Advertisement

The Greenland Aerogeophysics Project: Airborne Gravity, Topographic and Magnetic Mapping of an Entire Continent

  • J. M. Brozena
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 110)

Abstract

With large encircling mountain ranges, high-altitude glacial cover and a harsh arctic environment, Greenland is one of the most logistically difficult areas in the northern hemisphere to survey by conventional means. Years of effort by the Danish National Survey and Cadastre (KMS) have produced good quality gravity surveys of some coastal areas (e.g. Forsberg, 1986). On the other hand, except for a few isolated lines and small areal surveys, gravity data is almost totally lacking over the interior of Greenland. Satellite altimetry from SEASAT and GEOSAT provided topographic data over much of the interior of the island south of 72° N (Bindschadler et al., 1989) and this should be extended to the northern interior by ERS-1. However, to be useful for studies of the time variation of the glacial ice mass and climatic studies, altimeter biases and other errors in the satellite data must be established from extensive ground-truth data.

Keywords

Vertical Acceleration Field Season Naval Research Laboratory Airborne Gravity Radar Altimeter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bindschadler, R. A., Zwally, H. J., Major, J. A., Brenner, A. C. (1989). Surface topography of the Greenland ice sheet from satellite radar altimetry, NASA SP 503.Google Scholar
  2. Brozena, J. M. (1984). A preliminary analysis of the NRL airborne gravimetry system, Geophysics 49, 1060–1066.CrossRefGoogle Scholar
  3. Brozena, J. M., Eskinzes, J. G. and Clamons, J. D. (1986). Hardware design for a fixed-wing airborne gravity measurement system, NRL Rep. 9000, Nav. Res. Lab., Wash. D.C., USA.Google Scholar
  4. Brozena, J. M. and Peters, M. F. (1988). An airborne gravity study of eastern North Carolina, Geophysics 53, 245–253.CrossRefGoogle Scholar
  5. Brozena, J. M., Mader, G. L. and Peters, M. F. (1989). Interferometric Global Positioning System: three-dimensional positioning source for airborne gravimetry, J. Geophys. Res. 94, 12,153–12,162.CrossRefGoogle Scholar
  6. Brozena, J. M., LaBrecque, J. L., Peters, M. F., Bell, R. and Raymond, C. (1990). Airborne gravity measurements over sea-ice: the western Weddell Sea, Geophys. Res. Lett. 17, 1941–1944.CrossRefGoogle Scholar
  7. Forsberg, R., (1986). Gravity measurements in Jameson Land and neighbouring parts of East Greenland, Meddelelser om Grönland: Geoscience 15.Google Scholar
  8. Landau, H., (1988). Zur nutzung des Global Positioning Systems in geodasie and geodynamik: modelbildung, software-entwicklung und analyse, Ph. D. Thesis, FAF Univ. of Munich, Germany.Google Scholar
  9. Mader, G. L., (1990). Ambiguity function techniques for GPS phase initialization and kinematic solutions, Eos Trans. Am. Geophys. Un. 71, 484.Google Scholar
  10. Mader, G. L., Schenewerk, M. S. and Chin, M. M. (1990). OMNI 1.00 user’s guide, NGS Rep., NOAA, Rockville, MD, USA.Google Scholar
  11. Peters, M. F., Brozena, J. M. and Clamons, J. D. (1987). Software design for an airborne gravity measurement system, NRLRep., 9049, Nav. Res. Lab., Wash. D.C., USA.Google Scholar
  12. Peters, M. F. and Brozena, J. M. (1988). Constraint criteria for adjustment of potential field surveys, Geophysics 53, 245–248.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • J. M. Brozena
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations