Advertisement

Laboratory Demonstrations of Superconducting Gravity and Inertial Sensors for Space and Airborne Gravity Measurements

  • Ho Jung Paik
  • Edgar R. Canavan
  • Qin Kong
  • M. Vol Moody
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 110)

Abstract

Significant improvements of the present gravity field models of the Earth are required to advance various branches of solid-Earth geophysics and oceanography (McNutt and Flinn, 1987). A powerful method of acquiring high-resolution global gravity data is remote sensing by means of an orbiting gravity gradiometer (Paik et al, 1988). In order to recover the gravity field to the required precision of 2 to 3 mGals with a resolution of 50 km from an altitude of 200 km, a gradiometer sensitivity of 3 × 10−4 E Hz−1/2 (1 E ≡ 10−9 s−2) is needed. Such a sensitivity represents improvement by five orders of magnitude from the sensitivity achieved in a room-temperature gravity gradiometer (Wells, 1983), and requires an unconventional approach to the sensor design and platform control.

Keywords

Angular Acceleration Proof Mass Levitation Force Gravity Survey Persistent Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brozena, J.M. and Peters, M.F. (1988). An airborne gravity study of eastern North Carolina, Geophys. 53, 245–253.CrossRefGoogle Scholar
  2. Chan, H.A., Moody, M.V., and Paik, H.J. (1982). Null test of the gravitational inverse square law, Phys. Rev. Lett 49, 1745–1748.CrossRefGoogle Scholar
  3. Chan, H.A., Paik, H.J., Moody, M.V., and Parke, J.W. (1985). Superconducting techniques for gravity survey and inertial navigation, IEEE Trans. Magn. MAG-21, 411–414.CrossRefGoogle Scholar
  4. Chan, H.A. and Paik, H.J. (1987). Superconducting gravity gradiometer for sensitive gravity measurements. II. Experiment, Phys. Rev. D 35, 3572–3597.CrossRefGoogle Scholar
  5. Colombo, O.L. (1991), in this Proceedings. Google Scholar
  6. McNutt, M.K. and Flinn, E.A. (1987). Editors. Geophysical and geodetic requirements for global gravity measurements: 1987–2000. Report of a NASA Gravity Workshop, Colorado Springs, Colorado.Google Scholar
  7. Moody, M.V., Chan, H.A., and Paik, H.J. (1986). Superconducting gravity gradiometer for space and terrestrial applications, J. Appl. Phys. 60, 4308–4315.CrossRefGoogle Scholar
  8. Paik, H.J., Leung, J.-S., Morgan, S.H., and Parker, J. (1988). Global gravity survey by an orbiting gravity gradiometer, EOS Trans. 69, 1601, 1610–1611.Google Scholar
  9. Paik, H.J., and Moody, M.V. (1991). Development of a three-axis superconducting gravity gradiometer for lunar gravity mapping, Research proposal to NASA.Google Scholar
  10. Parke, J.W., Paik, H.J., Chan, H.A., and Moody, M.V. (1984). Sensitivity enhancement of inertial instruments by means of a superconducting negative spring, Proceedings of the tenth international cryogenic engineering conference, Helsinki, Finland, 361–364.Google Scholar
  11. Wells, W.C. (1983). Editor. Spaceborne gravity gradiometers, NASA Conference Publication 2305, Greenbelt, Maryland.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • Ho Jung Paik
    • 1
  • Edgar R. Canavan
    • 1
  • Qin Kong
    • 1
  • M. Vol Moody
    • 1
  1. 1.Department of Physics and Center for Superconductivity ResearchUniversity of MarylandCollege ParkUSA

Personalised recommendations