Advertisement

Observed Temporal Variations in the Earth’s Gravity Field from 16-year Starlette Orbit Analysis

  • M. K. Cheng
  • R. J. Eanes
  • C. K. Shum
  • B. E. Schutz
  • B. D. Tapley
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 110)

Abstract

Satellite laser ranging data to Starlette, collected during the period from 1975 to 1990, have been analyzed to determine yearly values of the second degree annual (S a ) and semiannual (S sa ) tides, simultaneously with average values of other low degree and order tide parameters. The yearly fluctuations in the values for S a and S sa are associated with changes in the Earth’s second degree zonal harmonic caused by meteorological excitation. The Starlette-determined mean values for the amplitude of the annual and semiannual variations in J 2 are 32.3 × lO−11 and 19.5 × lO−11, respectively; while the rms about the mean values are 4.1 × lO−11 and 6.3 × lO−11, respectively. The annual δJ 2 is in good agreement with the value obtained from the combined effects of air mass redistribution without the oceanic inverted-barometer effects (non-IB) and hydrological change. Approximately 90% of the observed annual variation from Starlette is attributed to the meteorological mass redistribution occurring on the Earth’s surface.

Keywords

Ocean Tide Orbit Node Satellite Solution Tide Gauge Data Mass Redistribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carton, J. A. (1983). The variation with frequency of the long-period tides, J. Geophys. Res. 88, 7563–7571.CrossRefGoogle Scholar
  2. Cartwright, D. E. and Ray, R. D. (1990). Observations of the Mf oceanic tide from Geosat altimetry, Geophys. Res. Lett. 17, 619–622.CrossRefGoogle Scholar
  3. Casotto, S. (1989). Nominal ocean tide models for TOPEX precise orbit determination, Ph.D. dissertation, The University of Texas at Austin, Austin, Texas.Google Scholar
  4. Chao, B. F., Au, A. Y. (1991). Temporal variation of the Earth’s low-degree zonal gravitational field caused by atmospheric mass redistribution: 1980–1988, J. Geophys. Res. 93, 6216–6236.Google Scholar
  5. Chao, B. F., and O’Connor, W. P. (1988). Global surface water-induced seasonal variations in the Earth’s rotation and gravitational field, Geophys. J. 94, 263–270.CrossRefGoogle Scholar
  6. Cheng, M. K., Eanes, R. J., Shum, C. K., Schutz, B. E. and Tapley, B. D. (1989). Temporal variation in low degree zonal harmonics from Starlette orbit analysis, Geophys. Res. Lett. 16, 393–396.CrossRefGoogle Scholar
  7. Cheng, M. K., Shum, C. K., Eanes, R. J., Schutz, B. E. and Tapley, B. D. (1990). Long-period perturbation in Starlette orbit and tide solution, J. Geophys. Res. 95, 8723–8736.CrossRefGoogle Scholar
  8. Christodoulidis, D. C., Smith, D. E., Williamson, R. G. and Klosko, S. M. (1988). Observed tidal braking in the Earth/Moon/Sun system, /. Geophys. Res. 93, 6216–6236.CrossRefGoogle Scholar
  9. Dickman, S. R. (1989). A complete spherical harmonic approach to luni-solar tides, Geophys. J. Int. 99, 457–468.CrossRefGoogle Scholar
  10. Doodson, A. T. and Warburg, H. D. (1941). Admiralty Manual of Tides, H.M. Stationery Office.Google Scholar
  11. Eanes, R. J., Tapley, B. D. and Schutz, B. E. (1987). Results of long arc analysis of Lageos data, Crustal Dynamics Project Investigators Working Group Meeting, Pasadena, California.Google Scholar
  12. Farrell, W. E. (1972). Deformation of the Earth by surface loads, Rev. Geophys 10, 761–797.CrossRefGoogle Scholar
  13. Gutierrez, R. and Wilson, C. R. (1987). Seasonal air and water mass redistribution effects on Lageos and Starlette, Geophys. Res. Lett . 14, 929–932.CrossRefGoogle Scholar
  14. Kaula, W. M. (1966). Theory of Satellite Geodesy, Blaisdell.Google Scholar
  15. Marsh, J. G. et al. (1990). The GEM-T2 gravitational model, J. Geophys. Res. 95, 22,043–22,071.Google Scholar
  16. Nam, Y. S. and Dickman, S. R. (1990). Effects of dynamic long-period ocean tides on changes in Earth‚s rotation rate, J. Geophys. Res. 95, 6751–6757.CrossRefGoogle Scholar
  17. Parke, M. E. (1982). Models of the global ocean tide on an elastic Earth plus surface potential and spherical harmonic decompositions for M2, S2, and K, Marine Geod. 6, 35–81.CrossRefGoogle Scholar
  18. Peltier, W. R. (1985). The Lageos constraints on deep mantle viscosity: Results from a new method for the inversion of viscoelastic relaxation spectra, J. Geophys. Res . 90, 9411–9421.CrossRefGoogle Scholar
  19. Proudman, J. (1960). The condition that a long-period tide shall follow the equilibrium law, Geophys. J. 3, 244–249.CrossRefGoogle Scholar
  20. Rubincam, D. P. (1984). Postglacial rebound observed by Lageos and the effective viscosity of the lower mantle, Geophys. Res. 89,1077–1087.CrossRefGoogle Scholar
  21. Schwiderski, E. W. (1980). Ocean tides. Part I: Global ocean tidal equations, Marine Geod. 3, 161–216.CrossRefGoogle Scholar
  22. Schwintzer et al. (1991). A new Earth gravity model in support of ERS-1 and SPOT2: GRIM- 4-S1/C1, DGFI, Munich, Germany, in preparation.Google Scholar
  23. Seiler, U. (1991). Periodic changes of the angular momentum budget due to the tides of the world ocean, J. Geophys. Res. 96,10,287–10,300.CrossRefGoogle Scholar
  24. Tapley, B. D., Shum, C. K., Yuan, D. N., Ries, J. C., Eanes, R. J., Watkins, M. M. and Schutz, B.E. (1991). The TEG-2 gravitational model, to be submitted J. Geophys. Res.Google Scholar
  25. Trenberth, K. E. (1981). Seasonal variations in Global sea level pressure and the total mass of the atmosphere, J. Geophys. Res. 86, 5236–5246.CrossRefGoogle Scholar
  26. Trenberth, K. E. and Christy, J. R. (1985). Global fluctuations in the distribution of atmospheric mass, J. Geophys. Res. 90, 8042–8052.CrossRefGoogle Scholar
  27. Trupin, A. and Wahr, J. (1990). Orthogonal stack of global tide gauge sea level data, Variations in Earth Rotation, AGU Monograph, D. McCarthy (Ed.).Google Scholar
  28. Yoder, C. F., Williams, J. G., Dickey, J. O., Schutz, B. E., Eanes, R. J. and Tapley, B. D. (1983). Secular variation of Earth‚s gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of Earth rotation, Nature 303, 757–762.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • M. K. Cheng
    • 1
  • R. J. Eanes
    • 1
  • C. K. Shum
    • 1
  • B. E. Schutz
    • 1
  • B. D. Tapley
    • 1
  1. 1.Center for Space ResearchThe University of Texas at AustinAustinUSA

Personalised recommendations