Skip to main content

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 110))

  • 112 Accesses

Abstract

A comparison of using the Global Positioning System (GPS) in conjunction with a strapdown Inertial Measurement Unit (IMU) to measure the gravity vector in space and on a balloon shows the relative importance of each system element in these two different acceleration environments. With currently available instrumentation, the acceleration measurement accuracy is the deciding factor in space, while on the balloon (or other aircraft), the orientation error of the IMU platform is most critical. A simulation shows that GPS-derived accelerations in space are accurate to better than 0.1 mgal for a 30 s integration time, leading to estimates of 1° mean gravity anomalies on the Earth’s surface with an accuracy of 4–5 mgal. On a balloon, the horizontal gravity estimation error is tightly coupled to the orientation error of the platform, which can only be bounded by external attitude updates. Horizontal gravity errors of 5 mgal are achievable if the attitude is maintained to an accuracy of 1 arcsec.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babcock, G.D., S.A. Kazan, A.P. Truban, F. Vescial, and L. Trozpek: Phase I High- Accuracy Ring-Laser Gyro Inertial Navigation System Program, AFWAK-TR-86–1100, prepared for Avionics Laboratory, Air Force Wright Aeronautical Laboratory by Rockwell International Corporation, 1987.

    Google Scholar 

  • Carson, L.: Preliminary Experimental Performance of the TOPEX Global Positioning System Demonstration Receiver (GPSDR). In: Proceedings of the Second Symposium on GPS Applications in Space, C. Jekeli (ed.), Report GL-TR-90–0032, Volume II, Geophysics Laboratory, Hanscom AFB, Mass., 1990.

    Google Scholar 

  • de Boor, C.: A Practical Guide to Splines, Springer-Verlag, New York, 1978.

    Book  Google Scholar 

  • Eissfeller, B. and P. Spietz: Basic Filter Concepts for the Integration of GPS and an Inertial Ring Laser Gyro Strapdown System. Manus. Geodaetica,. 14,166–182, 1989.

    Google Scholar 

  • Hajela, D.P.: Improved Procedures for the Recovery of 5° Mean Gravity Anomalies from ATS-6/GEOS-3 Satellite to Satellite Range-Rate Observations Using Least Squares Collocation, Report No. 276, Department of Geodetic Science, Ohio State University, Report AFGL-TR-78–0260, Air Force Geophys. Lab., Hanscom AFB, MA, 1978.

    Google Scholar 

  • Jekeli, C. and T.N. Upadhyay: Gravity Estimation from STAGE, a Satellite-to-Satellite Tracking Mission, J. Geophys. Res., 95(B7), 10973–10985, 1990.

    Article  Google Scholar 

  • King, R.W., E.G. Masters, C. Rizos, A. Stolz, and J. Collins: Surveying With GPS, Monograph No.9, School of Surveying, University of New South Whales, Kensington, NSW, Australia, 1985.

    Google Scholar 

  • Lazarewicz, A.R., B.J. Schilinski, R.J. Cowie, C.L. Rice, P. Moss, and L.N. Carter: Balloon-Borne, High Altitude Gravimetry, The Flight of Ducky la (11 October 1983). Report AFGL-TR-85–0342, Air Force Geophysics Laboratory, Hanscom AFB, MA, 1985.

    Google Scholar 

  • Lazarewicz, A.R., B.J. Schilinski, L.N. Carter, R.J. Cowie, and C. Leyh: Balloon- Borne, High Altitude Gravimetry, The Flight of Ducky II (October 1985). Report AFGL-TR-87–0309, Air Force Geophysics Laboratory, Hanscom AFB, MA, 1987.

    Google Scholar 

  • Schmidt, G.T.: Strapdown Inertial Systems - Theory and Applications - Introduction and Overview. In: Strap-Down Inertial Systems, AGARD Lecture Series 95, NATO, 7 rue Ancelle, 92200 Neuilly-sur-Seine, France, 1978.

    Google Scholar 

  • Trosen, D.W., P. deArujo, and B. Bower: Advanced Strapped-Down Accelerometer, AD- TR-88–103, prepared for Avionics Laboratory, Air Force Wright Aeronautical Laboratory by 6585th Test Group, Holloman AFB, 1988.

    Google Scholar 

  • Upadhyay, T.N., G. Priovolos, W.E. Vander Velde, and H. Rhodehamel: STS-GPS Tracking Experiment for Gravitation Estimation. Report AFGL-TR-89–0035, Air Force Geophysics Laboratory, Hanscom AFB, MA, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Jekeli, C. (1992). GPS/INS Gravity Measurements in Space and on a Balloon. In: Colombo, O.L. (eds) From Mars to Greenland: Charting Gravity With Space and Airborne Instruments. International Association of Geodesy Symposia, vol 110. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9255-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9255-2_28

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97857-4

  • Online ISBN: 978-1-4613-9255-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics