    Murnaghan, F.D. Finite Deformation of an Elastic Solid. Wiley, New York (1951).Google Scholar
  56. [46]
    Percus, J.K., Yevick, G.J. Analysis of classical statistical mechanics by means of collective coordinates. Phys. Rev., 110 (1958), p. 1.MathSciNetADSCrossRefMATHGoogle Scholar
  57. [47]
    Rasaiah, J.C., Stell, G. Upper bounds of free energies in terms of hard spheres results. Molecular Phys., 18 (1970), p. 249.ADSCrossRefGoogle Scholar
  58. [48]a
    Ree, F.H. (and Van Thiel M. for c.). Post detonation behavior of condensed high explosives by modern methods of statistical mechanics. Proc. 7th Symposium on Detonation, Annapolis/MD (1968), p. 646.Google Scholar
  59. b.
    Ree, F.H. (and Van ThielM. for c.). A statistical theory of chemically reacting multiphase mixture: application to the detonation properties of PETN. J. Chem. Phys., 81 (1984), p. 1251.ADSCrossRefGoogle Scholar
  60. c.
    Ree, F.H. (and Van Thiel M. for c.). Detonation behavior of LX-14 and PBX 9404: theoretical aspect. Proc. 8th Symposium on Detonation, Albuquerque/NM (1985), p. 501.Google Scholar
  61. d.
    Ree, F.H. (and Van Thiel M. for c.). Supercritical fluid phase separation: implications for detonation properties of condensed explosives. J. Chem. Phys. 39 (1963), p. 474.CrossRefGoogle Scholar
  62. e.
    Ree, F.H. (and Van Thiel M. for c.). Phase changes and chemistry at high pressures and temperature. Proc. 5th APS Conference on Shock Waves in Condensed Matter, Monterey/CA (1987).Google Scholar
  63. [49]
    Ross, M. A high-density fluid perturbation theory band on an inverse 12th­power hard-sphere reference system. J. Chem. Phys., 71 (1979), p. 1567.ADSCrossRefGoogle Scholar
  64. [50]
    Thiele, E. Equation of state for hard spheres. J. Chem. Phys., 39 (1963), p. 474.ADSCrossRefGoogle Scholar
  65. [51]
    Verlet, L., Weiss, J.-J. Equilibrium theory of simple liquids. Phys. Rev. A, 5 (1972), p. 939.ADSCrossRefGoogle Scholar
  66. [52]
    Vidart, A. Calcul des caractéristiques de détonation des explosifs condensés. Mémorial des Poudres, XLII (1960), p. 83.Google Scholar
  67. [53]
    Weeks, J.D., Chandler, D., Andersen, H.C. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys., 54 (1971), p. 5237.ADSCrossRefGoogle Scholar
  68. [54]
    Wertheim, M.S. Exact solution for the Percus—Yevick integral equation for hard spheres. Phys. Rev. Lett., 10 (1963), p. 321.MathSciNetADSCrossRefMATHGoogle Scholar
  69. [55]
    White, W.B., Johnson, S.M., Dantzig, C.B. Chemical equilibrium in complex mixtures. J. Chem. Phys., 28 (1958), p. 751.ADSCrossRefGoogle Scholar
  70. [56]
    Wilkins, M.L., Sqier, B., Halperin, B. The equation of state of PBX 9404 and LX04–01. UCRL Report no. 7797 (1964).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • Roger Chéret
    • 1
  1. 1.Commissariat a l’Energie AtomiqueParis Cedex 15France

Personalised recommendations