Skip to main content

Part of the book series: Endocrinology and Metabolism ((EAM,volume 5))

  • 56 Accesses

Abstract

Angiogenesis is the process of new blood vessel formation. It occurs physiologically in the developing embryo where the process leads to establishment of both the microvasculature and microvasculature. In the postnatal state, angiogenesis occurs in only a few selected tissues and in many pathologic conditions. It is only in the last two decades that attempts at identifying factors that regulate this process have yielded some information. This chapter summarizes some of the salient features of angiogenesis in health and disease and looks at the various factors that are involved in its regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tuchmann-Duplessis H, Haegel P. Organogenesis. In:Illustrated Human Embryology. Vol II. New York: Springer-Verlag; 1974.

    Google Scholar 

  2. Balinsky BI, Fabian BC. Organogenesis. In:An Introduction to Embryology. New York: Saunders; 1981.

    Google Scholar 

  3. Knower HME. Effects of early removal of the heart and arrest of the circulation on the development of frog embryos.Anat Rec. 1907; 7: 161–165.

    Article  Google Scholar 

  4. Chapman WB. The effect of the heart beat upon the development of the vascular system in the chick.Am J Anat. 1918; 23: 175–203.

    Article  Google Scholar 

  5. Wagner RC. Endothelial cell embryology and growth.Adv Microcirc. 1980; 9: 45–75.

    Google Scholar 

  6. Hudlicka O. Development of microcirculation: capillary growth and adaptation. In: Renkin EM, Michel CC. eds.Handbook of Physiology. The Cardiovascular System. Vol IV. Microcirculation, Part 1. pp 165–216, Baltimore: Williams & Wilkins; 1984.

    Google Scholar 

  7. Clark ER, Clark EL. Microscopic observations on the growth blood capillaries in the living mammal.Am J Anat. 1939; 64: 251–299.

    Article  Google Scholar 

  8. Clark ER, Clark EL. Microscopic observations on the extraendothelial cells of living mammalian blood vessels.Am J Anat. 1940; 66: 1–49.

    Article  Google Scholar 

  9. Manasek FJ. The ultrastructure of embryonic myocardial blood vessels.Dev Biol. 1971; 26: 42–54.

    Article  PubMed  CAS  Google Scholar 

  10. Donahue S, Pappas GD. The fine structure of capillaries in the cerebral cortex of the rat at various stages of development.Am J Anat. 1961; 108: 331–347.

    Article  PubMed  CAS  Google Scholar 

  11. Aloisi M, Schiaffino S. Growth of elementary blood vessels in diffusion chambers. II. Electron microscopy of capillary morphogenesis.Virchows Arch. 1971; 8: 328–341.

    CAS  Google Scholar 

  12. McDonald RI, Shepro D, Rosenthal M, Boooyse FM. Properties of cultured endothelial cells.Semin Haematol. 1973; 6: 469–478.

    CAS  Google Scholar 

  13. Gimbrone MA Jr. Culture of vascular endothelium.Prog Hemostasis Thromb. 1976; 3: 1–28.

    Google Scholar 

  14. Nees S, Willershausen-Zonnchen B, Gerbes AL. Gerlach E. Studies on cultured coronary endothelial cells.Folia Angiol. 1980; 28: 64–68.

    Google Scholar 

  15. Frank RN, Kinsey VE, Frank KW, Mikus K, Randolph A. In vitro proliferation of endothelial cells from kitten retinal capillaries.Invest Ophthalmol Vis Sci. 1979; 18: 1195–1200.

    PubMed  CAS  Google Scholar 

  16. Nims JC, Irwin JW. Technical report: chamber techniques to study the microvasculature.Microvasc Res. 1973; 5: 105–118.

    Article  PubMed  CAS  Google Scholar 

  17. Ausprink DH, Falterman K, Folkman J. The sequence of events in the regression of corneal capillaries.Lab Invest. 1978; 38: 284–294.

    Google Scholar 

  18. Sandison JC. Observations on the growth of blood vessels as seen in the transparent chamber implanted in the rabbit’s ear.Am J Anat. 1928; 41: 475–496.

    Article  Google Scholar 

  19. Folkman J, Cotran R. Relation of vascular proliferation to tumor growth.Int Rev Exp Pathol. 1976; 16: 207–248.

    PubMed  CAS  Google Scholar 

  20. Wright AJA, Hudlicka O. Capillary growth and changes in heart performance induced by chronic bradicardial pacing in the rabbit.Circ Res. 1981; 49: 469–478.

    PubMed  CAS  Google Scholar 

  21. Tornling G. Capillary neoformation in the heart of dipyridamole-treated rats.Acta Pathol Microbiol Scand Sec A. 1982; 90: 269–271.

    CAS  Google Scholar 

  22. Banchero N. Capillary density of skeletal muscle in dogs exposed to simulated altitude.Proc Soc Exp Biol Med. 1975; 148: 435–439.

    PubMed  CAS  Google Scholar 

  23. Opitz E. Increased vascularization of the tissue due to acclimatization to high altitude and its significance for oxygen transport.Exp Med Surg. 1951; 9: 389–403.

    PubMed  CAS  Google Scholar 

  24. Fett JW, Strydom DJ, Lobb RR, Alderman EM, Bethune JL, Riordan JF, Vallee BL. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells.Biochemistry. 1985; 24: 5480–5486.

    Article  PubMed  CAS  Google Scholar 

  25. Strydom DJ, Fett JW, Lobb RR, Alderman EM, Bethune JL, Riordan JF, Vallee BL. Amino acid sequence of human tumor derived angiogenin.Biochemistry. 1985; 24: 5486–5494.

    Article  PubMed  CAS  Google Scholar 

  26. Shapiro R, Riordan JF, Vallee BL. Characteristic ribonuleolytic activity of human angiogenin.Biochemistry. 1986; 25: 3527–3532.

    Article  PubMed  CAS  Google Scholar 

  27. Vallee BL, Riordan JF. Chemical and biochemical properties of human angiogenin.Adv Exp Med Biol. 1988; 234: 41–53.

    PubMed  CAS  Google Scholar 

  28. Shapiro R, Strydom DJ, Olson KA, Vallee BL. Isolation of angiogenin from normal human plasma.Biochemistry. 1987; 26: 5141–5146.

    Article  PubMed  CAS  Google Scholar 

  29. Kurachi K, Davie EW, Strydom DJ, Riordan JF, Vallee BL. Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor.Biochemistry. 1985; 24: 5494–5499.

    Article  PubMed  CAS  Google Scholar 

  30. Kessler DA, Langer RS, Pless NA, Folkman J. Mast cells and tumor angiogenesis.Int J Cancer. 1976; 18: 703–709.

    Article  PubMed  CAS  Google Scholar 

  31. Azizkhan RG, Azizkhan JC, Zetter BR, Folkman J. Mast cell heparin stimulates migration of capillary endothelial cells in vitro.J Exp Med. 1980; 152: 931–944.

    Article  PubMed  CAS  Google Scholar 

  32. Folkman J. Tumor angigenesis.Adv Cancer Res. 1985; 43: 175–203.

    Article  PubMed  CAS  Google Scholar 

  33. Shing Y, Folkman J, Sullivan R, Butterfield C, Curray J, Klagsbrun M. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor.Science. 1984; 223: 1296–1298.

    Article  PubMed  CAS  Google Scholar 

  34. Burgess WH, Maciag T. The heparin-binding (fibroblast) growth factor family of proteins.Annu Rev Biochem. 1989; 58: 575–606.

    Article  PubMed  CAS  Google Scholar 

  35. Esch F, Baird A, Ling N, Ueno N, Hill F, Deneroy L, Klepper R, Gospodarowicz D, Bohlen P, Guillemin R. Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino terminal sequence of bovine brain acidic FGF.Proc Natl Acad Sci USA. 1985; 82: 6507–6511.

    Article  PubMed  CAS  Google Scholar 

  36. Gimenez-Galeo G, Rodkey J, Bennett C, Rios Candelore M, Disalvo J, Thomas K. Brain-derived fibroblast growth factor: complete amino acid sequence and homologies.Science. 1985; 230: 1385–1388.

    Article  Google Scholar 

  37. Abraham JA, Whang JL, Tuomolo A, Mergia A, Friedman J, Gospodarowicz D, Fiddes JC. Human basic fibroblast growth factor: nucleotide sequence and genomic organization.EMBO J. 1986; 5: 2523–2528.

    PubMed  CAS  Google Scholar 

  38. Jaye M, Howk R, Burgess W, Ricca GA, Chiu IM, Ravera MW, O’Brien SJ, Modi WS, Maciag T, Drohan WN. Human endothelial cell growth factor: cloning, nucleotide sequence, and chromosomal localization.Science. 1986; 233: 541–544.

    Article  PubMed  CAS  Google Scholar 

  39. Gospodarowicz D, Ferrara N, Schweigerer L, Neufeld G. Structural characterization and biological functions of fibroblast growth factor.Endocr Rev. 1987; 8: 1–20.

    Article  Google Scholar 

  40. Gospodarowicz D. Molecular and developmental biology aspects of fibroblast growth factor.Adv Exp Med Biol. 1988; 234: 23–39.

    PubMed  CAS  Google Scholar 

  41. DeLarco JE, Todaro GJ. Sarcoma growth factor (SGF): specific binding to epidermal growth factor (EGF) membrane receptors.J Cell Physiol. 1980; 102: 267–277.

    Article  CAS  Google Scholar 

  42. Marquardt H, Hunkapiller MW, Hood LE, Todaro GJ. Rat transforming growth factor Type 1: structure and relation to epidermal growth factor.Science. 1984; 223: 1079–1082.

    Article  PubMed  CAS  Google Scholar 

  43. Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB, Goeddel DV. Human transforming growth factor-β cDNA sequence and expression in tumor cell lines.Nature. 1985; 316: 701–705.

    Article  PubMed  CAS  Google Scholar 

  44. Schreiber AB, Winkler ME, Derynck R. Transforming growth factor: a more potent angiogenic mediator than epidermal growth factor.Science. 1986; 232: 1250–1253.

    Article  PubMed  CAS  Google Scholar 

  45. Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefied LM, Heine UI, Liotta LA, Falanga V, Kehrl JH, Fauci AS. Transforming growth factor type-β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro.Proc Natl Acad Sci USA. 1986; 83: 4167–4171.

    Article  PubMed  CAS  Google Scholar 

  46. Muller G, Behrens J, Nussbaumer U, Bohlen P, Birchmeier W. Inhibitory action of transforming growth factor on endothelial cells.Proc Natl Acad Sci USA. 1987; 84: 5600–5604.

    Article  PubMed  CAS  Google Scholar 

  47. Roberts AB, Thompson NL, Heine U, Flanders C, Sporn M. Transforming growth factor β: possible roles in carciogenesis.Br J Cancer. 1988; 57: 594–600.

    Article  PubMed  CAS  Google Scholar 

  48. Carpenter G. Receptors for epidermal growth factors and other polypeptide mitogens.Annu Rev Biochem. 1987; 56: 881–914.

    Article  PubMed  CAS  Google Scholar 

  49. Deuel TF, Huang JS. Platelet-derived growth factor. Structure, function and roles in normal and transformed cells.J Clin Invest. 1984; 74: 669–676.

    Article  PubMed  CAS  Google Scholar 

  50. King GL, Buzney SM, Kahn CR, Hetu N, Buchwald S, MacDonald SG. Differential responsiveness to insulin of endothelial and support cells from micro- and macrovessels.J Clin Invest. 1983; 71: 974–979.

    Article  PubMed  CAS  Google Scholar 

  51. Pfeifle B, Ditschuneit H. Effect of insulin on the growth of cultured smooth cells.Diabetologia. 1981; 20: 155–158.

    Article  PubMed  CAS  Google Scholar 

  52. Banskota NK, Taub R, Zellner K, Olsen P, King GL. Characterization of induction of protooncogene c-myc and cellular growth in human vascular smooth muscle cells by insulin and IGF-I.Diabetes. 1989; 38: 123–129.

    Article  PubMed  CAS  Google Scholar 

  53. Frater-Schroder M, Risau W, Hallmann R, Gautschi P, and Bohlen P. Tumor necrosis factor α, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo.Proc Natl Acad Sci USA. 1987; 84: 5277–5281.

    Article  PubMed  CAS  Google Scholar 

  54. Wissler JH, Logemann E, Meyer HE, Krutzfeldt B, Hockel M, Heilmeyer Jr LMG. Bioactive copper-ribonucleo-polypeptide complexes: angiomorphogens of porcinemonocytes.Fed Proc. 1987; 46(Abstract No. 1557 ).

    Google Scholar 

  55. McAuslan BR, Reilly WG, Hanman GN, Gole GA. Angiogenic factors and their assay: activity of formyl methionyl leucyl phenylalanine, adenosine diphosphate, heparin, copper, and bovine endothelium stimulating factor.Microvasc Res. 1983; 26: 323–338.

    Article  PubMed  CAS  Google Scholar 

  56. Ziche M, Jones J, Gullino PM. Role of prostaglandin E, and copper in angiogenesis.J Natl Cancer Inst. 1982; 69: 475–482.

    PubMed  CAS  Google Scholar 

  57. Kull FC, Brent DA, Parikh I, Cuatrecasas P. Chemical identification of a tumor-derived angiogenic factor.Science. 1987; 236: 843–845.

    Article  PubMed  CAS  Google Scholar 

  58. Kleinman HK, Klebe RJ, Martin GR. Role of collagenous matrices in the adhesion and growth of cells.J Cell Biol. 1981; 88: 473–485.

    Article  PubMed  CAS  Google Scholar 

  59. Madri JA, Pratt BM. Endothelial cell-matrix interactions: in vitro models of angiogenesis.J Histochem Cytochem. 1986; 34: 85–91.

    Article  PubMed  CAS  Google Scholar 

  60. Gross JL, Moscatelli D, Rifkin DB. Increased capillary endothelial cell protease activity in response to angiogenic stimuli in vitro.Proc Natl Acad Sci USA. 1983; 80: 2623–2627.

    Article  PubMed  CAS  Google Scholar 

  61. Pratt BM, Harris AS, Morrow JS, Madri JA. Mechanism of cytoskeletal regulation: modulation of aortic endothelial cell spectrin by the extracellular matrix.Am J Pathol. 1984; 117: 349–354.

    PubMed  CAS  Google Scholar 

  62. Madri JA, Williams SK. Capillary endothelial cell cultures: phenotypic modulation by matrix components.J Cell Biol. 1983; 97: 153–165.

    Article  PubMed  CAS  Google Scholar 

  63. Form DM, Pratt BM, Madri JA. Endothelial proliferation during angiogenesis.Lab Invest. 1986; 55: 521–530.

    PubMed  CAS  Google Scholar 

  64. Ekbloom K, Alitalo K, Vaheri A, Timpl R, Saxen L. Induction of a basement glycoprotein in embryonic kidney: possible role of laminin in morphogenesis.Proc Natl Acad Sci USA. 1980; 77: 485–489.

    Article  Google Scholar 

  65. Wu T-C, Wan Y-J, Chung AE, Damjanov I. Immunohistochemical localization of enactin and laminin in mouse embryos and fetuses.Dev Biol. 1983; 100: 496–505.

    Article  PubMed  CAS  Google Scholar 

  66. Schreiber AB, Kenney J, Kowalski J, Friesel R, Mehlman T, Maciag, T. Interaction of endothelial cell growth factor with heparin: characterization by receptor and antibody recognition.Proc Natl Acad Sci USA. 1985; 82: 6138–6142.

    Article  PubMed  CAS  Google Scholar 

  67. Gospodarowicz D, Cheng J. Heparin protects basic and acidic FGF from inactivation.J Cell Physiol. 1986; 128: 475–484.

    Article  PubMed  CAS  Google Scholar 

  68. Thornton SC, Mueller SN, Levine EM. Human endothelial cells: use of heparin in cloning and long term serial cultivation.Science. 1983; 222: 623–625.

    Article  PubMed  CAS  Google Scholar 

  69. Saksela O, Moscatelli D, Sommer A, Rifkin DB. Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation.J Cell Biol. 1988; 107: 743–751.

    Article  PubMed  CAS  Google Scholar 

  70. Maciag T. Molecular and cellular mechanisms of angiogenesis. Molecular and cellular mechanisms of angiogenesis. In:Important advances in oncology. 1990; 85–98.

    Google Scholar 

  71. Raju KS, Allesandri G, Ziche M, Gullino PM. Ceruloplasmin, copper ions, and angiogenesis.J Natl Cancer Inst. 1982; 69: 1183–1188.

    PubMed  CAS  Google Scholar 

  72. Brem H, Folkman J. Inhibition of tumor angiogenesis mediated by cartilage.J Exp Med. 1975; 141: 427–439.

    Article  PubMed  CAS  Google Scholar 

  73. Moses MA, Sudhalter J, Langer R. Identification of an inhibitor of neovascularization from cartilage.Science. 1990; 248: 1408–1410.

    Article  PubMed  CAS  Google Scholar 

  74. Taylor S, Folkman J. Protamine is an inhibitor of angiogenesis.Nature. 1982; 297: 307–312.

    Article  PubMed  CAS  Google Scholar 

  75. Folkman J, Ingber DE. Angiostatic steroids.Ann Surg. 1987; 203: 374–383.

    Article  Google Scholar 

  76. Friesel R, Komoriya A, Maciag T. Inhibition of endothelial cell proliferation by gamma-interferon.J Cell Biol. 1987; 104: 689–696.

    Article  PubMed  CAS  Google Scholar 

  77. Montesano R, Orci L. Tumor-promoting phorbol esters induce angiogenesis in vitro.Cell. 1985; 42: 469–477.

    Article  PubMed  CAS  Google Scholar 

  78. Doctrow SR, Folkman J. Protein kinase C activators suppress stimulation of capillary endothelial cell growth by angiogenic endothelial mitogens.J Cell Biol. 1987; 104: 679–687.

    Article  PubMed  CAS  Google Scholar 

  79. Hoshi H, Kan M, Mioh H, Chen J-K, McKeehan WL. Phorbol ester reduces the number of heparin-binding growth factor receptors in human adult endothelial cells.FASEB J. 1988; 2: 2797–2800.

    PubMed  CAS  Google Scholar 

  80. Tsuruoka N, Sugiyama M, Tawaragi Y, Tsujimoto M, Nishihara T, Goto T, Sato N. Inhibition of in vitro angiogenesis by lymphotoxin and interferon-Y.Biochem Biophys Res Commun. 1988; 155: 429–435.

    Article  PubMed  CAS  Google Scholar 

  81. Shapiro R, Vallee B. Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities of angiogenin.Proc Natl Acad Sci USA. 1987; 84: 2238–2241.

    Article  PubMed  CAS  Google Scholar 

  82. Findlay JK. Angiogenesis in reproductive tissues.J Endocrinol. 1986; 111: 357–366.

    Article  PubMed  CAS  Google Scholar 

  83. Stangroom JE, de Weevers R. Anticoagulant activity of equine follicular fluid.J Reprod Fertil. 1962; 3: 269–282.

    Article  PubMed  CAS  Google Scholar 

  84. Goodman AL, Rone JD. Detection of angiotropic (chemoattractant) released by rabbit luteal cell cultured in serum-free or serum-enriched media.Biol Reprod. 1985; 32:Suppl 1, Abstract 296.

    Google Scholar 

  85. Gospodarowicz D, Cheng J, Lui G, Baird A, Esch F, Bohlen P. Corpus luteum angiogenic factor is related to fibroblast growth factor.Endocrinology. 1985; 117: 2383–2391.

    Article  PubMed  CAS  Google Scholar 

  86. Christiaens GCML, Sixma JJ, Haspels AA. Hemostasis in menstrual endometrium: a review.Obstet Gynecol Surv. 1982; 37: 281–303.

    Article  PubMed  CAS  Google Scholar 

  87. Colburn P, Buonassisi V. Estrogen-binding sites in endothelial cell cultures.Science. 1978; 201: 817–819.

    Article  PubMed  CAS  Google Scholar 

  88. Presta M. Sex hormones modulate the synthesis of basic fibroblast growth factor in human endometrial adenocarcinoma cells: implications for the neovascularization of normal and neoplastic endometrium.J Cell Physiol. 1988; 137: 593–597.

    Article  PubMed  CAS  Google Scholar 

  89. Foley ME, Griffin BD, Zuzel M, Aparicio SR, Bradbury K, Bird CC, Clayton JK, Jenkins DM, Scott JS, Rajah CM, McNicol GP. Heparin-like activity in uterine fluid.Br J Med. 1978; ii:322–324.

    Google Scholar 

  90. Gospodarowicz D, Cheng J, Lui GM, Fujii DK, Baird A, Bohlen P. Fibroblast growth factor in human placenta.Biochem Biophys Res Commun. 1985; 128: 554–562.

    Article  PubMed  CAS  Google Scholar 

  91. Hockel M, Sasse J, Wissler JH. Purified monocyte-derived angiogenic substance (angiotropin) stimulates migration, phenotypic changes, and “tube formation” but not proliferation of capillary endothelial cells in vitro.J Cell Physiol. 1987; 133: 1–13.

    Article  PubMed  CAS  Google Scholar 

  92. Brown RA, Weiss JR. Neovascularization and its role in the osteoarthritic process.Ann Rheum Dis. 1988; 47: 881–885.

    Article  PubMed  CAS  Google Scholar 

  93. Harris ED Jr. Mechanisms of disease: rheumatoid arthritis— pathophysiology and implications for therapy.N Engl J Med. 1990; 322: 1277–1289.

    Article  PubMed  Google Scholar 

  94. Koch AE, Polverini PJ, Leibovich SJ. Stimulation of neovascularization by human rheumatoid synovial tissue macrophages.Arthritis Rheum. 1986; 29: 471–479.

    Article  PubMed  CAS  Google Scholar 

  95. Matsubara T, Ziff M. Inhibition of human endothelial cell proliferation by gold compounds.J Clin Invest. 1987; 79: 1440–1446.

    Article  PubMed  CAS  Google Scholar 

  96. Matsubara T, Saura R, Hirohata K, Ziff M. Inhibition of human endothelial cell proliferation in vitro and neovascularization in vivo by D-penicillamine.J Clin Invest. 1989; 83: 158–167.

    Article  PubMed  CAS  Google Scholar 

  97. Green WR. Systemic diseases with retinal involvement. In: Spenser WH, ed.Ophthalmic pathology: an atlas and textbook. 3rd ed. Philadelpia: WB Saunders; 1986; 1034–1210.

    Google Scholar 

  98. Merimee TJ. Mechanisms of disease: diabetic retinopathy—a synthesis of perspectives.N Engl J Med. 1990; 322: 978–983.

    Article  PubMed  CAS  Google Scholar 

  99. Poulsen JE. The Houssay phenomenon in man: recovery from retinopathy in a case of diabetes with Simmond’s disease.Diabetes. 1953; 2: 7–12.

    PubMed  CAS  Google Scholar 

  100. Lundback K, Malmros R, Anderson HC. Hypophysectomy for diabetic angiopathy: a controlled clinical trial. In: Goldberg MF, Fine SL, eds.Symposium on the treatment of diabetic retinopathy. Washington, DC: Public Health Service; PHS publication no. 1890. 1989.

    Google Scholar 

  101. Grant M, Russel B, Fitzerald C, Merimee TJ. Insulin-like growth factors in vitreous: studies in controll and diabetic subjects with neovascularization.Diabetes. 1986; 35: 416–420.

    Article  PubMed  CAS  Google Scholar 

  102. King GL, Goodman AD, Buzney SM, Moses A, Kahn CR. Receptors and growth-promoting effects of insulin and insulin-like growth factors on cells from bovine retinal capillaries and aorta.J Clin Invest. 1985; 75: 1028–1036.

    Article  PubMed  CAS  Google Scholar 

  103. Baird A, Culler F, Jones KL, Guillemin R. Angiogenic factor in human ocular fluid [letter].Lancet. 1985; 2 (8454): 563.

    Article  PubMed  CAS  Google Scholar 

  104. Ross R. The pathogenesis of atherosclerosis: an update.N Engl J Med. 1986; 314: 488–497.

    Article  PubMed  CAS  Google Scholar 

  105. Schwartz SM, Campbell GR, Campbell JH. Replication of smooth muscle cell in vascular disease.Circ Res. 1986; 58: 427–444.

    PubMed  CAS  Google Scholar 

  106. Banskota NK, Taub R, Zellner K, King GL. Insulin, insulin-like growth factor I and platelet-derived growth factor interact additively in the induction of the protooncogene c-myc and cellular proliferation in cultured bovine aortic smooth muscle cells.Mol Endocrinol. 1989; 3: 1183–1190.

    Article  PubMed  CAS  Google Scholar 

  107. Barger AC, Beeuwkes III R, Lainey LL, Silverman KJ. Hypothesis: vasa vasorum and neovascularization of human coronary arteries.N Engl J Med. 1984; 310: 175–177.

    Article  PubMed  CAS  Google Scholar 

  108. D’Amore PA, Thompson RW. Mechanisms of angiogenesis.Annu Rev Physiol. 1987; 49: 453–464.

    Article  PubMed  Google Scholar 

  109. Folkman J. How is blood vessel growth regulated in normal and neoplastic tissue? G.H.A. Clowes Memorial Award Lecture.Cancer Res. 1986; 46: 467–473.

    PubMed  CAS  Google Scholar 

  110. Langer R, Conn H, Vacanti J, Haudenschild C, Folkman J. Control of tumor growth in animals by infusion of an angiogenesis inhibitor.Proc Natl Acad Sci USA. 1980; 77: 4331–4335.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Banskota, N.K., King, G.L. (1993). Angiogenesis: Its Regulation in Health and Disease. In: Foà, P.P. (eds) Humoral Factors in the Regulation of Tissue Growth. Endocrinology and Metabolism, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9272-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9272-9_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9274-3

  • Online ISBN: 978-1-4613-9272-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics