Properties of the Gravity Fields of Terrestrial Planets

  • William M. Kaula
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 110)


The gravity fields of Earth, Venus, and Mars have recently been reanalysed more thoroughly by Lerch et al (1992) and Smith and Nerem (1992), extending the spherical harmonic expansions to appreciably higher degrees. It is therefore timely to examine the properties of the three planetary gravity fields, as expressed by these harmonic coefficients. Necessary auxiliaries to this examination are the harmonic expansions of the planetary topographies, by Balmino et al (1973), Bills and Ferrari (1978), and Bills and Kobrick (1985).


Gravity Field Mantle Convection Terrestrial Planet Geoid Height Spherical Harmonic Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balmino, G., Lambeck, K., and Kaula, W. M. (1973). A spherical harmonic analysis of the Earth’s topography, J. Geo-phys. Res. 78, 478–481.CrossRefGoogle Scholar
  2. Bills, B. G. (1989). The moments of inertia of Mars, Geo- phys. Res. Let. 16, 385–389.CrossRefGoogle Scholar
  3. Bills, B. G. and Ferrari, A. J. (1978). Mars topography harmonics and geophysical implications, J. Geophys. Res. 83, 3497–3508.CrossRefGoogle Scholar
  4. Bills, B. G. and Kobrick, M. (1985). Venus topography: a harmonic analysis, J. Geophys. Res. 90, 827–836.CrossRefGoogle Scholar
  5. Bills, B. G., Kiefer, W. S., and Jones, R. L. (1987). Venus gravity: a harmonic analysis, J. Geophys. Res. 92, 10, 335–10, 351.CrossRefGoogle Scholar
  6. Kaula, W. M. (1963). The investigation of the gravitational fields of the Moon and planets with artificial satellites, Adv. Space Sci. & Tech. 5, 210–226.Google Scholar
  7. Kaula, W. M. (1968). An Introduction to Planetary Physics: the Terrestrial Planets, John Wiley, New York.Google Scholar
  8. Kaula, W. M. (1990). Venus: a contrast in evolution to Earth, Science 247, 1191–1196.CrossRefGoogle Scholar
  9. Kaula, W. M. and Asimow, P. D. (1991). Tests of random density models of terrestrial planets, Geophys. Res. Let. 18, 909–912.CrossRefGoogle Scholar
  10. Kaula, W. M., Drake, M. J., and Head, J. W. (1986). The moon, Satellites, J. A. Burns and M. S. Matthews (eds.), Univ. of Arizona Press, Tucson, 581–628.Google Scholar
  11. Kaula, W. M., Sleep, N. H., and Phillips, R. J. (1989). More about the moment-of-inertia of Mars, Geophys. Res. Let. 16, 1333–1336.CrossRefGoogle Scholar
  12. Lerch, F. J. et al (1992). The GEM-T3 Gravitational Model, J. Geophys. Res. 97, in press.Google Scholar
  13. Phillips, R. J. (1990). Convection-driven tectonics on Venus, J. Geophys. Res. 95, 1301–1316.CrossRefGoogle Scholar
  14. Reasenberg, R. D. (1977). The moment of inertia and isostasy of Mars, J. Geophys. Res. 82, 369–375.CrossRefGoogle Scholar
  15. Smith, D. E. and Nerem, R. S. (1992). Gravity field modeling of Mars and Venus at NASA/GSFC, Gravity Field Determination from Space and Airborne Measurements, O. L. Colombo (ed.)/ Springer-Verlag, Berlin, in press.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • William M. Kaula
    • 1
  1. 1.Dept. of Earth and Space SciencesUniversity of CaliforniaLos AngelesUSA

Personalised recommendations