Skip to main content

Fibroblasts and Tissue Repair Cells

  • Chapter
The Peritoneum

Abstract

Fibroblasts are specialized cells that develop from embryonic mesenchyme. They provide an important source of the cellular response to peritoneal injury. As fibroblasts migrate they send out lamellipodia, which adhere to surfaces and allow the fibroblast to move to the new attachment site by contraction of the filaments (Abercrombie, Heaysman, & Pegrum, 1971, 1972; Harris & Dunn, 1972). Fibroblasts synthesize matrix components and direct organization of the resulting connective tissue matrix (e.g., collagens, fibronectin, proteoglycans, and other proteins). The matrix is constantly being turned over and remodeled by fibroblasts and the degradative enzymes they secrete (e.g., collagenases, proteoglycanases, glycosaminodases, and other proteases).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe H, Rodgers KE, Ellefson D, diZerega GS. (1989). Kinetics of interleukin-1 secretion by murine post-surgical peritoneal macrophages. J Surg Res. 47: 178–182.

    PubMed  CAS  Google Scholar 

  • Abe H, Rodgers KE, Ellefson D, diZerega GS. (1991). Kinetics of interleukin-1 and tumor necrosis factor secretion by rabbit macrophages recovered from the peritoneal cavity after surgery. J Invest Surg. 4: 141–151.

    PubMed  CAS  Google Scholar 

  • Abercrombie M, Heaysman JEM, Pegrum SM. (1971). The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella. Exp Cell Res. 67: 359–367.

    PubMed  CAS  Google Scholar 

  • Abercrombie M, Heaysman JEM, Pegrum SM. (1972). Locomotion of fibroblasts in culture. V. Surface marking with concanavalin A. Exp Cell Res. 73: 536–539.

    PubMed  CAS  Google Scholar 

  • Aggarwal BB, Kohn WJ, Hass PE, Moffat B, Spencer SA, Henzel WJ, Bringman TS, Nedwin GW, Goeddel DV, Harkins RN. (1985). Human tumor necrosis factor: production, purification and characterization. J Biol Chem. 260: 2345–2354.

    PubMed  CAS  Google Scholar 

  • Akiyama SK, Yamada KM. (1985). The interaction of plasma fibronectin with fibroblastic cells in suspension. J Biol Chem. 260: 4492.

    PubMed  CAS  Google Scholar 

  • Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB. (1983). Trans-forming growth factor-ß in human platelets. J Biol Chem. 258: 7155–7160.

    PubMed  CAS  Google Scholar 

  • Assoian RK. (1986). Biphasic effect of type ß transforming growth factor on epidermal growth factor receptors in NRK fibroblasts: functional consequences for epidermal growth factor stimulated mitosis. J Biol Chem. 260: 9613–9617.

    Google Scholar 

  • Assoian RK, Fleurdelys BE, Stevenson HC, Miller PJ, Madtes DK, Raines EW, Ross R, Sporn M. (1987). Expression secretion of type ß transforming growth factor by activated human macrophage. Proc Natl Acad Sci USA. 84: 6020–6024.

    PubMed  CAS  Google Scholar 

  • Baird A, Mormede P, Bohlen P. (1985). Immunoreactive fibroblast growth factor in cells of peritoneal exudate suggest its identity with macrophage derived growth factor. Bioehem Biophys Res Commun. 126: 358–364.

    CAS  Google Scholar 

  • Baird A, Esch F, Mormede P, Veno N, Ling N, Bohlen P, Ying SY, Wehrenberg WB, Guillemin R. (1986). Molecular characteristics of fibroblast growth factors distribution and biological activities in various tissues. Recent Prog Horm Res. 42: 143–205.

    PubMed  CAS  Google Scholar 

  • Barbul A, Knud-Hansen J, Wasserkrug HL, Efron G. (1986). Interleukin-2 enhances wound healing in rats. J Surg Res. 40: 315–319.

    PubMed  CAS  Google Scholar 

  • Bitterman PB, Rennard SI, Hunninghake GW, Crystal RB. (1982). Human alveolar macrophage growth factor: regulation and partial characterization. J Clin Invest. 70: 806–822.

    PubMed  CAS  Google Scholar 

  • Bleiberg I, Harvey AK, Smale G, Grotendorst GR. (1985). Identification of a PDGF-like chemoattractant produced by NIH/3T3 cells after transformation with SV40. J Cell Biol. 123: 161–166.

    CAS  Google Scholar 

  • Bronson RE, Bertiolami CN, Siebert EP. (1987). Modulation of fibroblast growth and glycosaminoglycan synthesis by interleukin-1. Coll Relat Res. 7: 323–332.

    PubMed  CAS  Google Scholar 

  • Bryant SM, Fukasawa M, Orita H, Rodgers KE, diZerega GS. (1988). Mediation of post-surgical wound healing by macrophages. In: Hunt TK, Barbul A, Pines E, eds. Growth Factors and Other Aspects of Wound Healing: Biological Clinical Research. New York: Alan R. Liss; 266: 273.

    Google Scholar 

  • Calderon J, Williams RT, Unanue ER. (1974). An inhibitor of cell proliferation related by cultures of macrophages. Proc Natl Acad Sei USA. 71: 4273.

    CAS  Google Scholar 

  • Carpenter G. (1981). Vanadate, epidermal growth factor and the stimulation of DNA synthesis. Bioehem Biophys Res Commun. 102: 1115–1121.

    CAS  Google Scholar 

  • Clemmons DR, Underwood LE, Van Wyk JJ. (1981). Hormonal control of immunoreactive somatomedin production by cultured human fibroblasts. J Clin Invest. 64: 10–19.

    Google Scholar 

  • Cohen S. (1962). Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the newborn animal. J Biol Chem. 237: 1555–1568.

    PubMed  CAS  Google Scholar 

  • Cohen S, Carpenter G. (1975). Human epidermal growth factor: isolation and chemical and biological properties. Proc Natl Acad Sei USA. 72: 1317–1323.

    CAS  Google Scholar 

  • Conover CA, Hintz R, Rosenfeld RG. (1985). Comparative effects of somatomedin C and insulin on the metabolism and growth of cultured human fibroblasts. J Cell Physiol. 122: 133–141.

    PubMed  CAS  Google Scholar 

  • Cromack DT, Sporn MB, Roberts AB, Meuno JJ, Dart LL, Norton TA. (1987). Transforming growth factor ß levels in rat wound chambers. J Surg Res. 42: 622–628.

    PubMed  CAS  Google Scholar 

  • Dinarello CA, Cannon JG, Mier JW, Berkhein HA, Loprest G, Lynn DL, Love RN, Webb AC, Auron PE, Reuben RC, Rich A, Wolft SM, Putney SD. (1986). Multiple biological activities of human recombinant interleukin 1. J Clin Invest. 77: 1734–1739.

    PubMed  CAS  Google Scholar 

  • Dunphy JE, Udupa KN. (1955). Chemical and histochemical sequences in the normal healing of wounds. N Engl J Med. 20: 847–851.

    Google Scholar 

  • Estes JE, Pledger WJ, Gillespie GY. (1984). Macrophage-derived growth factor for fibroblasts and interleukin-1 are distinct entities. J Leukocyte Biol. 35: 115–129.

    PubMed  CAS  Google Scholar 

  • Fukasawa M, Bryant SM, Nakamura RM, diZerega GS. (1987). Modulation of fibroblast proliferation by postsurgical macrophages. J Surg Res. 43: 513–520.

    PubMed  CAS  Google Scholar 

  • Fukasawa M, Bryant SM, diZerega GS. (1988). Incorporation of thymidine into fibroblasts evidence for complex regulation by postsurgical macrophages. J Surg Res. 45: 460–466.

    PubMed  CAS  Google Scholar 

  • Fukasawa M, Yanagihara DL, Rodgers KE, diZerega GS. (1989a). The mitogenic activity of peritoneal tissue repair cells: control by growth factors. J Surg Res. 47: 45–51.

    PubMed  CAS  Google Scholar 

  • Fukasawa M, Campeau JD, Yanagihara DL, Rodgers KE, diZerega GS. (1989b). Mitogenic and protein synthetic activity of tissue repair cells: control by the postsurgical macrophage. J Invest Surg. 2: 169–180.

    PubMed  CAS  Google Scholar 

  • Fukasawa M, Campeau JD, Yanigihara DL, Rodgers KE, diZerega GS. (1990). Regulation of proliferation of peritoneal tissue repair cells by peritoneal mactrophages. J. Surg Res. 49: 81–87.

    PubMed  CAS  Google Scholar 

  • Ginsberg M, Pierschbacher MD, Ruoslahti E, Marguerie G, Plow EF. (1985). Inhibition of fibronectin binding to platelets by proteolytic fragments and synthetic peptides which support fibroblast adhesion. J Biol Chem. 260: 3931–3936.

    PubMed  CAS  Google Scholar 

  • Gleiber WE, Schiffmann E. (1984). Identification of a chemoattractant for fibroblasts produced by human breast carcinoma cell lines. Cancer Res. 44: 3398–3402.

    PubMed  CAS  Google Scholar 

  • Gosline JM, Rosenbloom J. (1984). Elastin. In: Piez KA, Reddi AH, eds. Extra-cellular Matrix Biochemistry. New York: Elsevier; 191–227.

    Google Scholar 

  • Gresser J, Brouty-Boye K, Thomas MG, MacLerira-Cuehlo A. (1970). Interferon and cell division. I. Inhibition of the multiplication of mouse leukemia CI 2106/ ¡3 in vitro by interferon preparations. Proc Natl Acad Sci USA. 66: 1052–1058.

    PubMed  CAS  Google Scholar 

  • Grotendorst GR, Pencev D, Martin GR, Sodek J. (1984). Molecular mediators of tissue repair. In: Hunt TK, Heppenstall RB, Pines E, Rovee D, eds. Soft and Hard Tissue Repair: Biological and Clinical Aspects. New York: Praeger; 20–41.

    Google Scholar 

  • Harris A, Dunn G. (1972). Centripetal transport of attached peptides on both surfaces of moving fibroblasts. Exp Cell Res. 73: 519–523.

    PubMed  CAS  Google Scholar 

  • Ignotz RA, Massaque J. (1986). Transforming growth factor ft stimulates the expression of fibronectin and collagen and their incorporation into the extra-cellular matrix. J Biol Chem. 261: 4337–4345.

    PubMed  CAS  Google Scholar 

  • Jimenez de Asua L, Clingan D, Rudland PS. (1975). Initiation of cell proliferation in cultured mouse fibroblasts by prostaglandin F2a. Proc Natl Acad Sci USA. 72: 2724–2728.

    Google Scholar 

  • Jimenez de Asua LL, Otto AM, Lingren J, Hammerstom S. (1983). The stimulation of the initiation of DNA synthesis and cell division in Swiss mouse 3T3 cells by prostaglandin F2a requires specific functional groups in the molecule. J Biol Chem. 258: 8774–8777.

    Google Scholar 

  • Kehrl JH, Wakefield LM, Roberts AB, Jakowlew S, Alvarez-Mon M, Derynck R, Sporn MB, Fauci AS. (1986). Production of transforming growth factor ß by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med. 163: 1037–1050.

    PubMed  CAS  Google Scholar 

  • Klebe RU. (1974). Isolation of a collagen-dependent cell attachment factor. Nature. 250: 248–251.

    PubMed  CAS  Google Scholar 

  • Kleinman HK, McGoodwin EB, Klebe RJ. (1976). Localization of the cell attachment region in types I and II collagen. Biochem Biophys Res Commun. 72: 426–432.

    PubMed  CAS  Google Scholar 

  • Kleinman HK, Klebe RJ, Martin GR. (1981). Role of collagenous matrices in adhesion and growth of cells. J Cell Biol. 88: 473–485.

    PubMed  CAS  Google Scholar 

  • Ko SD, Page RC, Narayanan AS. (1977). Fibroblast heterogeneity and prostaglandin regulation of subpopulation. Proc Natl Acad Sei USA. 74: 3429–3436.

    CAS  Google Scholar 

  • Korn JH, Halushka PV, LeRoy EC. (1980). Mononuclear cell modulation of connective tissue function: suppression of fibroblast growth by stimulation of endogenous prostaglandin production. J Clin Invest. 65: 543–554.

    PubMed  CAS  Google Scholar 

  • Kung JT, Brooks SB, Jakway JB, Leonard LL, Talmadge DW. (1977). Suppression of in vitro cytotoxic response by macrophage due to induced arginase. J Exp Med. 146: 665–680.

    PubMed  CAS  Google Scholar 

  • Laterra J, Culp LA. (1982). Differences in hyaluronate binding to plasma and cell surface fibronectin. J Biol Chem. 257: 719–726.

    PubMed  CAS  Google Scholar 

  • Leibovich SJ, Ross R. (1975). The role of macrophages in wound repair. A study with hydrocortisone and anti-macrophage serum. Am J Pathol. 78: 71–100.

    PubMed  CAS  Google Scholar 

  • Leibovich SJ, Ross R. (1976). A macrophage-dependent factor that stimulates the proliferation of fibroblast in vitro. Am J Pathol. 84: 501–513.

    PubMed  CAS  Google Scholar 

  • Leibovich SJ. (1978). Production of macrophage-dependent fibroblast-stimulating activity (M-FSA) by murine macrophages. Exp Cell Res. 113: 47–56.

    PubMed  CAS  Google Scholar 

  • Lemke H, Huget R, Flad HD. (1975). Biochemical characterization of a factor released by macrophages. Cell Immunol. 18: 70–75.

    PubMed  Google Scholar 

  • Martin BM, Gimbrone MA Jr, Unanue ER, Cotran RS. (1981). Stimulation of nonlymphoid mesenchymal cell proliferation by a macrophage-derived growth factor. J Immunol. 126: 1510–1515.

    PubMed  CAS  Google Scholar 

  • Matsushima K, Bano M, Kidwell WR, Oppenheim J J. (1985). Interleukin-1 increases collagen type IV production by murine mammary epithelial cells. J Immunol. 134: 904–909.

    PubMed  CAS  Google Scholar 

  • Mensing H, Czarnetozki BM. (1984). Leukotriene B4 induces in vitro fibroblast Chemotaxis. J Invest Dermatol. 82: 9–12.

    PubMed  CAS  Google Scholar 

  • Mizel SB, Dayer JM, Krane SM, Mergenhagen SE. (1981). Stimulation of rheumatoid synovial cell collagenase and prostaglandin production by partially purified lymphocyte activating factor. Proc Natl Acad Sei USA. 78: 2474–2477.

    CAS  Google Scholar 

  • Moses AC, Nissley SP, Rechler MM, Short A, Podskalny JM. (1979). The purification and characterization of multiplication stimulating activity (MSA) from media conditioned by a rat liver cell line. In: Geordano G, Van Wyk JJ, Minuto F, eds. Somatomedins and Growth. New York: Academic Press; 45–49.

    Google Scholar 

  • Muller R, Bravo R, Burckhardt J, Curran T. (1984). Induction of C-fos gene and protein by growth factors precedes activation of C-myc. Nature. 312: 716–720.

    PubMed  CAS  Google Scholar 

  • Oldberg A, Ruoslahti E. (1982). Interaction between chondroitin sulfate proteoglycan, fibronectin and collagen. J Biol Chem. 257: 4859–4863.

    PubMed  CAS  Google Scholar 

  • Opitz HG, Niethammer D, Lemk H, Flad HD, Huget R. (1975). Inhibition of 3H-thymidine incorporation of lymphocytes by a soluble factor from macrophages. Cell Immunol 16: 379–388.

    PubMed  CAS  Google Scholar 

  • Orita H, Campeau JD, Nakamura RM, diZerega GS. (1986). Modulation of fibroblast proliferation by post-surgical macrophages: a time and dose-response study during postsurgical peritoneal re-epithelialization. Am J Obstet Gynecol. 155: 905–911.

    PubMed  CAS  Google Scholar 

  • Pledger WJ, Stiles CD, Antoniades HN, Scher CD. (1978). An ordered sequence of events in required before BALB/C–3T3 cells have become committed to DNA synthesis. Proc Natl Acad Sci USA. 74: 2839–2848.

    Google Scholar 

  • Postlethwaite AE, Seyer JM, Kang AH. (1978). Chemotactic attraction of human fibroblasts to type I, II and III collagens and collagen-derived peptides. Proc Natl Acad Sci USA. 75: 871–875.

    PubMed  CAS  Google Scholar 

  • Postlethwaite AE, Snyderman R, Kang AH. (1979). Generation of a fibroblast chemotactic factor in serum by activation of complement. J Clin Invest. 64: 1379–1385.

    PubMed  CAS  Google Scholar 

  • Postlethwaite AE, Kang AH. (1980). Characterization of guinea pig lymphocyte-derived chemotactic factor for fibroblasts. J Immunol. 124: 1462–1466.

    PubMed  CAS  Google Scholar 

  • Postlethwaite AE, Keski-Oja J, Kang AH. (1981). Induction of fibroblast Chem-otaxis by fibronectin. Localization of the chemotactic region to a 140,000 molecular weight. J Exp Med. 153: 494–499.

    PubMed  CAS  Google Scholar 

  • Postlethwaite AE. (1983). Cell-cell interaction in collagen biosynthesis and fibro-blast migration. In: Weissmann G, ed. Advances in Inflammation Research. New York: Raven Press, 27–55.

    Google Scholar 

  • Postlethwaite AE, Kang AH. (1983). Induction of fibroblast proliferation by human mononuclear derived proteins. Arthritis Rheum. 26: 22–27.

    PubMed  CAS  Google Scholar 

  • Postlethwaite AE, Lachman L, Mainardi CL, Kang AH. (1983). Stimulation of fibroblast collagenase production by human interleukin-1. J Exp Med. 157: 801–806.

    PubMed  CAS  Google Scholar 

  • Postlethwaite AE, Lachman LB, Kang AH. (1984). Induction of fibroblast proliferation by interleukin–1 derived from human monocytic leukemia cells. Arthritis Rheum. 27: 995–1001.

    PubMed  CAS  Google Scholar 

  • Postlethwaite AE, Keski-Oja J, Moses HL, Kang AH. (1987). Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor ß. J Exp Med. 165: 251–256.

    PubMed  CAS  Google Scholar 

  • Postlethwaite AE, Kang AH. (1988). Fibroblasts. In: Gallin JI, Goldstein IM, Snyderman R, eds. Inflammation: Basic Principles and Clinical Correlates. New York: Raven Press; 577–597.

    Google Scholar 

  • Prydze HA, Allison AC, Schlorlemner HU. (1977). Further link between complement activation and coagulation. Nature. 270: 173–178.

    Google Scholar 

  • Raftery AT. (1973a). Regeneration of parietal and visceral peritoneum. Br J Surg. 60: 293–299.

    PubMed  CAS  Google Scholar 

  • Raftery AT. (1973b). Regeneration of parietal and visceral peritoneum in the immature animal. Br J Surg. 60: 969–975.

    PubMed  CAS  Google Scholar 

  • Roberts AB, Anzano MA, Wakefield LM, Roche NS, Stern DF, Sporn MB. (1985). Type ß transforming growth factor: a bidirectional regulation of cell growth. Proc Natl Acad Sei USA. 82: 119–123.

    CAS  Google Scholar 

  • Rodgers KE, diZerega GS. (1992). Modulation of peritoneal re-epithelialization by postsurgical macrophages. J Surg Res. (In press).

    Google Scholar 

  • Ross R, Bowen-Pope DF. (1984). Platelet derived growth factor. J Clin Endocrinol Metab. 13: 191–199.

    Google Scholar 

  • Ryan GG, Grobety J, Majno G. (1973). Mesothelial injury and recovery. Am J Pathol 71: 93–112.

    PubMed  CAS  Google Scholar 

  • Samuelson B, Branstrom E, Greek K, Hamberg M, Hammerstrom S. (1971). Prostaglandins. Annu Rev Biochem. 44: 669–692.

    Google Scholar 

  • Sandy JD, Brown HLG, Lowther DA. (1978). Degradation of proteoglycan in articular cartilage. Biochem Biophys Acta. 543: 536–544.

    PubMed  CAS  Google Scholar 

  • Scher CD, Shepard RC, Antoniades HN, Stiles CD. (1979). Platelet-derived growth factor and the regulation of the mammalian fibroblast cell cycle. Biochem Biophys Acta. 560: 212–241.

    Google Scholar 

  • Schmidt JA, Mizel SB, Cohen D, Green I. (1982). Interleukin-1, a potential regulator of fibroblast proliferation. J Immunol. 128: 2177–2182.

    PubMed  CAS  Google Scholar 

  • Senior RM, Griffin GL, Mecham RP. (1982). Chemotactic responses of fibroblasts to tropoelastin and elastin-derived peptides. J Clin Invest. 70: 614–618.

    PubMed  CAS  Google Scholar 

  • Senior RM, Griffin GL, Mecham RP, Wrenn DS, Prassad KU, Urry DW. (1984). Val-Gly-Val-Ala-Pro-Gly, a repeating peptide in elastin, is chemotactic for fibroblasts and monocytes. J Cell Biol. 99: 870–874.

    PubMed  CAS  Google Scholar 

  • Senior RM, Huang JS, Griffin GL, Deuel TF. (1985). Dissociation of the chemotactic and mitogenic activities of platelet derived growth factor by human neutrophil elastase. J Cell Biol. 100: 351–356.

    PubMed  CAS  Google Scholar 

  • Seppae H, Seppae S, Yamada KM. (1980). The cell binding fragment of fibronectin and platelet-derived growth factor are chemoattractants for fibroblasts. J Cell Biol. 87: 323.

    Google Scholar 

  • Seppae H, Grotendorst G, Seppae S, Schiffmann E, Martin GR. (1982). Platelet derived growth factor is chemotactic for fibroblasts. J Cell Biol. 92: 584–588.

    Google Scholar 

  • Shimokado K, Raines EW, Madtes DK, Barrett TB, Benditt EP, Ross R. (1985). A significant part of macrophage derived growth factor consists of at least two forms of PDGF cell. Cell. 43: 277–286.

    PubMed  CAS  Google Scholar 

  • Simpson DM, R Ross. (1972). The neutrophilic leukocyte in wound repair. A study with anti-neutrophil serum. J Clin Invest. 51: 2009–2023.

    PubMed  CAS  Google Scholar 

  • Sporn MB, Roberts AB, Shull JH, Smith JM, Ward JM, Sodik J. (1983). Poly-peptide transforming growth factors isolated from bovine sources and used for wound healing in vivo. Science. 219: 1329–1331.

    PubMed  CAS  Google Scholar 

  • Stiles CD, Capone GT, Scher CD, Antoniades HN, Van Wky JJ, Pledger WJ. (1979). Dual control of cell growth by somatomedins and platelet-derived growth factor. Proc Natl Acad Sei USA. 76: L279–L283.

    Google Scholar 

  • Takemura R, Werb Z. (1984). Secretory products of macrophages and their physiological functions. Am J Physiol. 246: C1–C9.

    PubMed  CAS  Google Scholar 

  • Thalacker FW, Nilsen-Hamilton M. (1987). Specific induction of secreted proteins by transforming growth factor-ß and 12-0-tetra-decanoyl phorbol-13 acetate. J Biol Chem. 262: 2288–2290.

    Google Scholar 

  • Tsukamoto Y, Helsen WE, Wahl SM. (1981). Macrophage production of fibronectin. A chemoattractant for fibroblast. J Immunol. 127: 673–678.

    PubMed  CAS  Google Scholar 

  • Varga J, Jimenez SA. (1987). Stimulation of normal human fibroblast collagen production and processing by transforming growth factor-0 and 12-0-tetrade-canoyl phorbol-13 acetate. J Biol Chem. 262: 2283–2287.

    Google Scholar 

  • Wahl SM, Wahl LM, McCarthy JB. (1978). Lymphocyte-mediated activation of fibroblast proliferation and collagen production. J Immunol. 121: 942–946.

    PubMed  CAS  Google Scholar 

  • Wahl SM, Wahl LM. (1985). Regulation of macrophage collagenase, prostaglandin, and fibroblast-activating factor production by anti-inflammatory agents: different regulatory mechanisms for tissue injury and repair. Cell Immunol. 92: 302–312.

    PubMed  CAS  Google Scholar 

  • Wahl SM, McCartney-Francis N, Mergenhagen SE. (1989). Inflammatory and immunoregulatory roles of TGF-ß. Immunol Today. 10: 258–261.

    PubMed  CAS  Google Scholar 

  • Welgus HG, Campbell EJ, Bar-Shavit Z, Senior RM, Teitelbaum SL. (1985). Human alveolar macrophages produce a fibroblast-like collagenase and collagenase inhibitor. J Clin Invest. 76: 219–224.

    PubMed  CAS  Google Scholar 

  • Woolley DE. (1984). Mammalian collagenases. In: Piez KA, Reddi AH, eds. Extra-cellular Matrix Biochemistry. New York: Elsevier; 119–157.

    Google Scholar 

  • Wyler DJ, Rosenwasser LJ. (1982). Fibroblast stimulation in schistosomiasis. II. Functional and biochemical stimulating factor. J Immunol. 129: 1706–1710.

    PubMed  CAS  Google Scholar 

  • Yamada KM, Kennedy DW, Kimata K, Pratt PM. (1980). Characteristics of fibronectin interactions with glycosaminoglycans and identification of active proteolytic fragments. J Biol Chem. 255: 6055–6063

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin New York, Inc.

About this chapter

Cite this chapter

diZerega, G.S., Rodgers, K.E. (1992). Fibroblasts and Tissue Repair Cells. In: The Peritoneum. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9235-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9235-4_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9237-8

  • Online ISBN: 978-1-4613-9235-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics