Placental Metabolism and Regulation of Nutrient Transfer to the Fetus

  • William W. HayJr.


The placenta is a specialized organ of exchange that provides nutrients to and excretes waste products from the fetus. This exchange is the primary means by which the placenta controls fetal metabolism and growth; however, in vitro and in vivo experiments have demonstrated marked metabolic activity of the placenta. For example, placental oxygen and glucose consumption rates approach or even exceed those of brain and tumor tissue. Other placental metabolic activities include glycolysis; gluconeogenesis; glycogenesis; oxidation of glucose, lipids, and amino acids; protein synthesis; amino acid interconversion; glycero-lipid synthesis; and chain lengthening or shortening of individual fatty acids.


Human Placenta Nutrient Transfer Fetal Circulation Placental Weight Fetal Sheep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baur R. Morphometry of the placental exchange area. In: Advances in anatomy, embryology and cell biology. Berlin: Springer-Verlag; 1977;53:5–65.Google Scholar
  2. 2.
    Teasdale F. Numerical density of nuclei in the sheep placenta. AnatRec. 1976;185:187–196.CrossRefGoogle Scholar
  3. 3.
    Molteni RA, Stys SJ, Battaglia FC. Relationship of fetal and placental weight in human beings: Fetal/placental weight ratios at various gestational ages and birth weight distributions. J Reprod Med. 1978;21:327–334.PubMedGoogle Scholar
  4. 4.
    Owens JA, Falconer J, Robinson JS. Effect of restriction of placental growth on fetal and utero-placental metabolism. J Dev Physiol. 1987;9:225–238.PubMedGoogle Scholar
  5. 5.
    Boyd JD, Hamilton WJ. Development and structure of the human placenta from the end of the third month of gestation. J Obstet Gynecol Br Commonw. 1967;74:161–226.CrossRefGoogle Scholar
  6. 6.
    Molina RD, Meschia G, Battaglia FC, Hay WW Jr. Maturation of placental glucose transfer capacity in the ovine pregnancy. Pediatr Res. 1988;23:248A, Abstract 283.Google Scholar
  7. 7.
    Morris FH, Riddle LM, Fitzgerald BF. Gestational increase in facilitated uptake of D-glucose by ovine trophoblast microvillous membrane vesicles. In: Program, Society for Gynecologic Investigation. 1985:93.Google Scholar
  8. 8.
    Alexander G. Studies on the placenta in sheep (Ovis aries L.). Effect of surgical reduction in the number of caruncles. J Reprod Fertil. 1964;7:307–322.PubMedCrossRefGoogle Scholar
  9. 9.
    Rosenfeld CR, Morriss FH Jr, Makowski EL, Meschia G, Battaglia FC. Circulatory changes in the reproductive tissues of ewes during pregnancy. Gynecol Invest. 1974;5:252–268.PubMedCrossRefGoogle Scholar
  10. 10.
    Harding PG. Chronic placental insufficiency: An experimental model. Am J. Obstet Gynecol. 1970;106:857–864.PubMedGoogle Scholar
  11. 11.
    Beer AE, Billingham RE, Scott JR. Immunogenetic aspects of implantation, placentation and fetoplacental growth rates. Biol Reprod. 1975;12:176–189.PubMedCrossRefGoogle Scholar
  12. 12.
    Meschia G, Hay, WW Jr, Sparks JW, Battaglia FC. Utilization of substrates by the ovine placenta in vivo. Fed Proc. 1980;39:245–249.PubMedGoogle Scholar
  13. 13.
    Makowski EL, Meschia G, Droegmueller W, Battaglia FC. Measurement of umbilical arterial blood flow to the sheep placenta and fetus in utero. Circ Res. 1968;23:623–631.PubMedGoogle Scholar
  14. 14.
    Nesbitt REL Jr, Rice PA, Rourke JE, Torresi VF, Soudray AM. In vitro perfusion studies of the human placenta. A newly-designed apparatus for extracorporeal perfusion achieving dual closed circulation. Gynecol Invest. 1970;1:185–203.PubMedCrossRefGoogle Scholar
  15. 15.
    Hill PMM, Young M. Net placental transfer of free amino acids against varying concentrations. J Physiol. 1973;235:409–422.PubMedGoogle Scholar
  16. 16.
    Holzman IR, Philipps AF, Battaglia FC. Glucose metabolism, lactate, and ammonia production by the human placenta in vitro. Pediatr Res. 1979;13:117–120.PubMedGoogle Scholar
  17. 17.
    Villee CA. The metabolism of human placenta in vitro. J Biol Chem. 1953;205:113–123.PubMedGoogle Scholar
  18. 18.
    Comline RS, Silver M. Some aspects of fetal and uteroplacental metabolism in cows with indwelling umbilical and uterine vascular catheters. J Physiol Lond. 1976;260:571–586.PubMedGoogle Scholar
  19. 19.
    Meschia G, Cotter JR, Makowski EL, Barron DH. Simultaneous measurement of uterine and umbilical blood flows and oxygen uptakes. Q J Exp Physiol. 1967;52:1–12.Google Scholar
  20. 20.
    Silver M. Some aspects of equine placental exchange and fetal physiology. Equine Vet J. 1984;16:227–233.PubMedCrossRefGoogle Scholar
  21. 21.
    Bloxam DL. Human placental energy metabolism: Its relevance to in vitro perfusion. Contrib Gynecol Obstet. 1985;13:59–69.PubMedGoogle Scholar
  22. 22.
    Carroll MJ, Young M. Mixed protein synthetic rate in the tissue of the isolated lobule of the human placenta. J Physiol. 1982;332:5P.Google Scholar
  23. 23.
    DiGiacomo JE, Hay WW Jr. Regulation of placental glucose transfer and consumption by fetal glucose production. Pediatr Res. 1989; 25:429–434.PubMedCrossRefGoogle Scholar
  24. 24.
    Widdas WF. Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer. J Physiol. 1952;118:23–39.PubMedGoogle Scholar
  25. 25.
    Ingerman RL, Bissonette JM, Kock PL. Glucose-sensitive and -insensitive cytochalasin-B binding proteins from microvillous plasma membranes of human placenta. Identification of the D-glucose transporter. Biochim Biophy Acta. 1983;730:57–63.CrossRefGoogle Scholar
  26. 26.
    Stacey TE, Weedon AP, Haworth C, Ward RHT, Body RDH. Fetomaternal transfer of glucose analogues by sheep placenta. Am J Physiol. 1978;234:E32-E37.PubMedGoogle Scholar
  27. 27.
    Johnson LW, Smith CH. Monosaccharide transport across microvillous membrane of human placenta. Am J Physiol. 1980;238:C160-C168.PubMedGoogle Scholar
  28. 28.
    Johnson LW, Smith CH. Glucose transport across the basal plasma membrane of human placental syncytiotrophoblast. Biochim Biophys Acta. 1985;815:44–50.PubMedCrossRefGoogle Scholar
  29. 29.
    Hay WW Jr, Sparks JW, Battaglia FC, Meschia G. Maternal-fetal glucose exchange: necessity of a three-pool model. Am J Physiol. 1984;246:E528-E534.PubMedGoogle Scholar
  30. 30.
    Simmons MA, Battaglia FC, Meschia G. Placental transfer of glucose. J Dev Physiol. 1979;1:227–243.PubMedGoogle Scholar
  31. 31.
    Hay WW Jr, Meznarich HK. Effect of maternal glucose concentration on uteroplacental glucose consumption and transfer in pregnant sheep. Proc Soc Exp Biol Med. 1988;190:63–69.Google Scholar
  32. 32.
    DiGiacomo JE, Hay WW Jr: Placental-fetal glucose exchange and placental glucose consumption in pregnant sheep. Am J Physiol. 1990:258;E360-E367.PubMedGoogle Scholar
  33. 33.
    Haugel S, Desnaizieres V, Challier JC. Glucose uptake, utilization, and transfer by the human placenta as functions of maternal glucose concentration. Pediatr Res. 1986;20:269–273.CrossRefGoogle Scholar
  34. 34.
    Burd LI, Jones MD Jr, Simmons MA, Makowski EL, Meschia G, Battaglia FC. Placental production and fetal utilization of lactate and pyruvate. Nature. 1975;254:710–711.PubMedCrossRefGoogle Scholar
  35. 35.
    Sparks JW, Hay WW Jr, Bonds D, Meschia G, Battaglia FC. Simultaneous measurements of lactate turnover rate and umbilical lactate uptake in the fetal lamb. J Clin Invest. 1982;70:179–192.PubMedCrossRefGoogle Scholar
  36. 36.
    Illsey NP, Harmonde JG, Penfold P, et al. Mechanical and metabolic viability of a placental perfusion system “in vitro” under oxygenated and anoxic conditions. Placenta. 1984;5:213–225.CrossRefGoogle Scholar
  37. 37.
    Ramsay TG, Sheehan JA, Martin RJ. Comparison of lactate and glucose metabolism in the developing porcine placenta. Am J Physiol. 1984;247:R755-R760.PubMedGoogle Scholar
  38. 38.
    Yudilevich DL, Sweiry JH. Transport of amino acids in the placenta. Biochim Biophys Acta. 1985;822:169–201.PubMedGoogle Scholar
  39. 39.
    Smith CH. Incubation techniques and investigation of placental transport mechanisms in vitro. Placenta. 1981;2(suppl): 163–176.CrossRefGoogle Scholar
  40. 40.
    Milley JR. Uptake of exogenous substrates during hypoxia in fetal lambs. Am J Physiol. 1988; 254:E572-E578.PubMedGoogle Scholar
  41. 41.
    Enders RH, Judd RM, Donohue TM, Smith CH. Placental amino acid uptake. III. Transport systems for neutral amino acids. Am J Physiol. 1976;230:706–710.PubMedGoogle Scholar
  42. 42.
    Eaton BM, Yudilevich DL. Uptake and asymmetric efflux of amino acids at maternal and fetal sides of placenta. Am J Physiol. 1981; 241:C106-C112.PubMedGoogle Scholar
  43. 43.
    Ganapathy ME, Leibach FH, Mahesh VB, Howard JE, DeVoe LD, Ganapathy V. Characterization of tryptophan transport in human placental brush-border membrane vesicles. BiochemJ. 1986;238:201–208.Google Scholar
  44. 44.
    Balkovetz DF, Leibach FH, Mahesh VB, DeVoe LD, Cragoe EJ Jr, Ganapathy V. Na+-H+ exchanger or human placental brush-border membrane: Identification and characterization. Am J Physiol. 1986;251:C852-C860.PubMedGoogle Scholar
  45. 45.
    Smith CH, Adcock EW III, Teasdate F, Meschia G, Battaglia FC. Placental amino acid uptake: Tissue preparation, kinetics, and preincubation effect. Am J Physiol. 1973;224:558–564.PubMedGoogle Scholar
  46. 46.
    Domenech M, Gruppuso PA, Nishino VT, Suen JE, Schwartz R. Preserved fetal amino acid concentrations in the presence of maternal hypoaminoacidemia. Pediatr Res 1986;20:1071–1076.PubMedCrossRefGoogle Scholar
  47. 47.
    Cetin I, Marconi AM, Bozzetti P, et al. Umbilical amino acid concentrations in appropriate and small for gestational age infants: A biochemical difference present in utero. Am J obstet Gynecol. 1988;158:120–126.PubMedGoogle Scholar
  48. 48.
    Henderson GI, Turner D, Patwardhan RV, Lumeny L, Hoyumpa AM, Schenker S. Inhibition of placental valine uptake after acute and chronic maternal ethanol consumption. J Pharmacol Exp Ther. 1981;216:465–472.PubMedGoogle Scholar
  49. 49.
    Rowell PP, Sastry BVR. The influence of cholinergic blockade on the uptake of alpha-aminoisobutyric acid by isolated human placental villi. Toxicol Appl Pharmacol. 1978;45:79–93.PubMedCrossRefGoogle Scholar
  50. 50.
    Carroll MJ, Young M. The relationship between placental protein synthesis and transfer of amino acids. BiochemJ. 1983;210:99–195.Google Scholar
  51. 51.
    Lemons JA. Fetal-placental nitrogen metabolism. Semin Perinatol. 1979;3:177–190.PubMedGoogle Scholar
  52. 52.
    Marconi AM, Sparks JW, Battaglia FC, Meschia G. A comparison of amino acid arteriovenous differences across the liver, hindlimb and placenta in the fetal lamb. Am J Physiol, in press. 1989;257:E909-E915.Google Scholar
  53. 53.
    Battaglia FC, Meschia G. Fetal nutrition. Annu Rev Nutr 1988;8:43–61.PubMedCrossRefGoogle Scholar
  54. 54.
    Holzman IR, Lemons JA, Meschia G, Battaglia FC. Ammonia production by the pregnant uterus. Proc Soc Exp Biol Med. 1977;156:27–30.PubMedGoogle Scholar
  55. 55.
    Battaglia FC, Meschia G. An introduction to fetal physiology. Orlando, Fla: Academic Press; 1986.Google Scholar
  56. 56.
    Bell AW, Kennaugh JM, Battaglia FC, Meschia G. Uptake of amino acids and ammonia at mid-gestation by the fetal lamb. Q J Exp Physiol., 1989;74:635–643.PubMedGoogle Scholar
  57. 57.
    Edwards EM, Rattenbury JM, Varnam GCE, Dhand UP, Jeacock MK, Shepherd DAL. Enzyme activities in the sheep placenta during the last three months of pregnancy. Biochim Biophys Acta. 1977;497:133–143.PubMedGoogle Scholar
  58. 58.
    Loy GL, Fennessey PV, Hay WW Jr, Meschia G, Battaglia FC. In vivo placental metabolism of leucine and alpha-ketoisocaproate in pregnant sheep demonstrated by stable isotope methodology. Soc Gyneco Invest. 1988;35:240. Abstract 362.Google Scholar
  59. 59.
    Freese. Vascular relations of placental exchange areas in primates and man. In: Longo LD, Bartels H, eds. Respiratory gas exchange and blood flow in the Placenta. DHEW Publication (NIH) 73–361. Washington, DC: Department of Health, Eduction, and Welfare; 1972:31–54.Google Scholar
  60. 60.
    Battaglia FC, Meschia G. Principal substrates of fetal metabolism. Physiol Rev. 1978;58:499–527.PubMedGoogle Scholar
  61. 61.
    Jones CT, Rolph TP. Melitabosm during fetal life: A functional assessment of metabolic development. Physiol Rev. 1985;65:357–430.PubMedGoogle Scholar
  62. 62.
    Coleman RA. Placental metabolism and transport of lipid. Fed Proc. 1986;45:2519–2523.PubMedGoogle Scholar
  63. 63.
    Thomas CR, Evans JL, Buttriss C, Lowy C. Lipid chain length alterations during placental transfer in the guinea pig. J Dev Physiol. 1985;7:305–311.PubMedGoogle Scholar
  64. 64.
    Schmidt-Sommerfeld E, Penn D, Sodha RJ, Progler M, Novak M, Schneider H. Transfer and metabolism of carnitine and carnitine esters in the in vitro perfused human placenta. Pediatr Res. 1985;19:700–706.PubMedCrossRefGoogle Scholar
  65. 65.
    Szabo AJ, De Lellis R, Grimaldi RD. Triglyceride synthesis by the human placenta. I. Incorporation of labeled palmitate into placental triglycerides. Am J Obstet Gynecol. 1973;115:257–262.PubMedGoogle Scholar
  66. 66.
    Martin RJ, Hausman GJ. Placental development and fatty acid metabolism in pigs fed ad libitum or restricted during gestation. Proc Soc Exp Biol Med. 1981;166:472–478.PubMedGoogle Scholar
  67. 67.
    Roux JF, Green R. Lipid metabolism by the human placenta. Obstet Gynecol. 1967;29:446. Abstract.Google Scholar
  68. 68.
    Christie WW, Noble RC. Fatty acid biosynthesis in sheep placenta and maternal and fetal adipose tissue. Biol Neonate. 1982;42:79–86.PubMedCrossRefGoogle Scholar
  69. 69.
    Coleman RA, Haynes EB. Synthesis and release of fatty acids by human trophoblast cells in culture. J Lipid Res. 1987;28:1335–1341.PubMedGoogle Scholar
  70. 70.
    Hummel L, Schwartze A, Schirrmeister W, et al. Maternal plasma triglycerides as a source of fetal fatty acids. Acta Biol Med Germ. 1976;35:1635–1641.PubMedGoogle Scholar
  71. 71.
    Bell RM, Coleman RA. Enzymes of glycero-lipid synthesis in eukaryotes. Annu Rev Biochem. 1980;49:459–487.PubMedCrossRefGoogle Scholar
  72. 72.
    Coleman RA, Haynes EB. Microsomal and lysosomal enzymes of triacylglycerol metabolism in rat placenta. Biochem J. 1984;217:391–397.PubMedGoogle Scholar
  73. 73.
    Demmer LA, Levin MS, Elovson J, Reuben MA, Leusis AJ, Gordon JL Tissue-specific expression and developmental regulation of the rat apolipoprotein В gene. Proc Natl Acad Sci. 1986;83:8102–8106.PubMedCrossRefGoogle Scholar
  74. 74.
    Park MSC, Subbiah MTR. Evidence for the presence of low density and very low density lipoproteins in human amniotic fluid. Biochem Biophys Res Commun. 1987;149:208–212.PubMedCrossRefGoogle Scholar
  75. 75.
    Crawford MA, Hassam AG, Williams G. Essential fatty acids and fetal brain growth. Lancet 1976;1:452–453.PubMedCrossRefGoogle Scholar
  76. 76.
    Chambaz J, Ravel D, Manier MD, Pepin D, Mulliez N, Bereziat G. Essential fatty acids interconversion in the human fetal liver. Biol Neonate. 1985;47:136–140.PubMedCrossRefGoogle Scholar
  77. 77.
    Winkel CA, Gilmore J, MacDonald PC, Simpson ER. Uptake and degradation of lipoproteins by human trophoblastic cells in primary culture. Endocrinology. 1980;107:1892–1898.PubMedCrossRefGoogle Scholar
  78. 78.
    Simpson ER, MacDonald PC. Endocrine physiology of the placents. Annu Rev Physiol. 1981;43:163–188.PubMedCrossRefGoogle Scholar
  79. 79.
    Winkel CA, Snyder JM, MacDonald PC, Simpson ER. Regulation of cholesterol and progesterone synthesis in human placental cells in culture by serum lipoproteins. Endocrinology. 1980;106:1054–1060.PubMedCrossRefGoogle Scholar
  80. 80.
    Lin DS, Pitkin RM, Connor WE. Placental transfer of cholesterol into the human fetus. J Obstet Gynecol. 1977;128:735–739.Google Scholar
  81. 81.
    Calandra S, Quartaroli GC, Montaguti M. Effects of cholesterol feeding on cholesterol biosynthesis in maternal and fetal rat liver. Eur J Clin Invest. 1975;5:27–31.PubMedCrossRefGoogle Scholar
  82. 82.
    Hay WW Jr, DiGiacomo JE, Meznarich HK, Hirst K, Zerbe G. Effects of glucose and insulin on fetal glucose oxidation and oxygen consumption. Am J Physiol. 1989;256:E704-E713.PubMedGoogle Scholar
  83. 83.
    Sparks JW, Hay WW Jr, Meschia G, Battaglia FC. Partition of maternal nutrients to the placenta and fetus in the sheep. Eur J Obstet Gynecol Reprod Biol. 1983;14:331–340.PubMedCrossRefGoogle Scholar
  84. 84.
    Lemons JA, Adcock EW III, Jones MD Jr, Naughton MA, Meschia G, Battaglia FC. Umbilical uptake of amino acids in the unstressed fetal lamb. J Clin Invest. 1976;58:1428–1434.PubMedCrossRefGoogle Scholar
  85. 85.
    Gresham EL, James EJ, Raye JR, Battaglia FC, Makowski EL, Meschia G. Production and excretion of urea by the fetal lamb. Pediatrics 1972;59:372–379.Google Scholar
  86. 86.
    van Veen LCP, Teng C, Hay WW Jr, Meschia G, Battaglia FC. Leucine disposal and oxidation rates in the fetal lamb. Metabolism. 1987;36:48–53.PubMedCrossRefGoogle Scholar
  87. 87.
    Hay, WW Jr. Energy and substrate requirements of the placenta and fetus. Proceedings of the Nutrition Society. 1991;50:321–336.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1993

Authors and Affiliations

  • William W. HayJr.

There are no affiliations available

Personalised recommendations