Skip to main content

Computed Transverse Imaging

  • Chapter
  • 35 Accesses

Abstract

The first computed ultrasonographic tomograms (CT) were produced in 1973 [1]. Since then, considerable ingenuity has been demonstrated by many researchers in implementing a wide variety of CT imaging techniques. These techniques can be divided into two broad categories. One category of methods is based on the straight-ray approximation for either transmission or reflection measurements. Because the straight-ray approximation is used, the measurements are regarded as projections or shadows. The second category of methods results from attempts to take diffraction into account by mathematically inverting an approximate wave equation. It is known as diffraction tomography and is discussed later.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. J. F. Greenleaf, S. A. Johnson, S. L. Lee, G. T. Herman, and E. H. Wood. Algebraic reconstruction of spatial distributions of acoustic absorption within tissue from their two-dimensional acoustic projections. In P. S. Green, editor, Acoustical Holography, volume 5, pages 591–603. Plenum Press. New York, 1974.

    Google Scholar 

  2. B. D. Steinberg. Radar imaging from a distorted array-the radio camera algorithm and experiments. IEEE Transactions on Antennas and Propagation, 29: 740–748, 1981.

    Article  Google Scholar 

  3. R. H. T. Bates and B. S. Robinson. Ultrasonic transmission speckle imaging. Ultrasonic Imaging, 3:378–394, October, 1981.

    Google Scholar 

  4. T. Sato and S. Wadaka. Incoherent ultrasonic imaging system. Journal of the Acoustical Society of America, 58: 1013–1017, 1975.

    Article  Google Scholar 

  5. R. H. T. Bates and G. R. Dunlop. Inverse scattering and tomography. In Ultrasonic International 1977 Proceedings, pages 104–110. IPC Science and Technology Press. Guildford, U.K., 1977.

    Google Scholar 

  6. C. R. Mol, J. Heethaar, K. Bakker, and R. M. Heethaar. Ultrasound velocity tomography: an imaging method. Journal of Biomedical Engineering, 3: 235–238, 1981.

    Article  PubMed  CAS  Google Scholar 

  7. J. F. Greenleaf. Computerized transmission tomography. In P. D. Edmonds, editor, Methods of Experimental Physics-Ultrasound, volume 19, pages 563–589. Academic Press. New York, 1981.

    Google Scholar 

  8. J. F. Greenleaf, S. A. Johnson, R. C. Bahn, B. Rajagopalan, and S. Kenue. Introduction to computed ultrasound tomography. In J. Raviv, J. F. Greenleaf, and G. T. Herman, editors, Computer Aided Tomography and Ultrasonics in Medicine, pages 125–136. North-Holland Publishing Company. Amsterdam, The Netherlands, 1979.

    Google Scholar 

  9. D. Hiller and H. Ermert. System analysis of ultrasound reflection mode computerized tomography. IEEE Transactions on Sonics and Ultrasonics, SU-31:240–250, July, 1984.

    Google Scholar 

  10. G. T. Herman. Image Reconstruction from Projections: The Fundamentals of Computerized Tomography. Academic Press. New York, 1980.

    Google Scholar 

  11. Y. Censor. Finite series-expansion reconstruction methods. Proceedings of the IEEE, 71: 409–419, 1983.

    Article  Google Scholar 

  12. J. F. Greenleaf, S. A. Johnson, and A. H. Lent. Measurement of spatial distribution of refractive index in tissues by ultrasonic computer assisted tomography. Ultrasound in Medicine and Biology, 3: 327–339, 1978.

    Article  PubMed  CAS  Google Scholar 

  13. R. Gordon, R. Bender, and G. T. Herman. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. Journal of Theoretical Biology, 29: 471–481, 1970.

    Article  PubMed  CAS  Google Scholar 

  14. J. F. Greenleaf, S. A. Johnson, W. F. Samayoa, and F. A. Duck. Algebraic reconstruction of spatial distribution of acoustical velocities in tissues from their time-of-flight profiles. In N. Booth, editor, Acoustical Holography, volume 6, pages 71–90. Plenum Press. New York, 1975.

    Google Scholar 

  15. M. J. Haney and W. D. O’Brien, Jr. Ultrasonic tomography for differential thermography. In E. A. Ash and C. R Hill, editors, Acoustical Imaging, volume 12, pages 589–597. Plenum Press. New York, 1982.

    Google Scholar 

  16. R. A. Brooks and G. Di Chiro. Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Physics in Medicine and Biology, 21: 689–732, 1976.

    Article  PubMed  CAS  Google Scholar 

  17. R. M. Lewitt. Reconstruction algorithms: transform methods. Proceedings of the IEEE, pages 390–408, 1983.

    Google Scholar 

  18. R. C. Heyser and D. H. LeCroissette. A new ultrasonic imaging system using time delay spectrometry. Ultrasound in Medicine and Biology, 1: 119131, 1974.

    Google Scholar 

  19. R. S. Mezrich, D. H. R. Vilkomerson, and K. F. Etzhold. Measurement of ultrasonic tissue characteristics by direct and phase contrast imaging. In M. Linzer, editor, Ultrasonic Tissue Characterization I. National Bureau of Standards (Special publication no. 453 ), Washington, DC, 1975.

    Google Scholar 

  20. P. N. T. Wells and M. Halliwell. Speckle in ultrasonic imaging. Ultrasonics, 19: 225–229, 1981.

    Article  Google Scholar 

  21. C. R. Crawford and A. C. Kak. Multipath artifact corrections in ultrasonic transmission tomography. Ultrasonic Imaging, 4:234–266, July, 1982.

    Google Scholar 

  22. G. R. Dunlop. Ultrasonic transmission imaging. Thesis, University of Canterbury, Christchurch, New Zealand, 1978.

    Google Scholar 

  23. E. L. Carstensen, W. K. Law, N. D. McKay, and T. G. Muir. Demonstration of nonlinear acoustical effects at biomedical frequencies and intensities. Ultrasound in Medicine and Biology, 6: 359–368, 1980.

    Article  PubMed  CAS  Google Scholar 

  24. J. R. Klepper, G. H. Brandenburger, J. W. Mimbs, B. E. Sobel, and J. G. Miller. Application of phase-insensitive detection and frequency-dependent measurements to computed ultrasonic attenuation tomography. IEEE Transactions on Biomedical Engineering, BME-28: 186–201, 1981.

    Google Scholar 

  25. J. G. Miller, J. R. Klepper, G. H. Brandenburger, L. J. Busse, M. O’Donnell, and J. W. Mimbs. Reconstructive tomography based on ultrasonic attenuation. In J. Raviv, J. F. Greenleaf, and G. T. Herman, editors, Computer Aided Tomography and Ultrasonics in Medicine, pages 151–164. North-Holland Publishing Company. Amsterdam, The Netherlands, 1979.

    Google Scholar 

  26. K. M. Pan and C. N. Liu. Tomographic reconstruction of ultrasonic attenuation with correction of refractive errors. IBM Journal of Research and Development, 25: 71–82, 1981.

    Article  Google Scholar 

  27. P. L. Carson, T. V. Oughton, W. R. Hendee, and A. S. Ahuja. Imaging soft tissue through bone with ultrasound transmission tomography by reconstruction. Medical Physics, 4: 301–309, 1977.

    Article  Google Scholar 

  28. K. A. Dines and A. C. Kak. Ultrasonic attenuation tomography of soft tissues. Ultrasonic Imaging, 1:16–33, January, 1979.

    Google Scholar 

  29. P. N. T. Wells. Biomedical Ultrasonics. Academic Press. London, 1977.

    Google Scholar 

  30. L. A. Chemov. Wave Propagation in a Random Medium. Dover Publications, New York, 1960.

    Google Scholar 

  31. G. H. Brandenburger, J. R. Klepper, J. B. Miller, and D. L. Synder. Effects of anisotropy in the ultrasonic attenuation of tissue on computed tomography. Ultrasonic Imaging, 3:113–143, April, 1981.

    Google Scholar 

  32. A. C. Kak and K. A. Dines. Signal processing of broadband pulsed ultrasound: measurement of attenuation of soft biological tissues. IEEE Transactions on Biomedical Engineering, BME-25: 321–344, 1978.

    Google Scholar 

  33. F. Dunn, W. K. Law, and L. A. Frizzell. Nonlinear ultrasonic propagation in biological media. British Journal of Cancer, 45 (Suppl. 5): 55–58, 1982.

    Google Scholar 

  34. N. Ichida, T. Sato, and M. Linzer. Imaging the nonlinear ultrasonic parameter of a medium. Ultrasonic Imaging, 5:295–299, October, 1983.

    Google Scholar 

  35. S. J. Norton and M. Linzer. Ultrasonic reflectivity tomography: reconstruction with circular transducer arrays. Ultrasonic Imaging, 1:154–184, April, 1979.

    Google Scholar 

  36. S. J. Norton and M. Linzer. Ultrasonic reflectivity imaging in three dimensions: reconstruction with spherical transducer arrays. Ultrasonic Imaging, 1:210–231, July, 1979.

    Google Scholar 

  37. M. Kaveh, R. K. Mueller, R. Rylander, T. R. Coulter, and M. Soumekh. Experimental results in ultrasonic diffraction tomography. In K. Y. Wang, editor, Acoustical Imaging, volume 9, pages 433–450. Plenum Press. New York, 1980.

    Google Scholar 

  38. G. Wade, S. Elliott, I. Khogeer, G. Flesher, J. Eisler, D. Mensa, N. S. Ramesh, and G. Heidbreder. Acoustic echo computer tomography. In A. F. Metherell, editor, Acoustical Imaging, volume 8, pages 565–576. Plenum Press. New York, 1980.

    Google Scholar 

  39. F. J. Hilterman. Seismic imaging. In K. Y. Wang, editor, Acoustical Imaging, volume 9, pages 653–679. Plenum Press. New York, 1980.

    Google Scholar 

  40. M. M. Sondhi. Reconstruction of objects from their sound-diffraction patterns. Journal of the Acoustical Society of America, 46: 1158–1164, 1969.

    Article  Google Scholar 

  41. K. Nagai and J. F. Greenleaf. Ultrasonic imaging using the Doppler effect caused by a moving transducers. Optical Engineering, 29:1249–1254, October, 1990.

    Google Scholar 

  42. D. E. Robinson and P. C. Knight. Computer reconstruction techniques in compound scan pulse-echo imaging. Ultrasonic Imaging, 3:217–234, July, 1981.

    Google Scholar 

  43. C. B. Burckhardt. Speckle in ultrasound b-mode scans. IEEE Transactions on Sonics and Ultrasonics, 1:1–6, 1978.

    Google Scholar 

  44. J. F. Greenleaf, P. J. Thomas, and B. Rajagopalan. Effects of diffraction on ultrasonic computer-assisted tomography. In J. P. Powers, editor, Acoustical Imaging, volume 11, pages 351–363. Plenum Press. New York, 1982.

    Google Scholar 

  45. K. Iwata and R Nagata. Calculation of refractive index distribution from interferograms using Born and Rytov’s approximation. Japanese Journal of Applied Physiology, 14 (Suppl. 14, no. 1): 379–383, 1975.

    Google Scholar 

  46. S. K. Kenue and J. F. Greenleaf. Limited angle multifrequency diffraction tomography. IEEE Transactions on Sonics and Ultrasonics, SU-29:213217, July, 1982.

    Google Scholar 

  47. R. K. Mueller. Diffraction tomography. I: The wave-equation. Ultrasonic Imaging, 2:213–222, July, 1980.

    Google Scholar 

  48. M. Kaveh, M. Soumekh, Z. Q. Lu, R. K. Mueller, and J. F. Greenleaf. Further results on diffraction tomography using Rytov’s approximation. In E. A. Ash and C. R. Hill, editors, Acoustical Imaging, volume 12, pages 599–608. Plenum Press. New York, 1982.

    Google Scholar 

  49. A. J. Devaney. A filtered backpropagation algorithm for diffraction tomography. Ultrasonic Imaging, 4:336–350, October, 1982.

    Google Scholar 

  50. J. Ball, S A Johnson, and F. Stenger. Explicit inversion of the Helmholtz equation for ultra-sound insonification and spherical detection. In K. Y. Wang, editor, Acoustical Imaging, volume 9, pages 451–461. Plenum Press. New York, 1980.

    Google Scholar 

  51. E. Wolf. Three-dimensional structure determination of semi-transparent objects from holographic data Optical Communication, 1:153–156, September/October, 1969.

    Google Scholar 

  52. M. Kaveh, M. Soumekh, and R. K. Mueller. A comparison of Born and Rytov approximations in acoustic tomography. In M. Kaveh, R. K. Mueller, and J. F. Greenleaf, editors, Acoustical Imaging, volume 11, pages 325335. Plenum Press, New York, 1982.

    Google Scholar 

  53. J. M. Tribolet. A new phase unwrapping algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-25: 170–177, 1977.

    Google Scholar 

  54. J. F. Greenleaf. Computerized tomography with ultrasound. Proceedings of the IEEE, 71: 330–337, 1983.

    Article  Google Scholar 

  55. S. J. Norton and M. Linzer. Ultrasonic reflectivity imaging in three dimensions: exact inverse scattering solutions for plane, cylindrical, and spherical apertures. IEEE Transactions in Biomedical Engineering, BME28: 202–220, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Mayo Foundation

About this chapter

Cite this chapter

Greenleaf, J.F., Sehgal, C.M. (1992). Computed Transverse Imaging. In: Biologic System Evaluation with Ultrasound. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9243-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9243-9_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9245-3

  • Online ISBN: 978-1-4613-9243-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics