Skip to main content

Peritoneal Macrophages

  • Chapter
The Peritoneum

Abstract

Cells composing the mononuclear phagocyte system share a similar morphology, bone marrow origin, and avid phagocytic capacity. Cells currently assigned to the mononuclear phagocyte system are listed in Table 6.1 and include precursor cells in the bone marrow, and monocytes and macrophages present in the tissues and body cavities under normal conditions, inflammation, and postsurgical repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe H, Rodgers KE, Ellefson D, diZerega GS. (1989). Kinetics of interleukin-1 secretion by murine macrophages recovered from the peritoneal cavity after surgery. J Surg Res. 47: 178–182.

    Article  PubMed  CAS  Google Scholar 

  • Abe H, Rodgers KE, Campeau D, Girgis W, Ellefson DD, diZerega GS. (1990). The effect of intraperitoneal administration of sodium tolmetin-hyaluronic acid on the postsurgical cell infiltration in vivo. J Surg Res. 49: 322–327.

    Article  PubMed  CAS  Google Scholar 

  • Abe H, Rodgers KE, Ellefson D, diZerega GS. (1991). Kinetics of interleukin-1 and tumor necrosis factor secretion by rabbit macrophages recovered from the peritoneal cavity after surgery. J Invest Surg. 4: 141–151.

    Article  PubMed  CAS  Google Scholar 

  • Adams DO, Johnson WJ, Marino PJ. (1982). Mechanisms of target recognition and destruction in macrophage mediated tumor cytotoxicity. Fed Proc 41:134.

    Google Scholar 

  • Adams DO. (1983). The biology of the granuloma. In: Ioachim H, ed. Pathology of Granulomas. New York: Raven Press; 1–20.

    Google Scholar 

  • Adams DO, Nathan CF. (1983). Molecular mechanisms in tumor-cell killing by activated macrophages. Immunol Today. 4: 166–170.

    Article  CAS  Google Scholar 

  • Adams DO, Hall T, Steplewski Z, Koprowski H. (1984). Tumor undergoing rejection induced by monoclonal antibodies of the IgG2α isotype contain increased numbers of macrophages activated for a distinctive form of antibody-dependent cytolysis. Proc Natl Acad Sci USA. 81: 3506–3510.

    Article  PubMed  CAS  Google Scholar 

  • Adams DO, Marino P. (1984a). Activation of mononuclear phagocytes for destruction of tumor cells as a model for the study of macrophage development. In: Gordon AS, Silver R, LoBue J, eds. Contemporary Topics in Hematology-Oncology. New York: Plenum Press; 69–136.

    Google Scholar 

  • Adams DO, Hamilton TA. (1987). Molecular basis of signal transduction in macrophage activation induced by IFN–γ and by second signals. Immunol Rev. 97: 1–27.

    Article  Google Scholar 

  • Adams DO, Hamilton TA. (1988). Phagocytic cells: cytotoxic activities of macrophages. In: Gallin JI, Goldstein IM, Synderman R, eds. Inflammation: Basic Principles and Clinical Correlates. New York: Raven Press; 471–492.

    Google Scholar 

  • Alexander P, Evans R. (1971). Endotoxin and double stranded RNA render macrophages cytotoxic. Nature. 232: 76–79.

    CAS  Google Scholar 

  • Allison AC. (1978). Mechanisms by which activated macrophages inhibit lymphocyte responses. Immunol Rev. 40: 3–27.

    Article  PubMed  CAS  Google Scholar 

  • Axline S. (1970). Functional biochemistry of the macrophages. Semin Hematol. 7: 142–150.

    PubMed  CAS  Google Scholar 

  • Bevilacqua MP, Schleef RR, Gimbrone MA, Loskutoff DJ. (1986). Regulation of fibrinolytic system of cultured human vascular endothelium by interleukin 1. J Clin Invest. 73: 587–591.

    Article  Google Scholar 

  • Bitterman PB, Wewers MD, Rennard SI, Adelberg S, Crystal RG. (1986). Modulation of alveolar macrophages-derived fibroblast proliferation by alternative macrophage mediators. J Clin Invest. 77: 700–713.

    Article  PubMed  CAS  Google Scholar 

  • Boros DL. (1986). Immunoregulation of granulomatous formation in murine schistosomiasis mansoni. Ann NY Acad Sci. 465: 313–323.

    Article  PubMed  CAS  Google Scholar 

  • Bronson RE, Bentiolami CN, Siebert EP. (1987). Modulation of fibroblast growth and glycosaminoglycan synthesis by interleukin-1. Collagen Rel Res. 7: 323–332.

    CAS  Google Scholar 

  • Bryant SM, Lynch RE, Hill HR. (1982). Kinetic analysis of superoxide anion production by activated and resident murine peritoneal macrophages. Cell Immunol. 96: 46–58.

    Article  Google Scholar 

  • Bryant SM, Fukasawa M, Orita H, Rodgers KE, diZerega GS. (1988). Mediation of post-surgical wound healing by macrophages. Growth Factors and Other Aspects of Wound Healing: Biological and Clinical Implications. New York: Alan R. Liss; 263–290.

    Google Scholar 

  • Buyalos RP, Rutanem E-M, Tsui E, Halme J. (1991). Release of tumor necrosis factor alpha by human peritoneal macrophages in response to toxic shock syndrome toxin-1. Obstet Gynecol. 78: 182–186.

    PubMed  CAS  Google Scholar 

  • Calderon J, Williams RT, Unanue ER. (1974). An inhibitor of cell proliferation released by cultures of macrophages. Proc Natl Acad Sci USA. 71: 4273–4277.

    Article  PubMed  CAS  Google Scholar 

  • Chapman HA, Stone OL, Vavrin Z. (1984). Degradation of fibrin and elastin by intact human alveolar macrophages in vitro. J Clin Invest. 73: 806–815.

    Article  PubMed  CAS  Google Scholar 

  • Clark RA, Klebanoff SJ. (1975). Neutrophil-mediated tumor cell cytotoxicity: role of the peroxidase system. J Exp Med. 141: 1442–1457.

    Article  PubMed  CAS  Google Scholar 

  • Diegelmann RF, Cohen IK, Kaplan AM. (1981). The role of macrophages in wound repair: a review. Plast Reconstr Surg. 68: 107–113.

    Article  PubMed  CAS  Google Scholar 

  • Dolynchuk KN, Bowness JM. (1981). The early metabolism of noncollagenous glycoproteins during wound healing. J Surg Res. 31: 218–224.

    Article  PubMed  CAS  Google Scholar 

  • Dower SK, Kronheim SR, March CJ, Conlon PJ, Hopp TP, Gillis S, Urdal DL. (1985). Detection and characterization of high affinity plasma membrane receptors for human interleukin 1. J Exp Med. 162: 501–517.

    Article  PubMed  CAS  Google Scholar 

  • Ebert RH, Florey HW. (1939). The extravascular development of the monocyte observed in vivo. Br J Exp Pathol. 20: 342–351.

    Google Scholar 

  • Edelson PJ. (1982). Intracellular parasites and phagocytic cells: Cell biology and pathophysiology. Rev Infect Dis. 4: 124–156.

    Article  PubMed  CAS  Google Scholar 

  • Elias JA, Rossman MD, Zurier RB, Daniele RP. (1985). Human alveolar macrophage inhibition of lung fibroblast growth. A prostaglandin-dependent process. Am Rev Respir Dis. 131: 94–99.

    PubMed  CAS  Google Scholar 

  • Esparza I, Green R, Schreiber RD. (1983). Inhibition of macrophage tumoricidal activity by immune complexes and altered erythrocytes. J Immunol. 131:2117–2123.

    PubMed  CAS  Google Scholar 

  • Estes JE, Pledger WJ, Gillespie GY. (1984). Macrophage derived growth factor for fibroblasts and interleukin-1 are distinct entities. J Leukoc Biol. 35:115– 128.

    PubMed  CAS  Google Scholar 

  • Fakih H, Baggett B, Holtz G, Tsang KY, Lee JC, Williamson HO. (1987). Interleukin-1: a possible role in the infertility associated with endometriosis. Fertil Steril. 47: 213–217.

    PubMed  CAS  Google Scholar 

  • Feldman SR, Gonias SL, Pizzo SV. (1985). A model of α2–macroglobulin structure and functions. Proc Natl Acad Sci USA. 82: 5700–5704.

    Article  PubMed  CAS  Google Scholar 

  • Fukasawa M, Bryant SM, Nakamura RM, diZerega GS. (1987). Modulation of fibroblast proliferation by postsurgical macrophages. J Surg Res. 43: 513–520.

    Article  PubMed  CAS  Google Scholar 

  • Fukasawa M, Bryant SM, diZerega GS. (1988a). Incorporation of thymidine by fibroblasts: evidence for complex regulation by postsurgical macrophages. J Surg Res. 45: 460–466.

    Article  PubMed  CAS  Google Scholar 

  • Fukasawa M, Bryant SM, diZerega GS. (1988b). Superoxide anion production by postsurgical macrophages. J Surg Res. 45: 382–388.

    Article  PubMed  CAS  Google Scholar 

  • Fukasawa M, Campeau JD, Yanagihara DL, Rodgers KE, diZerega GS. (1989a). Mitogenic and protein synthetic activity of tissue repair cells: control by the postsurgical macrophage. J Invest Surg. 2: 169–180.

    Article  PubMed  CAS  Google Scholar 

  • Fukasawa M, Yanagihara DL, Rodgers KE, diZerega GS. (1989b). The mitogenic activity of peritoneal tissue repair cells: control by growth factors. J Surg Res. 47: 45–51.

    Article  PubMed  CAS  Google Scholar 

  • Fukasawa M, Campeau D, Girgis W, Bryant SM, Rodgers KE, diZerega GS. (1989c). Production of protease inhibitors by postsurgical macrophages. J Surg Res. 16: 256–261.

    Article  Google Scholar 

  • Gay S, Viljanto J, Raekallio J, Penttinen R. (1978). Collagen types in early phases of wound healing in children. Acta Chir Scand. 144: 205–211.

    PubMed  CAS  Google Scholar 

  • Gresser J, Brouty-Boye K, Thomas MG, Macierira-Cuelho A. (1970). Interferon and cell division I. Inhibition of the multiplication of mouse leukemia C12 106/B in vitro by interferon preparations. Proc Natl Acad Sci USA. 66: 1052–1058.

    Article  PubMed  CAS  Google Scholar 

  • Grinnell F. (1984). Fibronectin and wound healing. J Cell Biochem. 26: 107–116.

    Article  PubMed  CAS  Google Scholar 

  • Halme J, White C, Kauma S, Estes J, Haskell S. (1988). Peritoneal macrophages from patients with endomtriosis release growth factor activity in vitro. J Clin Endocrinol Metab. 66: 1044–1048.

    Article  PubMed  CAS  Google Scholar 

  • Hibbs JB, Lambert LH, Remington JS. (1972). In vitro nonimmunologic destruction of cells with abnormal characteristics by adjuvant activated macrophages. Proc Soc Exp Biol Med. 139: 1049–1055.

    PubMed  Google Scholar 

  • Hibbs JB, Taintor RR, Varrin Z, Rachlin EM. (1988). Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun. 157: 87–94.

    Article  PubMed  CAS  Google Scholar 

  • Hormann H, Richter H, Jelinic V. (1987). The role of fibronectin fragments and cell-attached transamidase on the binding of soluble fibrin to macrophages. Thrombosis Res. 46: 39–50.

    Article  CAS  Google Scholar 

  • Johnson WJ, Steplewski Z, Matthews TJ, Koprowski H, Adams DO. (1986). Characterization of lytic conditions and requirements for effector activation. J Immunol 136: 4704–4713.

    PubMed  CAS  Google Scholar 

  • Jones PA, Werb Z. (1980). Degradation of connective tissue matrices by macrophages. III. Influence of matrix composition on proteolysis of glycoprotein, elastin and collagen by macrophages in culture. J Exp Med. 152: 1527–1536.

    Article  PubMed  CAS  Google Scholar 

  • Kauma S, Clark MR, White C, Halme J. (1988). Production of fibronectin by peritoneal macrophages and concentration of fibronectin in peritoneal fluid from patients with or without endometriosis. Obstet Gynecol. 72: 13–18.

    PubMed  CAS  Google Scholar 

  • Keski-Oja J, Raghow R, Sawdey M, Loskutoff DJ. (1988). Regulation of mRNAs for type I plasminogen activator inhibitor, fibronectin, and type I procollagen by transforming growth factor-β. J Biol Chem. 263: 3111–3115.

    PubMed  CAS  Google Scholar 

  • Klebanoff SJ. (1975). Antimicrobial mechanisms of neutrophilic polymorpho-nuclear leukocytes. Semin Hematol. 12: 117–124.

    PubMed  CAS  Google Scholar 

  • Kleinman HK, Klebe RJ, Martin GR. (1981). Role of collagenous matrices in the adhesion and growth of cells. J Cell Biol. 88: 473–485.

    Article  PubMed  CAS  Google Scholar 

  • Ko SD, Page RC, Narayanan AS. (1977). Fibroblast heterogenesity and prostaglandin regulation of subpopulation. Proc Natl Acad Sci USA. 74: 3429–3440.

    Article  PubMed  CAS  Google Scholar 

  • Korn JH, Halushka PV, LeRoy EC. (1980). Mononuclear cell modulation of connective tissue function: suppression of fibroblast growth by stimulation of endogenous prostaglandin production. J Clin Invest. 65: 543–554.

    Article  PubMed  CAS  Google Scholar 

  • Kung JT, Brooks SB, Jakway JB, Leonard LL, Talmadge DW. (1977). Suppression of in vitro cytotoxic response by macrophages due to induced arginase. J Exp Med. 146: 665–680.

    Article  PubMed  CAS  Google Scholar 

  • Kuraoka S, Campeau JD, Rodgers KE, Nakamura RM, diZerega GS. (1992). Effects of interleukin-1 (IL-1) on postsurgical macrophage secretion of protease and protease inhibitor activities. J Surg Res. 52: 71–78.

    Article  PubMed  CAS  Google Scholar 

  • Kuraoka S, Campeau JD, Nakamura RM, diZerega GS. (in press.) Modulation of postsurgical macrophage function by early postsurgical polymorphonuclear leukocytes. J Surg Res.

    Google Scholar 

  • Kuraoka S, Campeau JD, Rodgers KE, Nakamura RM, diZerega GS. (in review). Modulation of cytotoxic activity of resident macrophages by postsurgical macrophages.

    Google Scholar 

  • Kurkinen M, Vaheri A, Roberts PJ, Stenman S. (1980). Sequential appearance of fibronectin and collagen in experimental granulation tissue. Lab Invest. 43: 47–51.

    PubMed  CAS  Google Scholar 

  • Laub R, Huybrechts-Godin G, Peeters-Joris C, Vaes G. (1982). Degradation of collagen and proteoglycan by macrophages and fibroblasts. Biochim Biophys Acta. 721: 425–433.

    Article  PubMed  CAS  Google Scholar 

  • Leibovich SJ, Ross R. (1976). A macrophage-dependent factor that stimulates the proliferation of fibroblast in vitro. Am J Pathol. 84: 501–508.

    PubMed  CAS  Google Scholar 

  • Matsushima K, Bano M, Kidwell WR, Oppenheim JJ. (1985). Interleukin-1 increases collagen type IV production by murine mammary epithelial cells. J Immunol. 134: 904–909.

    PubMed  CAS  Google Scholar 

  • Meitzer MS, Ruco LP, Boraschi D, Nacy CA. (1979). Macrophage activation for tumor cytotoxicity: analysis of intermediary reaction. J Reticuloendothel Soc. 26: 403–416.

    Google Scholar 

  • Meuret G, Hoffmann G. (1973). Monocyte kinetic studies in normal and disease states. Br J Haematol 24: 275–285.

    Article  PubMed  CAS  Google Scholar 

  • Meuret G, Bammert J, Hoffman G. (1974). Kinetics of human monocytopoiesis. Blood. 44: 801–806.

    PubMed  CAS  Google Scholar 

  • Meuret G, Detel U, Kilz HP, Senn HJ, Van Lessen H. (1975). Human monocytopoiesis in acute and chronic inflammation. Expt Hematol. 54: 328–334.

    CAS  Google Scholar 

  • Nathan CF, Root KA. (1977). Hydrogen peroxide release from mouse peritoneal macrophages dependence on sequential activation and triggering. J Exp Med. 146: 1648–1662.

    Article  PubMed  CAS  Google Scholar 

  • Nathan CF, Cohn ZA. (1980). Cellular components of inflammation: monocytes and macrophages. In: Kelley W, Harris E, Ruddey S, Hedge R, eds. Textbook of Rheumatology. Philadelphia: WB Saunders; 144–169.

    Google Scholar 

  • Nathan CF. (1986). Mechanisms of macrophage antimicrobial activity. Trans R Soc Trop Med Hyg. 77: 620–630.

    Article  Google Scholar 

  • Nelson DS. (1982). Macrophages as effector of cell-mediated immunity. In: Laskin AI, LeChevalier H, eds. Macrophages and Cellular Immunity. Cleveland: CRC Press; 45–76.

    Google Scholar 

  • Orita H, Campeau JD, Gale JA, Nakamura RM, diZerega GS. (1986). Differential secretion of plasminogen activator activity by postsurgical activated macrophages. J Surg Res. 41: 569–573.

    Article  PubMed  CAS  Google Scholar 

  • Phan SH, McGarry BM, Loeffler KM, Kunkel SL. (1987). Regulation of macrophage derived fibroblast growth factor release by arachidonate metabolites. J Leukoc Biol. 42: 106–113.

    PubMed  CAS  Google Scholar 

  • Postlethwaite AE, Lachman LB, Mainadri CL, Kang AH. (1983). Interleukin-1 stimulation of collagenase production by cultured fibroblasts. J Exp Med. 157: 801–806.

    Article  PubMed  CAS  Google Scholar 

  • Raftery AT. (1973). Regeneration of parietal and visceral peritoneum: An electron microscopical study. J Anat. 115: 375–392.

    PubMed  CAS  Google Scholar 

  • Roberts AB, Anzano MA, Wakefield LM, Roche NS, Stern DF, Sporn MB. (1985). Type B transforming growth factor: a bifunctional regulatory of cellular growth. Proc Natl Acad Sci USA. 82: 119–123.

    Article  PubMed  CAS  Google Scholar 

  • Roberts CJ, Birkenmeier TM, McQuillan JJ, Sporn MB. (1988). Transforming growth factor B stimulates the expression of fibronectin and of both subunits of the human fibronectin receptor by cultured human lung fibroblasts. J Biol Chem. 263: 4586–4592.

    PubMed  CAS  Google Scholar 

  • Rodgers KE, Ellefson D, Girgis W, Scott L, diZerega GS. (1988). Effects of tolmetin sodium dihydrate on hormal and postsurgical cell function. Int J Immunopharmacol. 10: 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Samuelsson B, Branstrom E, Greer K, Hamberg M, Hammerstrom S. (1971). Prostaglandins. Anu Rev Biochem. 44: 669–694.

    Article  Google Scholar 

  • Schmidt JA, Mizel SB, Cohen D, Green I. (1982). Interleukin-1, a potential regulator of fibroblast proliferation. J Immunol. 128: 2177–2192.

    PubMed  CAS  Google Scholar 

  • Schnyder J, Dewald B, Baggiolini M. (1981). Effects of cyclooxygenase inhibitors and prostaglandin E2 on macrophage activation in vitro. Prostaglandins. 22: 411–419.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber R. (1984). Identification of 7-interferon as murine macrophage activating factor for tumor cytotoxicity. Comtemp Top Immunobiol. 13: 174–199.

    Google Scholar 

  • Shimanuki T, Nakamura RM, diZerega GS. (1986). A kinetic analysis of peritoneal fluid cytology and arachidonic acid metabolism after abrasion and reabrasion of rabbit peritoneum. J Surg Res. 41: 245–251.

    Article  PubMed  CAS  Google Scholar 

  • Somers SD, Johnson WJ, Adams DO. (1986). Destruction of tumor cells by macrophages: mechanisms of recognition and lysis and their regulation. In: Herberman R, ed. Basic and Clinical Tumor Immunology. New York: Marcel-Dekker; 68–130.

    Google Scholar 

  • Spector WG. (1982). Experimental granulomas. Pathol Res Pract. 175: 110–117.

    PubMed  CAS  Google Scholar 

  • Steeg PS, Johnson HM, Oppenheim JJ. (1982). Regulation of murine macrophage I-A antigen expression by an immune interferon-like lymphokine: inhibitory effect of endotoxins. J Immunol. 129: 2402–2408.

    PubMed  CAS  Google Scholar 

  • Steinman RM, Brodie SE, Cohn ZA. (1976). Membrane flow during pinocytosis: a stereologic analysis. J Cell Biol. 68: 665–671.

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Mellman IS, Muller WA, Cohn ZA. (1983). Endocytosis and the recycling of plasma membrane. J Cell Biol. 96: 1–27.

    Article  PubMed  CAS  Google Scholar 

  • Stuehr DJ, Marletta MA. (1985). Mammalian nitrite biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci USA. 82: 7738–7742.

    Article  PubMed  CAS  Google Scholar 

  • Stuehr DJ, Marletta MA. (1987). Induction of nitrite/nitrate synthesis in murine macrophages by, BCG infection, lymphokines or interfereγ. J Immunol. 139: 518–523.

    PubMed  CAS  Google Scholar 

  • Unanue ER. (1986). Secretory function of mononuclear phagocytes. Am J Pathol. 83: 396–417.

    Google Scholar 

  • van Furth R, Cohn ZA. (1968). The origin and kinetics of mononuclear phagocytes. J Exp Med. 128: 415–435.

    Article  PubMed  Google Scholar 

  • van Furth R, Diesselhoff-den MC. (1970). The kinetics of promonocytes and monocytes in the bone morrow. J Exp Med. 132: 813–828.

    Article  PubMed  Google Scholar 

  • van Furth R. (1976). Origin and kinetics of mononuclear phagocytes. Ann NY Acad Sci. 278: 161–188.

    Article  PubMed  Google Scholar 

  • van Furth R. (1988). Phagocytic cells: development and distribution of mono-nuclear phagocytes in normal steady-state and inflammation. In: Gallin JI, Goldstein IM, Synderman R, eds. Inflammation: Basic Principles and Clinical Correlates. New York: Raven Press; 281–295.

    Google Scholar 

  • Volkman A, Gowans JL. (1965). The origin of macrophages from bone marrow in the rat. Br J Exp Pathol. 46: 62–70.

    PubMed  CAS  Google Scholar 

  • Volkman A. (1976). Disparity in origin of mononuclear phagocyte populations. J Reticuloendothel Soc. 19: 249–253.

    PubMed  CAS  Google Scholar 

  • Werb Z, Banda MJ, Jones PA. (1980a). Degradation of connective tissue matrices by macrophages. I. Proteolysis of elastin, glycoproteins and collagen by proteinases isolated from macrophages. J Exp Med. 152: 1340–1357.

    Article  PubMed  CAS  Google Scholar 

  • Werb Z, Bainton DF, Jones PA. (1980b). Degradation of connective tissue matrices by macrophages. II. Morphological and biochemical studies on extracellular, pericellular and intracellular events in matrix proteolysis by macrophages in culture. J Exp Med. 152: 1537–1553.

    Article  PubMed  CAS  Google Scholar 

  • Whitelaw DM. (1972). Observations on human monocyte kinetics after pulse labelling. Cell Tissue Kinet. 5: 311–317.

    PubMed  CAS  Google Scholar 

  • Zucali JR, Dinarello CA, Obion DJ, Gross MA, Anderson L, Weiner RS. (1986). Interleukin 1 stimulates fibroblasts to produce granulocyte-macrophage colony-stimulating activity and prostaglandin E2. J Clin Invest. 77: 1857–1863.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin New York, Inc.

About this chapter

Cite this chapter

diZerega, G.S., Rodgers, K.E. (1992). Peritoneal Macrophages. In: The Peritoneum. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9235-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9235-4_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9237-8

  • Online ISBN: 978-1-4613-9235-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics